Optical tables provide a rigid platform for high-precision optical experiments and systems. They are designed to eliminate errors caused by relative motion between optical components in the beam path. Rigidity is the primary consideration in optical table design. Table rigidity can be quantified in terms of static or dynamic rigidity. Static rigidity describes the ability of an optical table to resist deflection when the static or quasi-static load distribution is changed. It defines the table performance when stages move across the table or equipment is relocated, added, or removed. Dynamic rigidity describes the ability of an optical table to resist deflection in response to mechanical excitation. It describes the table performance in response to floor vibration, acoustic noise, and mechanical sources on top of the table. A honeycomb design is commonly used to produce very low weight, highly rigid structures. Reduced weight dramatically improves the dynamic rigidity of the structure by moving structural resonance modes to higher, less detrimental frequencies. The structural resonance modes are the frequencies at which the platform deflects, thus causing relative motion across the optics mounting surface. For a given input vibration force, the deflection will be reduced as the mode frequency increases. This is the primary reason why steel honeycomb (see Figure 2) has replaced granite in most high-end optical applications. Since granite is relatively heavy, the resonance modes occur at lower frequencies and therefore, produce higher amplitudes of surface deflection. There are additional improvements that can increase the efficacy of the honeycomb design. A trussed core design uses an additional steel member to bridge across the center of the honeycomb cell. This extra mechanical component significantly stiffens the cell with very little increase in weight, resulting in improved static and dynamic rigidity. By vertically bonding along the height of the honeycomb core, the table's rigidity-to-weight ratio can be maximized. The trussed core design possesses a triple core interface at each honeycomb cell. By bonding the three sheets over the full table height, greater stiffness is produced.
Disturbances caused by relative motion between optical components generally occur at the structurally dominant bending or torsional modes. In addition to pushing these natural modes to higher, less detrimental frequencies, a major advantage of honeycomb over granite is the high level of damping present in the honeycomb structure. Damping attenuates the amplitude of the natural modes and reduces the relative motion across the table surface. Generally, the two types of passive damping used for optical tables include narrowband tuned damping and broadband damping. Tuned damping techniques use individual mode selected vibration absorbers to both eliminate a particular "narrow" mode and mode harmonics across the broader band. On the other hand, broadband damping techniques indiscriminately absorb moderate amounts of vibration over the broadband. Narrowband tuned damping is the most effective means for eliminating structural resonances, which can be seen by comparing their respective compliance curves in Figure 3. These narrowband dampers selectively cancel vibration modes to minimize the dynamic deflection coefficient and make the table behave more like an ideal rigid structure. While some narrowband damper designs use oil, others use a mass-spring mechanism, which can improve performance and allow for tuning to the exact frequency needed to damp the resonance. While broadband damping is less effective than narrowband techniques, it can still improve table performance. One method for broadband damping involves the use of constrained layer structures, which usually consist of two or more metallic sheets separated by a compliant material. For instance, the three metallic sheets in the trussed honeycomb core are each separated by an adhesive. Although the adhesive is rigid, its damping factor is much higher than that of steel and introduces substantial damping into the core. Other broadband damping techniques include introducing a polymeric material that serves to seal the honeycomb core and dampen the working surface. The polymer experiences the same bending and shear stresses as the stainless steel top but, since the damping factor of this material is much higher than that of steel, considerable damping is introduced into the work surface. Damped table sides can also improve vibration sensitivity. In this case, the sides of the table are made of a highly damped, epoxy sealed wood composite. Compared to metal sides, the composite wood sides offer significant damping to the structure and eliminate another source of resonance.