

XPS-D

Universal High-Performance Motion
Controller/Driver

Features Manual

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 ii

©2020 by Newport Corporation, Irvine, CA. All rights reserved.
Original instructions.
No part of this document may be reproduced or copied without the prior written
approval of Newport Corporation. This document is provided for information only, and
product specifications are subject to change without notice. Any change will be
reflected in future publishings.

XPS-D Controller Features Manual

 iii EDH0407En1052 – 08/22

Table of Contents

1.0 Introduction ... 1
1.1 Scope of the Manual ... 1
1.2 Prerequisite ... 1
1.3 Special case of HXP-ELEC-D controller .. 1

2.0 XPS Architecture ... 2
2.1 Introduction ... 2
2.2 State Diagrams .. 2
2.3 Motion Groups .. 4

2.3.1 Specific SingleAxis Group Features .. 5
2.3.2 Specific Spindle Group Features .. 5
2.3.3 Specific XY Group Features .. 5
2.3.4 Specific XYZ Group Features .. 5
2.3.5 Specific MultipleAxes Features ... 5

2.4 Native Units .. 6

3.0 Motion ... 8
3.1 Motion Profiles ... 8
3.2 Home Search ... 10
3.3 Referencing State .. 13

3.3.1 Move on Sensor Eevents .. 14
3.3.2 Moves of Certain Displacements ... 15
3.3.3 Position Counter Resets ... 15
3.3.4 State Diagram ... 16
3.3.5 Example: MechanicalZeroAndIndexHomeSearch 16

3.4 Move ... 16
3.5 Motion Done ... 18
3.6 JOG ... 20
3.7 Master Slave.. 21
3.8 Analog Tracking ... 22

3.8.1 Analog Position Tracking .. 22
3.8.2 Analog Velocity Tracking .. 23

4.0 Trajectories .. 25
4.1 Line-Arc Trajectories .. 25

4.1.1 Trajectory Terminology ... 25
4.1.2 Trajectory Conventions .. 26
4.1.3 Geometric Conventions .. 26

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 iv

4.1.4 Defining Line-Arc Trajectory Elements ... 26
4.1.5 Define Lines ... 27
4.1.6 Define Arcs .. 27
4.1.7 Trajectory File Description .. 28
4.1.8 Trajectory File Examples ... 28
4.1.9 Trajectory Verification and Execution ... 29
4.1.10 Examples of the Use of the Functions .. 30

4.2 Splines ... 31
4.2.1 Trajectory Terminology ... 31
4.2.2 Trajectory Conventions .. 31
4.2.3 Geometric Conventions .. 31
4.2.4 Catmull-Rom Interpolating Splines ... 32
4.2.5 Trajectory Elements Arc Length Calculation ... 32
4.2.6 Trajectory File Description .. 33
4.2.7 Trajectory File Example ... 33
4.2.8 Spline Trajectory Verification and Execution .. 35
4.2.9 Examples .. 36

4.3 PVT Trajectories ... 36
4.3.1 Trajectory Terminology ... 36
4.3.2 Trajectory Conventions .. 36
4.3.3 Geometric Conventions .. 37
4.3.4 PVT Interpolation .. 37
4.3.5 Influence of the Element Output Velocity to the Trajectory 38
4.3.6 Trajectory File Description .. 39
4.3.7 Trajectory File Example ... 40
4.3.8 PVT Trajectory Verification and Execution .. 41
4.3.9 Example with a MultpleAxes Group .. 42

4.4 PT Trajectories .. 42
4.4.1 Trajectory Terminology ... 42
4.4.2 Trajectory Conventions .. 42
4.4.3 Geometric Conventions .. 43
4.4.4 PT Interpolation ... 43
4.4.5 Trajectory File Description .. 43
4.4.6 Trajectory File Example ... 45
4.4.7 PT Trajectory Verification and Execution ... 47
4.4.8 Example of how to use PT functions.. 47
4.4.9 XY LineArc to PT trajectory convertion .. 48

5.0 Emergency Brake and Emergency Stop Cases 49
5.1 Principle .. 49
5.2 Emergency Brake Cases.. 50
5.3 Emergency Stop Cases .. 51

6.0 Compensation .. 52

XPS-D Controller Features Manual

 v EDH0407En1052 – 08/22

6.1 Definitions .. 52
6.2 Backlash Compensation .. 53
6.3 Linear Error Correction ... 54
6.4 Positioner Mapping ... 54
6.5 XY Mapping ... 56

6.5.1 Multiple XY Mappings in Series ... 58
6.6 XYZ Mapping ... 59

7.0 Event Triggers ... 65
7.1 Events.. 65
7.2 Actions .. 75
7.3 Functions ... 80
7.4 Examples ... 81

8.0 Data Gathering .. 87
8.1 Time-Based (Internal) Data Gathering .. 88
8.2 Event-Based (Internal) Data Gathering ... 91
8.3 Function-Based (Internal) Data Gathering .. 93
8.4 Trigger-Based (External) Data Gathering ... 94

9.0 Output Triggers ... 96
9.1 Position Compare Output Triggers on positioners .. 96

9.1.1 Even Distance Spaced Pulses Position Compare 96
9.1.2 Compensated Position Compare .. 99
9.1.3 Time Spaced Pulses (Time Flasher) ... 103
9.1.4 AquadB Signals on PCO Connector .. 106

9.2 Output Triggers on trajectories ... 107
9.2.1 Triggers on Line-Arc Trajectories .. 107
9.2.2 Triggers on PVT Trajectories ... 109
9.2.3 Triggers on PT Trajectories.. 110

10.0 Control Loops .. 112
10.1 XPS Servo Loops .. 112

10.1.1 Servo structure and Basics ... 112
10.1.2 XPS PIDFF Architecture .. 114
10.1.3 PID Corrector Architecture .. 115
10.1.4 Proportional Term .. 115
10.1.5 Derivative Term ... 116
10.1.6 Integral Term .. 116
10.1.7 Variable Gains .. 117

10.2 Filtering and Limitation .. 118
10.2.1 Current velocity and current acceleration .. 118

10.3 Feed Forward Loops and Servo Tuning .. 119
10.3.1 Corrector = PIDFFVelocity .. 119

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 vi

10.3.2 Parameters .. 119
10.3.3 Basics ... 119
10.3.4 Methodology of Tuning PID's for PIDFFVelocity Corrector (DC motors

with or without tachometer) ... 120
10.3.5 Corrector = PIDFFAcceleration ... 121
10.3.6 Parameters .. 121
10.3.7 Basics ... 121
10.3.8 Methodology of Tuning PID's for PIDFFAcceleration Corrector (direct

drive DC motors) ... 122
10.3.9 Corrector = PIDDual FFVoltage .. 123
10.3.10 Parameters .. 123
10.3.11 Basics ... 124
10.3.12 Methodology of Tuning PID's for PIDDualFF Corrector (DC motors with

tachometers) ... 124
10.3.13 Corrector = PIPosition.. 124
10.3.14 Parameters .. 124
10.3.15 Basics & Tuning ... 125

11.0 Analog Encoder Calibration... 126
11.1 Analog Encoder Errors.. 126
11.2 Analog Encoder Compensation Feature .. 128
11.3 Calibration Procedure ... 129

12.0 Excitation Signal .. 131
12.1 Introduction ... 131
12.2 How to Use the Excitation-Signal Function .. 131
12.3 Group State Diagram .. 132
12.4 Function Description ... 132

13.0 Introduction to XPS Programming ... 133
13.1 TCL Generator .. 134
13.2 Running Processes in Parallel ... 136

14.0 HXP-ELEC-D controller features ... 137
14.1 HXP-ELEC-D architecture ... 137

14.1.1 Hexapod Group .. 137
14.1.2 Hexapod Coordinate Systems .. 138

14.2 Motion ... 142
14.2.1 Measurement Units .. 142
14.2.2 Position Information... 142
14.2.3 Home Search .. 142
14.2.4 Hexapod Referencing State: GroupReadyAtPosition 143
14.2.5 Absolute Moves (HexapodMoveAbsolute) .. 144
14.2.6 Incremental Moves Along and Around Tool (HexapodMoveIncremental)

 ... 145

XPS-D Controller Features Manual

 vii EDH0407En1052 – 08/22

14.2.7 Incremental Moves Along and Around Work (HexapodMoveIncremental)
 ... 146

14.2.8 Moves of the Hexapod Struts (GroupMoveAbsolute and
GroupMoveRelative).. 146

14.2.9 Changing the Position of the Tool and Work Coordinate Systems 147
14.2.10 RightPath™ Trajectories .. 148

14.3 Error Compensation .. 153
14.3.1 Backlash Compensation ... 153
14.3.2 Hysteresis Compensation ... 154
14.3.3 Linear Error Correction .. 155
14.3.4 Positioner Mapping .. 155

15.0 Photonic Device Search Algorithms (PDSA) 156
Configuration files ... 156

15.1.1 System.ini:.. 156
15.2 Search API descriptions .. 158

15.2.1 MultipleAxesPDSAAxisByAxisExecution .. 158
15.2.2 MultipleAxesPDSASpiralStepExecution ... 158
15.2.3 MultipleAxesPDSASpiralContinuousExecution 158
15.2.4 MultipleAxesPDSARasterExecution ... 159
15.2.5 MultipleAxesPDSADichotomyExecution.. 159
15.2.6 MultipleAxesPDSAEscaladeStepExecution .. 159
15.2.7 MultipleAxesPDSAEscaladeContinuousExecution 159

Service Form .. 161

XPS-D Controller Features Manual

 1 EDH0407En1052 – 08/22

1.0 Introduction

1.1 Scope of the Manual
The XPS is an extremely high-performance, easy to use, integrated motion
controller/driver offering high-speed communication through 10/100/1000 Base-T
Ethernet, outstanding trajectory accuracy and powerful programming functionality. It
combines user-friendly web interfaces with advanced trajectory and synchronization
features to precisely control from the most basic to the most complex motion sequences.
Multiple digital and analog I/O's, triggers and supplemental encoder inputs provide
users with additional data acquisition, synchronization and control features that can
improve the most demanding motion applications.
To maximize the value of the XPS Controller/Driver system, it is important that users
become thoroughly familiar with available documentation.
The present XPS-D Features Manual describes all the functions implemented in the
standard controller. Additional Feature sheets are available for special customer
functions

1.2 Prerequisite
It is mandatory that both applicable Start-Up Manual, and User Interface Manual be
thoroughly read and understood before going through this manual.
Particularily, appropriate driver cards must be installed, all stages must be connected,
and an Ethernet connection must be established between the computer and the
controller, either directly or through a network.
Programmer’s Manual is also frequently referred to and must be used in conjunction
with the present document.

1.3 Special case of HXP-ELEC-D controller
When preconfigured to drive a hexapod, the XPS-D controller (then referenced HXP-
ELEC-D and usually called “HXP-D” or “HXP” controller) only offers two
configurable single axes to which all the features presented below are applicable (except
XYZ group features). The 6 axes dedicated to the hexapod present specific features that
are described at the end of this manual.

Universal High-Performance
Motion Controller/Driver
XPS-D Controller

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 2

2.0 XPS Architecture

2.1 Introduction
The architecture of the XPS firmware is based on an object-oriented approach. Objects
are key to understanding this approach. Real-world objects share two characteristics:
state and behavior. Software objects are modeled after real-world objects, so they have
state and behavior too. A software object maintains its state in one or more variables. A
variable is an item of data named by an identifier. A software object implements its
behavior with methods. A method is a function (subroutine) associated with an object.
Therefore, an object is a software bundle of variables and related methods.
Encapsulating related variables and methods into a neat software bundle is a simple yet
powerful idea that provides two primary benefits to software developers:

• Modularity: The source code for an object can be written and maintained
independent of the source code for other objects. Also, an object can be easily
passed around in the system.

• Hidden information: An object has a public interface that other objects can use to
communicate with it. The object can maintain private information and methods that
can be changed at any time without affecting the other objects that depend on it.

All objects have a life cycle and state diagrams are used to show the life cycle of the
objects. The transition from one state to another is initiated after receiving a message
from another object. Like all other diagrams, state diagrams can be nested in different
layers to keep them simple and easy to read.

2.2 State Diagrams
State diagrams are a way to describe the behavior of each group or object. They
represent each steady state of a group and every transition between states in an
exhaustive way. State diagrams contain the following components:

Here is an example of a simple stage diagram:

XPS-D Controller Features Manual

 3 EDH0407En1052 – 08/22

State diagrams can also include sub state diagrams:

The state diagrams that are specific to the XPS controller follow the same format.
Within the XPS controller, all positioners are assigned to different motion groups.
These motion groups have the following common state diagram:

As shown in the above state diagram, all groups have to be first initialized and then
homed before any group is ready to perform any other function. Once the group is
homed, it is in a ready state. There are five different basic motion groups available with
the XPS controller:

• SingleAxis group
• Spindle group
• XY group

• XYZ group
• MultipleAxes group
Some additional specific groups are also used in particular cases (like Hexapod group
for HXP controller).
Each group also has group specific states. Please refer to the Programmer’s Manual for
group-specific state diagrams for all the different groups.
All positioners of a group are bundled together for security handling. Security handling
of different groups is treated independently. Following is a list of the different faults and
consequences that can happen in the XPS controller:

Error type Fault Consequence
General inhibition
Motor fault
Encoder fault

Major Emergency stop

End of travel Major Emergency brake
Following error Minor Motion disable

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 4

• After an emergency brake or an emergency stop, both considered major faults, the
corresponding group goes to a “not initialized” state: the system has to be initialized
and homed again before any further motion.

• After a following error, as it is considered a minor fault, the corresponding group
goes to a “Disable” state: a GroupMotionEnable() command puts the system back
into “ready” state.

At any given time, the group status can be queried from the controller. The function
GroupStatusGet (GroupName) returns the current state number. The state numbers
correspond to the state and to the event that generated the transition (if any). The
function GroupStatusStringGet (StateNumber) returns the state description
corresponding to the state number.
Similar to the Group State, the Controller Status can also be queried using the API
ControllerStatusGet() or ControllerStatusRead(). The status numbers correspond to
the status and event that generated the status. To get a description of the status code use
ControllerStatusStringGet(). For more information refer to the XPS Programmer's
Manual.

Called function
1. GroupInitialize
2. GroupHomeSearch
3. GroupMoveAbsolute
4. GroupMoveRelative
5. GroupMotionDisable
6. GroupMotionEnable

7. GroupMoveAbort
8. GroupKill or KillAll
9. GroupSpinParametersSet
10. GroupSpinModeStop
11. SpinSlaveModeEnable
12. SpinSlaveModeDisable

13. GroupAnalogTrackingModeEnable
14. GroupAnalogTrackingModeDisable
15. GroupInitializeWithEncoderCalibration
16. GroupReferencingStart
17. GroupReferencingStop

State diagram of the XPS controller.

2.3 Motion Groups
Within the XPS controller, each positioner or axis of motion must be assigned to a
motion group. This “group” can basically either be a SingleAxis group, a Spindle group,
an XY group, an XYZ group or a MultipleAxes group. Once defined, the XPS
automatically manages all safeties and trajectories of the motion group from the same
function. For instance, the function GroupHomeSearch (GroupName) automatically
homes the whole motion group GroupName independent of its definition as a

XPS-D Controller Features Manual

 5 EDH0407En1052 – 08/22

SingleAxis group, a Spindle group, an XY group, an XYZ group or a MultipleAxes
group. Within the system configuration file, system.ini, select the home sequence as
sequential (exact statement depends on group type), one positioner after the other, or
“Together”, with all positioners homing at the same time. With a single function such as
GroupMoveAbsolute (GroupName, Position), the whole motion group, GroupName,
is moved synchronously to the defined absolute position, where “Position” may be one
or more parameters depending on the number of positioners this motion group contains.
This same command can be used to move a single positioner of a group to an absolute
position by using the syntax GroupMoveAbsolute (GroupName.PositionerName,
Position1). These powerful, object-oriented functions are not only extremely intuitive
and easy to use, they are also more consistent with other programming methods and
reduce the number of commands learned compared to traditional mnemonic commands.
Another benefit provided by motion groups is improved error handling. For instance,
whenever an error occurs due to a following error or a loss of the end-of-run signal,
only the motion group where the error originated is affected (disabled) while all other
motion groups remain active and enabled. The XPS manages these events
automatically. This greatly reduces complexity and improves the security and safety of
sensitive applications.
To illustrate this, let’s consider a typical scanning application. If there is an error on the
stepping axis of the XY table (which is set-up as an XY group), only the XY table is
disabled while the auto-focusing tool (a vertical stage that is defined as a separate
SingleAxis group) continues to function.
Each of the five available motion groups has specific features:

2.3.1 Specific SingleAxis Group Features
Master-Slave – To enable this function, the slaved positioner must be defined as a
SingleAxis group. The master positioner can be a member of any motion group. So, it is
possible to define a Positioner as a slave of another positioner that is part of an XYZ
group.

2.3.2 Specific Spindle Group Features
The Spindle Group is a single positioner group that enables continuous rotations with no
limits and with a periodic position reset.
Master-Slave - In Master-Slave spindle mode the master and the slave group must be
Spindle groups.

2.3.3 Specific XY Group Features
Line-Arc trajectories, XY mapping – These features are only available with XY groups.
It is not possible for an XY group to perform a Spline or a PVT trajectory. Also, an XY
group cannot be slaved to another group, however, any positioner of an XY group can
be a master to a slaved SingleAxis group.

2.3.4 Specific XYZ Group Features
Spline trajectories, XYZ mapping – These features are only available with XYZ groups.
It is not possible for an XYZ group to perform a Line-Arc or a PVT trajectory. Also, an
XYZ group cannot be slaved to another group, however, any positioner of an XYZ
group can be a master to a slaved SingleAxis group.

2.3.5 Specific MultipleAxes Features
PVT trajectories – PVT trajectories are only available with MultipleAxes groups. It is
not possible for a MutipleAxes group to perform a Line-Arc or a Spline trajectory. Also,
a MultipleAxes group cannot be slaved to another group. However, any positioner of a
MultipleAxes group can be a master to a slaved SingleAxis group.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 6

2.4 Native Units
The XPS controller supports user-defined native units like mm, inches, degrees or
arcsecs. The units for each positioner are set in the configuration file where the
parameter EncoderResolution indicates the number of units per encoder count. When
using the XPS controller with Newport stages, this part of the configuration is done
automatically. Once defined, all motions, speeds and accelerations can be commanded
in the same native unit without any math needed. All other parameters like stage travel,
maximum speed and all compensations are defined on the same scale as well. This is a
great advantage compared to other controllers that can be commanded only in multiples
of encoder counts, which can be an odd number.
In the XPS controller there are 4 types of position information for each positioner:
TargetPosition, SetpointPosition, FollowingError and CurrentPosition. These are
described as follows:
The CurrentPosition is the current physical position of the positioner. It is equal to the
encoder position after all compensations (backlash, linear error and mapping) have been
taken into account.
The SetpointPosition is the theoretical position commanded to the servo loop. It is the
position where the positioner should be, during and after the end of the move.
The FollowingError is the difference between the CurrentPosition and the
SetpointPosition.
The TargetPosition is the position where the positioner must be after the completion of
a move.
When the controller receives a new motion command after the previous move is
completed, a new TargetPosition is calculated.
This new target is received as an argument for absolute moves. For relative moves, the
argument is the length of the move and the new target is calculated as the addition of the
current target and the move length. Then the profiler of the XPS calculates a set of
SetpointPositions to determine where the positioner should be at each given time.
When the positioner is controlled by a digital servo loop with a PID corrector, part of
the signals sent to the motor of the positioner is a function of the following error. Part of
this function is the integral gain of the PID filter that requires a following error equal to
zero to reach a constant value.
The encoder in the positioner delivers a discrete signal (encoder counts). Take the
example of an encoder with a resolution of 1 and a target position equal to 1.4. The real
position cannot reach the value of the target position (1 or 2 instead of 1.4), so the
following error will never be equal to zero (closest values are +0.6 and -0.4). Thus, due
to the integral gain of the PID filter, the system will never settle, but will oscillate
between the positions 1 and 2.
The XPS controller avoids this instability while allowing the use of native units instead
of encoder counts by using a rounded value of the TargetPosition to calculate the
motion profile and a rounded value for the following error. But the non-rounded value
of the TargetPostion will be stored as final position, so that there is no accumulation of
errors due to rounding, in case of successive relative moves.
To understand the difference, consider a positioner with a resolution of 1 that is at the
position 0. This positioner receives a relative motion command of 10.4. At the end of
the motion the CurrentPosition will be 10 and the SetpointPosition will be 10, but the
TargetPosition will be 10.4. The positioner then receives the same relative motion
command again. At the end of this motion the CurrentPosition will be 21, the
SetpointPosition will be 21 and the TargetPosition will be 20.8.

XPS-D Controller Features Manual

 7 EDH0407En1052 – 08/22

NOTE
When an application requires a sequence of small incremental motion of constant
step size close to the encoder resolution, make sure that the commanded
incremental motion is equal to a multiple of encoder steps.

The TargetPosition, SetpointPosition, CurrentPositon and FollowingError can be
queried from the controller using the appropriate function calls.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 8

3.0 Motion

3.1 Motion Profiles
Motion commands refer to strings sent to a motion controller that will initiate a motion.
The XPS controller provides several modes of positioning from simple point-to-point
motion to the most complex trajectories. On execution of a motion command, the
positioner moves from the current position to the desired destination. The exact
trajectory for the motion is calculated by a motion profiler. So, the motion profiler
defines where each of the positioners should be at each point in time. There are details
worth mentioning about the motion profiler in the XPS controller:
In a classical trapezoidal motion profiler (trapezoidal velocity profile), the acceleration
is an abrupt change. This sudden change in acceleration can cause mechanical
resonance in a dynamic system. In order to eliminate the high frequency portion of the
excitation spectrum generated by a conventional trapezoidal velocity motion profile, the
XPS controller uses a sophisticated SGamma motion profile. Figure 1 shows the
acceleration, velocity and position plot for the SGamma profile.

Figure 1: SGamma motion profile.

The SGamma motion profile provides better control of dynamic systems. It allows for
perfect control of the excitation spectrum that a move generates. In a multi-axes system
this profile gives better control of each axis independently, but also allows control of the
cross-coupling that are induced by the combined motion of the axes. As shown in
Figure 1, the acceleration plot is parabolic. The parabola is controlled by the jerk time
(jerk being the derivative of the acceleration). This parabolic characteristic of the
acceleration results in a much smoother motion. The jerk time defines the time needed

XPS-D Controller Features Manual

 9 EDH0407En1052 – 08/22

to reach the necessary acceleration. One feature of the XPS controller is that it
automatically adapts the jerk time to the step width by defining a minimum and a
maximum jerk time. This auto-adaptation of the jerk time allows a perfect adjustment of
the system’s behavior with different motion step sizes.

NOTE
Because of jerk-controlled acceleration, any move has a duration of at least four
times the jerk time.

For the XPS controller, the following parameters need to be configured for the SGamma
profile:
• MaximumVelocity (units/s)
• MaximumAcceleration (units/s2)
• EmergencyDecelerationMultiplier (Applies to Emergency Stop)
• MinimumJerkTime (s)
• MaximumJerkTime (s)
The above parameters are set in the stages.ini file for a positioner. When using the XPS
controller with Newport stages, these parameters are automatically set during the
configuration of the system.
The velocity, acceleration and jerk time parameters is modified by the function
PositionerSGammaParametersSet().Note that for continuity reason, the effective
maximum velocity of the motion must be adjusted and may not be exactly the value
defined by the parameter MaximumVelocity. For motion where a very accurate value of
the velocity is needed, the length of the displacement has to be adjusted to the value
given by the API SGammaExactVelocityAjustedDisplacementGet.

Example
PositionerSGammaParametersSet (MyGroup.MyStage, 10, 80, 0.02, 0.02)

This function sets the positioner “MyStage” velocity to 10 units/s, acceleration to 80
units/s2 and minimum and maximum jerk time to 0.02 seconds. The set velocity and
acceleration must be less than the maximum values set in the stages.ini file. These
parameters are not saved if the controller is shut down. After a re-boot of the controller,
the parameters will retain the values set in the stages.ini file.
In actual use, the XPS places a priority on the displacement position value over the
velocity value. To reach the exact position, the speed of the positioner may vary slightly
from the value set in the stages.ini file or by the PositionerSGammaParametersSet
function. So, the drawback of the SGamma profile is that the velocity used during the
move can be a little bit different from the velocity defined in the parameters. For
example, the exact velocity will change when the move distance is changed, move
100 mm, then 100.001 mm then 100.011 mm. There will be some changes to the
commanded velocity. This change can be ignored for many applications except where
an accurate time synchronization during the motion is required.
The function, PositionerSGammaExactVelocityAdjustedDisplacementGet(), can be
used as described below to achieve the exact desired speed in applications that require
an accurate value of the velocity during a move. In this case, the velocity value is
adhered to, but the target position may be slightly different from the one required. In
other words, according to the application requirements, the user can choose between
very accurate positions or very accurate velocities.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 10

Example
PositionerSGammaExactVelocityAdjustedDisplacementGet
(MyGroup.MyStage, 50.55, ExactDisplacement)
This function returns the exact displacement for that move with the exact
constant velocity set shown in the example above (10 mm/s). The result is
stored in the variable ExactDisplacement, for instance 50.552.

GroupMoveAbsolute (MyGroup.MyStage, 50.552)
In the above example, for a position of 50.55 mm, the command returns a value of
50.552. This means that in order for the positioner “MyStage” to achieve the desired
velocity in the most accurate way, the commanded position should be 50.552 mm
instead of 50.55 mm.
The XPS can report two different positions. The first one is the SetpointPosition or
theoretical position. This is the position where the stage should be according to the
profile generator.
The second position is the CurrentPosition. This is the actual position as reported by the
positioner’s encoder after taking into account all compensation. The relationship
between the SetpointPosition and the CurrentPosition is as follows:

Following error = SetpointPosition - CurrentPosition
The functions to query the SetpointPosition and the CurrentPosition values are:

GroupPositionCurrentGet() and GroupPositionSetpointGet()

3.2 Home Search
Home search is a specific motion process. Its goal is to define a reference point along
the course of travel accurately and repeatably. The need for this absolute reference point
is twofold. First, in many applications, it is important to know the exact position in
space, even after a power-off cycle. Secondly, to prevent the motion device from hitting
a travel obstruction set by the application (or its own hardware travel limits), the
controller uses software limits. To be efficient, the software limits must be referenced
accurately to the home before running the application.
After motor initialization, any motion group must first be homed or referenced before
any further motion can be executed. Here, homing refers to a predefined motion process
that moves a stage to a unique reference position and defines this as Home. Referencing
refers to a group state that allows the execution of different motions and the setting of
the position counters to any value (see next section for details). The referencing state
provides flexibility for the definition of custom home search and system recovery
processes. It should only be used by experienced users.
A number of hardware solutions may be used to determine the position of a motion
device, the most common are incremental encoders. By definition, these encoders can
only measure relative position changes and not absolute positions. The controller keeps
track of position changes by incrementing or decrementing a dedicated counter
according to the information received from the encoder. Since there is no absolute
position information, position “zero” is where the controller was powered on (and the
position counter was reset).
To determine an absolute position from incremental encoders, the controller must use a
reference position that is unique to the entire travel, called a home switch or origin
switch, usually in conjunction with an index pulse.
An important requirement is that this switch must have the same resolution as the
encoder pulses.
If the motion device uses a linear scale as a position encoder, the home switch is usually
placed on the same scale and read with the same resolution.
If, on the other hand, a rotary encoder is used, homing becomes more complicated. To
have the same resolution, a mark on the encoder disk could be used (called index pulse),
but because the mark repeats every revolution, it does not define a unique point over the

XPS-D Controller Features Manual

 11 EDH0407En1052 – 08/22

entire travel. An origin switch, on the other hand, placed in the travel of the motion
device is unique, but typically is not precise or repeatable enough. The solution is to use
both in a dedicated search algorithm as follows.

Figure 2: Home (Origin) switch and encoder index pulse.

A Home switch (Figure 2) separates the entire travel in two areas: one has a high level
and the other has a low level. The most important part is the transition between the two
areas. Just by looking at the origin switch level, the controller knows already on which
side of the transition the positioner is and which direction to start the homing process.
The task of the home search process is to define one unique index pulse as the absolute
position reference. This is first done by finding the home switch transition and then the
very first index pulse (Figure 3).

Figure 3: Slow-Speed Origin Switch Search.

Labeling the two motion segments D and E, the controller searches for the origin switch
transition in D and for the index pulse in E. To guarantee the best repeatability possible,
both D and E segments must perform at a very low speed and without stopping in
between.
The homing process described above has a drawback. At low search speeds, the process
could take a very long time if the positioner happens to start from the one end of travel.
To speed things up, the positioner is moved fast until it is in the vicinity of the origin
switch and then performs the other motions at lower velocity. The new sequence is
shown in Figure 4.

Figure 4: High/Low-Speed Home (Origin) Switch Search.

Motion segment B is performed at the pre-programmed home search speed. When the
home switch transition is encountered, the motion device stops (with an overshoot),
reverses direction and searches for the switch transition again, this time at half the speed
(segment C). Once the switch transition is encountered, it stops again with an overshoot,
reverses direction and executes D and E with half the programmed home search speed.
In the case when the positioner starts from the other end of the home switch transition,
the routine is shown in Figure 5.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 12

Figure 5: Home (Origin) Search from Opposite Direction.

The positioner moves at the home speed up to the home switch transition (segment A)
and then executes segments B, C, D and E as in Figure 5.
This home search process guarantees that the last segment, E, is always performed in
the positive direction of travel and at the same reduced speed. This method ensures a
precise and repeatable reference position.
There are 7 different home search processes available in the XPS controller:
1. MechnicalZeroAndIndexHomeSearch is used when the positioner has a hardware

home switch plus a zero index from the encoder. This process is the default for most
Newport standard stages.

2. MechanicalZeroHomeSearch is used with positioners that have a hardware home
switch but with no zero index from the encoder.

3. IndexHomeSearch is used with positioners that have a home index, but with no
hardware home switch signal. In this process, the positioner initially moves in the
positive direction to find the index. When a + limit switch is detected, the direction
of motion reverses until the index is found.

4. CurrentPositionAsHome is used when the positioner has no home switch or index.
This process will keep the positioner’s home at its current location. Setting the home
too close to the EOR could generate unwanted emergency stops. Start with around
50 MIM (Minimum Incremental Movement) units, but an optimum distance may be
determined by trial and error, depending on the stage.
This feature can also be used to set home arbitrarily and bypass a home switch.

5. MinusEndOfRunAndIndexHomeSearch uses the positioner’s minus end-of-run
limit as a hardware home switch and a zero index from the encoder. This process is
comparable to MechanicalZeroAndIndexHomeSearch, but uses the minus end-of-
run limit signal as hardware home switch and moves in the positive direction until
the Index is reached. Otherwise, it will reach the positive limit, or a timeout will
occur. The positioner homes to a position that is different from the
MechanicalZeroAndIndexHomeSearch location.

6. MinusEndOfRunHomeSearch uses the positioner’s minus end-of-run limit for
homing. Note that the emergency stop at the negative limit is disabled during
homing.

7. PlusEndOfRunHomeSearch uses the positioner’s plus end-of-run limit for homing
and the emergency stop at the positive limit is disabled during homing.

The home search process is set up in the stages.ini file. When using the XPS controller
with Newport ESP-compatible stages, this setting is done automatically with the
configuration of the system. The home search velocity, acceleration and time-out are
also set up in the stages.ini file.
Each motion group can either be homed “Together” or sequentially (the exact statement
depends on the group type), meaning all positioners belonging to that group home at the
same time in parallel or all the positioners home one after the other, respectively. This
option is also set up in the system.ini file or during configuration.
A Home search can be executed with all motion groups and any motion group MUST
be homed before any further motion can be executed. To home a motion group that is in
a “ready” state, that motion group must first be “killed” and then “re-initialized”.

XPS-D Controller Features Manual

 13 EDH0407En1052 – 08/22

Example
This is the sequence of functions that initialize and home a motion group.

GroupInitialize (MyGroup)
GroupHomeSearch (MyGroup)
…
GroupKill (MyGroup)

3.3 Referencing State
The predefined home search processes described in the previous section might not be
compatible with all motion devices or might not be always executable. For instance, if
there is a risk of collision during a standard home search process. In other situations, a
home search process might not be desirable. For example, to ensure that the stages have
not moved, the current positions are stored into memory. In this case, it is sufficient to
reinitialize the system by setting the position counters to the stored position values.
For these special situations, the XPS controller’s referencing state as in alternative to
the predefined home search processes.

 NOTE
The Referencing state should be only used by experienced users. Incorrect use
could cause equipment damage.

The Referencing state is a parallel state to the homing state, see the state diagram on
page 16, Figure 6. To enter the referencing state, send the function
GroupReferencingStart(GroupName) while the group is in the NOT REFERENCED
state.
In the Referencing state, the function
GroupReferencingActionExecute(PositionerName, Action, Sensor, Parameter) will
perform certain actions like moves, position latches of reference signal transitions, or
position resets.
The function
PositionerSGammaParametersSet(PositionerName) can be used to change the
velocity, acceleration and jerk time parameters.
To leave the referencing state, send the function
GroupReferencingStop(GroupName). The Group will then be in the HOMED state,
state number 11.
The syntax and function of the function
GroupReferencingActionExecute(PositionerName, Action, Sensor, Parameter) will
be discussed in detail. With this function, there are four parameters to specify:

• PositionerName is the name of the positioner on which this function is executed.
• Action is the type of action that is executed. There are eight actions that can be

distinguished into three categories: Moves that stop on a sensor event, moves of
certain displacement, and position counter reset categories.

• Sensor is the sensor used for those actions that stop on a sensor event. It can be
MechanicalZero, MinusEndOfRun, or None.

• Parameter is either a position or velocity value and provides further input to the
function.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 14

The following table summarizes all possible configurations:

 Sensor Parameter
Action MechanicalZero MinusEndOfRun None Position Velocity
LatchOnLowToHighTransition
LatchOnHighToLowTransition
LatchOnIndex
LatchOnIndexAfterSensorHighToLowTransition
SetPosition
SetPositionToHomePreset
MoveToPreviouslyLatchedPosition
MoveRelative

3.3.1 Move on Sensor Eevents
The “move on sensor events” starts a motion at a defined velocity, latches the position
when a state transition of a certain sensor is detected, then stops the motion. There are
four possible actions under this category:

• LatchOnLowToHighTransition
• LatchOnHighToLowTransition
• LatchOnIndex

• LatchOnIndexAfterSensorHighToLow
With LatchOnLowToHighTransition and LatchOnHighToLowTransition, latching
happens when the right transition on the defined sensor occurs. The sensor can be
latched to either MechanicalZero, MinusEndOfRun and PositiveEndOfRun when
supported by the hardware, refer to section 3.2: “Home Search” to know which
hardware supports the function. With LatchOnIndex and
LatchOnIndexAfterSensorHighToLow, latching happens on the index signal. With
LatchOnIndexAfterSensorHighToLow, latching happens on the first index after a
high to low transition at the defined sensor (MechanicalZero or MinusEndOfRun).
Because of the dedicated hardware circuits used for the position latch, there is
essentially no latency between sensor transition detection and position acquisition.
In all cases, motion stops after the latch. However, this means that the stopped position
doesn’t rest on the sensor transition, but at some short distance from it. To move exactly
to the position of the sensor transition, use the action
MoveToPreviouslyLatchedPosition.
The latch does not change the current position value. In order to set the current position
value, use the action SetPosition or SetPositionToHomePreset, for instance, after a
MoveToPreviouslyLatchedPosition.
In the Referencing state, the limit switch safeties (emergency stop) are still enabled until
the MinusEndOfRun sensor is specified with a GroupReferencingActionExecute()
function. When specified, the limit switch safeties are disabled and will only be re-
enabled with the function GroupReferencingStop().
The Parameter has a sign, if it is assigned as velocity (floating point). This means that
the direction of motion is dictated by the sign of the velocity parameter.

XPS-D Controller Features Manual

 15 EDH0407En1052 – 08/22

3.3.2 Moves of Certain Displacements
These two move commands which don’t use the same parameters, are explained below.

• MoveRelative
The action MoveRelative commands a relative move of a positioner similar to the
function GroupMoveRelative. However, the function GroupMoveRelative is not
available in the Referencing state. The relative move is specified by a positive or
negative displacement. The move is done with the SGamma profiler. The speed and
acceleration are the default values, or the last value defined by either a move on
sensor event, a MoveToPreviouslyLatchedPosition, or a
PositionerSGammaParametersSet.

• MoveToPreviouslyLatchedPosition
This action moves the positioner to the last latched position, see section 3.3.1:
“Move on Sensor Eevents“ for details. It verifies there was a position latched since
this last GroupReferencingStart call. This is important because an old latched
position can still be in memory from a previous home search or referencing. And
moving to this previous latched position could have unexpected results. The move is
done with the SGamma profiler. The speed is specified by a parameter. The
acceleration is the default value, or the last value defined by a
PositionerSGammaParametersSet.

3.3.3 Position Counter Resets
“Position counter resets” sets the current position to a certain value. There are two
options: SetPosition and SetPositionToHomePreset. The main use of these actions is
when the positioner is at a well-defined reference position after a
MoveToPreviouslyLatchedPosition action.
Another use of this action is for a “soft” system start by Referencing a group to a known
set position, without executing a home search process, for example. In this case, a
suggested sequence of functions follows:

GroupReferencingStart(GroupName)
GroupReferencingActionExecute(PositionerName, “SetPosition”,
“None”, KnownCurrentPosition)
GroupReferencingStop(GroupName)

SetPosition sets the current position to a value defined by a parameter.
SetPositionToHomePreset sets the current position to the HomePreset value stored in
the stages.ini configuration file. It is equivalent to a SetPosition of the same positioner
to the HomePreset value.
It is important that all positioners of a motion group are referenced to a position using
the SetPosition or SetPositionToHomePreset before leaving the Referencing state (see
example in section 3.3.5).

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 16

3.3.4 State Diagram
The Referencing state is a parallel state to the homing state. It is between the
NotReferenced state and the Ready state. Please see the state diagram below:

Figure 6: State diagram.

3.3.5 Example: MechanicalZeroAndIndexHomeSearch
The following sequence of functions has the same effect as the
MechanicalZeroAndIndexHomeSearch:

GroupReferencingStart(GroupName)
PositionerHardwareStatusGet (PositionerName, &status)
if ((status & 4) == 0) { // 4 is the Mechanical zero mask on the hardware
status: GroupReferencingActionExecute(PositionerName,
 “LatchOnLowToHighTransition”, “MechanicalZero, -10) }
GroupReferencingActionExecute(PositionerName,
“LatchOnHighToLowTransition”, “MechanicalZero”, 10)
GroupReferencingActionExecute(PositionerName,
“LatchOnLowToHighTransition”, “MechanicalZero”, -5)
GroupReferencingActionExecute(PositionerName,
“LatchOnIndexAfterSensorHighToLow”, “MechanicalZero”, 5)
GroupReferencingActionExecute(PositionerName,
“MoveToPreviouslyLatchedPosition”, “None”, 5)
GroupReferencingActionExecute(PositionerName,
“SetPositionToHomepreset”, “None”, 0)
GroupReferencingStop(GroupName)

3.4 Move
A move is a point-to-point motion. On execution of a move command, the motion
device moves from a current position to a desired destination (absolute move) or by a
defined increment (relative move). During motion, the controller is monitoring the
feedback of the positioner and is updating the output based upon the following error.
The XPS controller’s position servo is updated at servo cycle rate. These defaults values
provide highly accurate closed loop positioning. Between the profiler and the corrector,
there is a time-based linear interpolation to accommodate the different frequencies.

XPS-D Controller Features Manual

 17 EDH0407En1052 – 08/22

There are two types of moves that can be commanded: an absolute move and a relative
move. For an absolute move, the positioner will move relative to the HomePreset
position as defined in the stages.ini file. In most cases the HomePreset is 0, which
makes the home position equal to the zero position of the positioner. For a relative
move, the positioner will move relative to the current TargetPosition. In relative moves,
it is possible to make successive moves that are not equal to a multiple of an encoder
step without accumulating errors.
Absolute and relative moves can be commanded to positioners and to motion groups.
When commanding a move to a positioner, only the position parameter for that
positioner must be provided. When commanding a move to a motion group, the
appropriate number of position parameters must be provided with the move command.
For instance, for a move command to an XYZ group, 3 position parameters must be
defined.
When commanding a move to a motion group, all positioners of that group will move
synchronously. For any move, the controller will always determine the shortest time
within the positioner's parameters setup. All positioners will start and stop their motion
at the same time. This type of motion is also known as linear interpolation.
The functions for absolute and relative motions are GroupMoveAbsolute() and
GroupMoveRelative() respectively.

Example
A motion system consisting of one XY group called ScanTable and one SingleAxis
group called FocusStage. ScanTable has two positioners, called ScanAxis and StepAxis.

…
GroupHomeSearch (ScanTable)
GroupHomeSearch (FocusStage)
After homing is completed…
GroupPositionCurrentGet (ScanTable, Pos1, Pos2)
… will return 0 to Pos1 and 0 to Pos2, assuming PresetHome = 0.
GroupPositionCurrentGet (FocusStage, Pos3)
Will return 0 to Pos3, assuming HomePreset = 0.
GroupMoveAbsolute (ScanTable, 100, 50)
GroupMoveAbsolute (ScanTable.StepAxis, -20)
The second move is only for one positioner of that group and can be only
executed after the first move is completed. After all moves are completed…
GroupPositionCurrentGet (ScanTable, Pos1, Pos2)
… will return 100 to Pos1 and -20 to Pos2.
GroupMoveRelative (FocusStage, 1)
GroupMoveRelative (FocusStage, 1)
The second move can be only executed after the first move is completed. After
all moves are completed…
GroupPositionCurrentGet (FocusStage, Pos3)
… will return 2 to Pos3.

The velocity, acceleration and jerk time parameters of a move are defined by the
function PositionerSGammaParametersSet() (see also section 3.1). When the controller
receives new values for these parameters during the execution of a move, it will not take
these new values into account on the current move, but only on the following moves. To
change the velocity or acceleration of a positioner during the motion, use the Jogging
mode (see section 3.6).

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 18

A move can be stopped at any time with the function GroupMoveAbort() that accepts
GroupNames and PositionerNames. It is important to note, however, that the function
GroupMoveAbort(PositionerNames) is accepted when the motion was commanded to
the positioner, and not to the group. In the previous example, the function
GroupMoveAbort(ScanTable.ScanAxis) is rejected for a motion that has been
launched with GroupMoveRelative(ScanTable, 100, 50). To stop this motion, send the
function GroupMoveAbort(ScanTable).
The XPS controller supports also asynchronous moves of several positioners belonging
to the same motion group. The individual motion, however, needs to be managed by
separate threads (see also section 13.2: “Running Processes in Parallel” for details).

3.5 Motion Done
The XPS controller supports two methods that define when a motion is completed
(MotionDone): the theoretical MotionDone and the VelocityAndPositionWindow
MotionDone. The method used is set in the stages.ini file. In theory, MotionDone is
completed as defined by the profiler. However, it does not take into account the settling
of the positioner at the end of the move. So, depending on the precision and stability
requirements at the end of the move, the theoretical MotionDone might not always be
the same as the physical end of the motion. The VelocityAndPositionWindow
MotionDone allows a more precise definition by specifying the end of the move with a
number of parameters that take the settling of the positioner into account. In the
VelocityAndPositionWindow MotionDone, the motion is completed when:

| PositionErrorMeanValue | < | MotionDonePositionThreshold | AND |
VelocityMeanValue | < | MotionDoneVelocityThreshold | is verified during the
MotionDoneCheckingTime period.

The different parameters have the following meaning:

Figure 7: Motion done.

XPS-D Controller Features Manual

 19 EDH0407En1052 – 08/22

• MotionDonePositionThreshold: This parameter defines the position error window.
The position error has to be within ± of this value for a period of
MotionDoneCheckingTime to validate this condition.

• MotionDoneVelocityThreshold: This parameter defines the velocity window. The
velocity at the end of the motion has to be within ± of this value for a period of
MotionDoneCheckingTime to validate this condition.

• MotionDoneCheckingTime: This parameter defines the period during which the
conditions for the MotionDonePositionThreshold and the
MotionDoneVelocityThreshold must be true before setting the motion done.

• MotionDoneMeanPeriod: A sliding mean filter is used to attenuate the noise for
the position and velocity parameters. The MotionDoneMeanPeriod defines the
duration for calculating the sliding mean position and velocity. The mean position
and velocity values are compared to the threshold values as defined above. This
parameter is not illustrated on the graph.

• MotionDoneTimeout: This parameter defines the maximum time the controller will
wait from the end of the theoretical move for the MotionDone condition, before
sending a MotionDone time-out.

Important:
The XPS controller can only execute a new move on the same positioner or on the same
motion group when the previous move is completed (MotionDone) and when the
positioner or the motion group is again in the ready state.
The XPS controller allows triggering an action when the motion is completed
(MotionDone) by using the event MotionEnd. For further details see chapter 7.0.
The functions PositionerMotionDoneGet() and PositionerMotionDoneSet() allow
reading and modifying the parameters for the VelocityAndPositionWindow
MotionDone. These parameters are only taken into account when the MotionDoneMode
is set to VelocityAndPositionWindow in the stages.ini.

Example
Modifications of the MotionDoneMode can be made only manually in the stages.ini
file. The stages.ini file is located in the config folder of the XPS controller. Stages.ini
parameters can also be modified from the website, see User Interface Manual for
details.
Make a copy of the stages.ini file to the PC. Open the file with any text editor and
modify the MotionDoneMode parameter of the appropriate stage to
VelocityAndPositionWindow, and set the following parameters:

;--- Motion done
MotionDoneMode = VelocityAndPositionWindow ; instead of
Theoretical
MotionDonePositionThreshold = 4 ; units
MotionDoneVelocityThreshold = 100 ; units/s
MotionDoneCheckingTime = 0.1 ; seconds
MotionDoneMeanPeriod = 0.001 ; seconds
MotionDoneTimeout = 0.5 ; seconds

Replace the current stages.ini file on the XPS controller with this modified version
(make a copy of the old .ini file first). Reboot the controller. To apply any changes to
the stages.ini or system.ini, the controller has to reboot.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 20

Use the following functions:
GroupInitialize(MyGroup)
GroupHomeSearch(MyGroup)
PositionerMotionDoneGet(MyGroup.MyPositioner)
This function returns the parameters for the VelocityAndPositionWindow
Motion done previously set in the stages.ini file, so 4, 100, 0.1, 0.001 and 0.5.
PositionerMotionDoneSet(MyGroup.MyPositioner,
PositionThresholdNewValue, VelocityThresholdNewValue,
CheckingTimeNewValue, MeanPeriodNewValue, TimeoutNewValue)
This function replaces the parameters with the newly entered values. If this
function is not executed, the default setting from the .ini file is used.

3.6 JOG
Jog is an indeterminate motion defined by velocity and acceleration. Unlike a
GroupMoveAbsolute() or a GroupMoveRelative(), the end of the motion is not
defined by a target position. It can be best described by a “go”-command with a
definition how fast, but not how far.
In Jog mode, the speed and acceleration of a motion group can be changed on-the-fly to
accommodate varying situations. This is not possible with a GroupMoveAbsolute() or
a GroupMoveRelative() which are defined moves. Practical examples for Jog are with
tracking systems or coordinate transformations where the speed or acceleration of the
jogging group is modified depending on the position or speed of the other motion
groups or based on an analog input value.
The Jog mode can be enabled using the function GroupJogModeEnable() and is
available to all motion groups. Once this mode is enabled, the motion parameters can be
set using the command GroupJogParameterSet() which is applicable to positioners
and to motion groups. To query the maximum jog velocity and acceleration values for a
positioner, use PositionerJogMaximumVelocityAndAccerationGet(). To exit the Jog
mode, first set the velocity to zero and then send the function
GroupJogModeDisable().

Examples
For a single axis group:

GroupJogModeEnable (MySingleGroup)
Enables the Jog mode.
GroupJogParameterSet (MySingleGroup, 5, 20)
The single stage starts moving with a velocity of 5 units per second and an
acceleration of 20 units per second2.
GroupJogParameterSet (MySingleGroup, -5, 20)
The single stage starts moving in the reverse direction with the same velocity
and same acceleration.
GroupJogParameterSet (MySingleGroup, 0, 20)
The single stage stops moving, its velocity being 0 units per second.
GroupJogModeDisable (MySingleGroup)
Disables the Jog mode.

For an XY group:
GroupJogModeEnable (MyXYGroup)
Enables the Jog mode.
GroupJogParameterSet (MyXYGroup, 5, 20, 10, 40)

XPS-D Controller Features Manual

 21 EDH0407En1052 – 08/22

The X axis and Y axis start moving with a velocity of 5 and 10 units per
second and an acceleration of 20 and 40 units per second2 respectively.
GroupJogParameterSet (MyXYGroup, 0, 20, 0, 40)
Both stages stop moving, their velocities being 0 units per second.

To apply new parameters to only one stage, use the following function:
GroupJogParameterSet (MyXYGroup.XPositioner, 5, 20)
Only the X axis starts moving with a velocity of 5 units per second and an
acceleration of 20 units per second2.
GroupJogParameterSet (MyXYGroup.XPositioner, 0, 20)
The X axis stage stops moving, its velocity being 0 units per second.
GroupJogModeDisable (MyXYGroup)
Disables the Jog mode.

In Jog mode, the profiler uses the CurrentPosition and the defined velocity and
acceleration to calculate a new Setpoint position every 0.4 ms. These new Setpoint
positions are then transferred to the corrector loop which runs every 0.1 ms. To
accommodate the different frequencies between the profiler and the corrector, a linear
interpolation between the new Setpoint and the previous Setpoint is done. Worst case, a
new velocity and acceleration can be executed only every 0.4 ms. In Jog mode, the
profiler uses a trapezoidal motion profile (see also section 3.1 for further details on
motion profiles).

3.7 Master Slave
In master slave mode, any motion axis can be electronically geared to another motion
axis, or a single master with multiple slaves. The gear ratio between the master and the
slave is user defined. During motion, all axes compensations of the master and the slave
are taken into account.
The slave must be a SingleAxis group. The master can be a positioner from any group.
The Master slave relation is set by the function SingleAxisSlaveParametersSet().
The Master slave mode is enabled by the function SingleAxisSlaveModeEnable(). To
enable the Master slave mode, the Slave group must be in the ready state. The Master
group can be in the not-referenced or ready state.

Example 1
This example shows the sequence of functions used to set-up a master-slave relation
between two axes that are not mechanically joined (meaning the two axes can move
independently):

GroupInitialize (SlaveGroup)
GroupHomeSearch (SlaveGroup)
GroupInitialize (MasterGroup)
GroupHomeSearch (MasterGroup)
…
SingleAxisSlaveParametersSet (SlaveGroup, MasterGroup.Positioner,
Ratio)
SingleAxisSlaveModeEnable (SlaveGroup)
GroupMoveRelative (MasterGroup.Positioner, Displacement)
…
SingleAxisSlaveModeDisable (SlaveGroup)

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 22

Example 2
This example shows the sequence of functions used to set-up a Master slave relation
between two axes that are mechanically joined. Different from example 1, all
motions, including the motion done during the home search routine, are performed
synchronously.
Important: First, set the HomeSearchSequenceType of the Slave group’s positioner to
CurrentPositionAsHome in the stages.ini and reboot the XPS controller.

GroupInitialize (SlaveGroup)
GroupHomeSearch (SlaveGroup)
GroupInitialize (MasterGroup)
SingleAxisSlaveParametersSet (SlaveGroup, MasterGroup.Positioner,
Ratio)
SingleAxisSlaveModeEnable (SlaveGroup)
GroupHomeSearch (MasterGroup)
…
GroupMoveRelative (MasterGroup.Positioner, Displacement)

NOTE
The slave positioners should have similar capabilities as the master positioner in
terms of velocity and acceleration. Otherwise the full capabilities of the master or
the slave positioners may not be utilized.

3.8 Analog Tracking
Analog tracking controls the position or velocity of a motion group via external analog
inputs. Analog tracking is available with all motion groups. To enable this mode, first
set the tracking parameters of the positioners belonging to that motion group. Then
enable tracking while the motion group is homed (in ready state after homing). In
analog tracking mode, the analog inputs are filtered by a first order low-pass filter. Its
cut-off frequency is defined by the parameter “TrackingCutOffFrequency” given in the
section “profiler” of the stage.ini parameter file.
To set or get the tracking parameters, use the following functions:

PositionerAnalogTrackingPositionParametersSet()
PositionerAnalogTrackingPositionParametersGet()
…
PositionerAnalogTrackingVelocityParametersSet()
PositionerAnalogTrackingVelocityParametersGet()

The functions PositionerAnalogTrackingPositionParametersSet() and
PositionerAnalogTrackingVelocityParametersSet() define the maximum velocity and
acceleration used during analog tracking.

3.8.1 Analog Position Tracking
The parameters that can be set for analog position tracking are the GPIO Name, scale
and offset. The GPIO Name denotes which connector and pin number the analog signal
will be input. The scale and the offset are used to calibrate the output position in the
following way:

Position = InitialPosition + (AnalogValue - Offset) * Scale
Typical applications of analog position tracking are for beam stabilization, tracking
systems, auto focusing sensors or alignment systems. When connecting a function

XPS-D Controller Features Manual

 23 EDH0407En1052 – 08/22

generator to the GPIO input, analog tracking provides an easy way to make cyclical or
sinusoidal motion, for example.

Example
Following is an example that shows the sequence of functions used to setup Analog
Position Tracking:

GroupInitialize (Group)
GroupHomeSearch (Group)
…
PositionerAnalogTrackingPositionParameterSet (Group.Positioner,
GPIO4.ADC1, Offset, Scale, Velocity, Acceleration)
GroupAnalogTrackingModeEnable (Group, “Position”)
…
GroupAnalogTrackingModeDisable (Group)

3.8.2 Analog Velocity Tracking
The parameters that can be set for analog velocity tracking are the GPIO Name, offset,
scale, deadband threshold and order. The relationship among offset, scale, deadband and
order is illustrated in Figure 8.

Figure 8: The relationship among Offset, Scale, Dead Band & Order.

The tracking velocity calculates as follows:

• AnalogInput is the voltage input at the GPIO

• AnalogGain refers to the AnalogGain setting of the analog input
• Offset, Order, DeadBandThreshold, and scale are defined with the function

PositionerAnalogTrackingVelocityParametersSet
• MaxADCAmplitude, InputValue, OutputValue are internally-used parameters only
InputValue = AnalogInput - Offset
if (InputValue >= 0) then
InputValue = InputValue - DeadBandThreshold
if (InputValue < 0) then InputValue = 0

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 24

else
InputValue = InputValue + DeadBandThreshold
if (InputValue > 0) then InputValue = 0
OutputValue = (|InputValue|/ MaxADCAmplitude) * Order
Velocity = Sign(InputValue) * OutputValue * Scale * MaxADCAmplitude
In the dead band region there is no motion. If the order is set to 1, then the velocity is
linear with respect to the input voltage.
If order is set greater than 1, then the velocity response is polynomial with respect to the
input voltage. This makes the change in velocity more gradual and more sensitive in
relation to the change in voltage.
A good example for using analog velocity tracking is for an analog joystick.

Example
Following is an example that shows the sequence of functions used to set-up Analog
Velocity Tracking:

GroupInitialize (Group)
GroupHomeSearch (Group)
…
PositionerAnalogTrackingVelocityParameterSet (Group.Positioner,
GPIO4.ADC1, Offset, Scale, DeadBandThreshold, Order, Velocity,
Acceleration)
GroupAnalogTrackingModeEnable (Group, “Velocity”)
…
GroupAnalogTrackingModeDisable (Group)

XPS-D Controller Features Manual

 25 EDH0407En1052 – 08/22

4.0 Trajectories

The XPS controller supports 4 different types of trajectories:
The Line-arc trajectory is a trajectory defined by a combination of straight and curved
segments. It is available only for positioners in XY groups. The major benefit of a Line-
arc trajectory is the ability to maintain constant speed (speed being the scalar of the
trajectory velocity) throughout the entire path, excluding the acceleration and
deceleration periods. The trajectory is user defined in a text file that is sent to the
controller via FTP. Once defined, the user executes a function to begin the trajectory
and the XPS automatically calculates and executes the motion, including precise
monitoring of the speed and acceleration all along the trajectory. Simply executing the
same trajectory more than once results in continuous path contouring. A dedicated
function performs a precheck of the trajectory which returns the maximum and
minimum travel requirements per positioner as well as the maximum possible trajectory
speed and trajectory acceleration that is compatible with the different positioner
parameters.
The spline trajectory executes a Catmull-Rom spline (which is a 3rd order polynomial
curve) on an XYZ group. The main requirements of a spline are to hit all points (except
for the first and the last point that are only needed to define the start and the end of the
trajectory) and to maintain a constant speed throughout the entire path (except during
the acceleration and deceleration period). The definition and execution of the spline
trajectory is similar to the Line-arc trajectory with similar functions for trajectory pre-
checking.
The PVT-mode is the most complex trajectory and is only available with MultipleAxes
group. In a PVT trajectory, each trajectory element is defined by the displacement and
end speed of each positioner plus the move time for the element. When all elements are
defined, the controller calculates the cubic function trajectory that will pass through all
defined positions at the defined times and velocities. PVT is a powerful tool for any
kind of trajectory with varying speeds and for trajectories with rotation stages or other
nonlinear motion devices.
The PT-mode is based on a simpler definition of PVT trajectory and is only available
with MultipleAxes group. In a PT trajectory, each trajectory element is defined by the
displacement and move time for the element. When all elements are defined, the
controller calculates the cubic function trajectory that will pass through all defined
positions at the defined times. The output velocity of each element is defined by the
firmware to avoid speed oscillations when successive elements are set with the same
speed (DX/DT= constant).

4.1 Line-Arc Trajectories

4.1.1 Trajectory Terminology
Trajectory: defined as a continuous multidimensional motion path. Line-arc trajectories
are defined in a two-dimensional XY plane. These are used with XY groups. The main
requirement of a Line-arc trajectory is to maintain a constant speed (speed being the
scalar of the vector velocity) throughout the entire path (except during the acceleration
and deceleration periods).
Trajectory element (segment): an element of a trajectory is defined by a simple
geometric shape, in this case a line or an arc segment.
Trajectory velocity: the tangential linear velocity (speed) along the trajectory during its
execution.
Trajectory acceleration: the tangential linear acceleration used to start and end a
trajectory. Trajectory acceleration and trajectory deceleration are equal by default.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 26

4.1.2 Trajectory Conventions
When defining and executing a Line-arc trajectory, a number of rules must be followed:

• The motion group must be an XY group.
• All trajectories must be stored in the controller’s memory under ..\public\trajectories

(one file for each trajectory). Once a trajectory is started, it executes in the
background allowing other groups or positioners to work independently and
simultaneously.

• Each trajectory must have a defined beginning and end. Endless (infinite)
trajectories are not allowed. Although, N-times (N defined by user) non-stop
execution of the same trajectory is allowed. As the trajectory is stored in a file, the
trajectory’s maximum size (maximum elements number) is unlimited for practical
purposes.

• Two types of Line-arc trajectory elements (segments) are available: lines Line(X,Y)
and arcs Arc(R,A) (Radius, SweepAngle). Any Line-arc trajectory is a set of
consecutive line or arc segments. The line segments are true linear interpolations y =
A*x + B, the arc segments are true arcs of circles (x - x0)2 + (y - y0)2 = R2.

• A Line-arc trajectory forms a continuous path, so each segment’s final position is
equal to the next segment’s starting position. However, as the segment’s tangential
angles around the connection point of any two consecutive segments may not be
continuous, there might be velocity discontinuities from one segment to next. For
reference, this discontinuity is categorized as R0, wherein the position is continuous,
but velocity is not. An excessive velocity discontinuity at joints can damage the
stages, so the trajectory definition process must take this into account.

• Each Line-arc trajectory element is defined relative to the trajectory starting point.
Every trajectory starting point has the coordinates (0,0), which has no relation to the
zero position of the positioners. All trajectories physically start from the current X
and Y positions of the XY group.

4.1.3 Geometric Conventions
The coordinate system of a Line-arc trajectory is an XY orthogonal system.
The X-axis of this system correlates to the XPositioner and the Y-axis correlates to the
YPositioner of the XY group as defined in the system.ini.
The origin of the XY coordinate system is in the lower left corner, with positive values
up and to the right.
All angles are measured in degrees, presented as floating point numbers. Angle origin
and signs follow the trigonometric convention: positive angles are measured counter-
clockwise.

4.1.4 Defining Line-Arc Trajectory Elements
A Line-arc trajectory is defined by a number of line and arc elements. The trajectory
elements are executed in the same order as defined in the trajectory data file.

Figure 9: Line-arc trajectory example.

Figure 9 shows a trajectory example. Every trajectory must have a first element entry
angle (called First Tangent) defined in the head of the trajectory data file. If the first
element is a line, this parameter has no effect. If the first element is an arc, the entry

XPS-D Controller Features Manual

 27 EDH0407En1052 – 08/22

angle is the tangent to the first point of the arc. Each trajectory element is identified by a
number, starting from 1. The references for synchronizing external events with the
trajectory execution are the starting and ending points of these elements.
Line and arc elements can be sequenced in any order. An arc is automatically placed by
the controller so that its entry angle corresponds to the exit angle of the preceding
element to ensure the continuity of the trajectory. But with every line segment, the user
must choose the (X,Y) end-point in that way that the angle discontinuity to the previous
segment does not exceed the maximum allowed angular discontinuity. The angular
discontinuity is measured in degrees and is defined in the head of the trajectory data
file. In theory, a trajectory can be defined only by straight lines, if two adjacent line
segments have an angular difference smaller than the allowed angle of discontinuity, as
shown in the Figure 10.

Figure 10: Contouring with linear lines only.

In practice this is not recommended since each angle of discontinuity corresponds to an
instantaneous velocity change on both axes, which produces large accelerations. This
can result in a shock to the stages and an increase in the following error. The larger the
angle of discontinuity, the larger the shock and following error will be. Special
consideration must be given to both these effects when increasing the maximum
discontinuity angle from its default value.

4.1.5 Define Lines
A line element is defined by specifying the (Xi, Yi) ending point.
The succeeding element’s starting point is always the end point of the previous segment
(Xi-1, Yi-1).
Note that all line element positions are defined relative to the trajectory’s starting point
(0, 0).

Figure 11: Line element to (Xi, Yi) position coordinates.

As described before, when adding a new line element, the user must make sure that the
discontinuity angle between the new segment and the previous one is not excessive.

4.1.6 Define Arcs
An arc is defined by specifying the radius R and the sweep angle A (Figure 12).

Figure 12: An arc defined with radius and angle.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 28

Both radius and sweep angles are expressed in double precision floating point numbers.
The sweep angle can range from 10-14 to 1.797 x 10 308 allowing a definition of arcs
from a fraction of a degree to practically an infinite number of overlapping circles.

4.1.7 Trajectory File Description
The Line-arc trajectory is defined in a file that has to be stored in the
..\public\trajectories folder of the XPS controller. This file must have the following
structure:
The first line sets the “FirstTangent”: Defines the tangent angle for the

first point in case of an arc. This
parameter has no effect if the first
element is a line.

The second line sets the “DiscontinuityAngle”: Defines the maximum allowed
angle of discontinuity.

The third line must be empty for better readability.
The following lines define the Line-arc trajectory: Each line defines an element of the

trajectory.
An element can be a “Line” or an “Arc”:
Line: Define X and Y positions to build a linear segment Line = X, Y.
Arc: Define radius and sweep angle to build an arc of circle Arc = R, A.

4.1.8 Trajectory File Examples
The following is an example of a trajectory file that represents a rectangle with rounded
corners and with the end point equal to the starting point:

Figure 13: Graphical display of the first Line-arc trajectory data file example.

The following is an example of a trajectory file that represents a scanning path with
rounded corners and with the end point equal to the starting point:

XPS-D Controller Features Manual

 29 EDH0407En1052 – 08/22

Figure 14: Graphical display of the second Line-arc trajectory data file example.

4.1.9 Trajectory Verification and Execution
There are four functions to verify or execute a Line-arc trajectory:

• XYLineArcVerification(): Verifies a Line-arc trajectory data file.
• XYLineArcVerificationResultGet(): Returns the last trajectory verification results,

actuator by actuator. This function works only after an XYLineArcVerification().
• XYLineArcExecution(): Executes a trajectory.

• XYLineArcParametersGet(): Returns the trajectory’s current execution
parameters. This function works only while executing the trajectory.

The function XYLineArcVerification() can be executed at any time and is
independent from trajectory execution. This function performs the following:

• Checks the trajectory file for data and syntax coherence.
• Calculates the trajectory limits, which are: the required travel per positioner, the

maximum possible trajectory velocity and the maximum possible trajectory
acceleration. This function defines the parameters for trajectory execution.

• If all is OK, it returns an “OK” (0). Otherwise, it returns a corresponding error.
The function XYLineArcVerificationResultGet() can be executed only after an
XYLineArcVerification() and returns the following:

• Travel requirement in positive and negative direction for each positioner.
• The maximum possible trajectory velocity (speed) that is compatible with all

positioner’s velocity parameters. It returns a value for the trajectory velocity, that
when applied, at least one of the positioners will reach its maximum allowed speed
at least once along the trajectory. So, the returned value varies between Min

{Vmax_actuator} and . However, this

value does not take into account the positioners’s acceleration, which can also limit
the trajectory velocity. For example, the case of a Line-arc trajectory containing arc
segments with a small radius.

• The maximum possible trajectory acceleration that is compatible with all
positioners’ parameters. This means that one of the positioners will reach its
maximum allowed acceleration during the trajectory execution.

The XYLineArcVerificationResultGet() function returns the trajectory execution limits
that have previously been calculated by the XYLineArcVerification function. Note
about this function’s result: Only the returned travel requirements are specific for each

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 30

positioner. The returned velocity/acceleration values are the same for all positioners,
because they represent the trajectory’s velocity/acceleration.
To execute a Line-arc trajectory, send the function XYLineArcExecution() with the
parameters for the trajectory velocity, and the trajectory acceleration that is used during
the start and end of the trajectory. The motion profile for Line-arc trajectories is
trapezoidal. The function XYLineArcExecution() does not verify the trajectory
coherence or geometric conditions (exceeding any positioners, min. or max. travel,
speed or acceleration) before execution, so users must pay attention when executing a
trajectory and verify the trajectory relative to the maximum possible values or possible
interference. In case of an error during execution, because of bad data or because of a
following error (for example if the trajectory acceleration or speed was set too high) the
motion group will make an emergency stop and will enter the disabled state. The
parameters for trajectory velocity and trajectory acceleration can also be set to zero. In
this case the controller uses executable default values which are Min{All Vmax_actuator}
for trajectory velocity and Min{All Amax_actuator} for trajectory acceleration.
A trajectory can be executed many times (up to 231 times) by specifying the
ExecutionNumber parameter with the XYLineArcExecution function. In this case, the
second run of the trajectory is simply appended to the end of the first run, while the end
position of the first run is taken as a new start position (referenced to zero) of the second
run. The trajectory endpoint does not need to be the same as the start point. The total
trajectory is executed without stopping between the different runs.
Finally, the function XYLineArcParametersGet() returns the trajectory execution
status with trajectory name, trajectory velocity, trajectory acceleration and current
executed trajectory element. This function returns an error if the trajectory is not
executing.

4.1.10 Examples of the Use of the Functions
XYLineArcVerification (XYGroup, Linearc1.trj)
This function returns a 0 if the trajectory is executable.
XYLineArcVerificationResultGet (XYGroup.XPositioner, *Name,
*NegTravel, *PosTravel, *MaxSpeed, *MaxAcceleration)
This function returns the name of the trajectory checked with the last sent
function XYLineArcVerification to that motion group (Linearc1.trj), the
negative or left travel required for the XYGroup.XPositioner, the positive or
right travel required for the XYGroup.XPositioner, the maximum trajectory
velocity and the maximum trajectory acceleration.
XYLineArcExecution (XYGroup, Linearc1.trj, 10, 100, 2)
Executes the trajectory Linearc1.trj with a trajectory velocity of 10 units/s
and a trajectory acceleration of 100 units/s2 two (2) times.
XYLineArcParametersGet (XYGroup, *FileName, *TrajectoryVelocity,
*TrajectoryAcceleration, *ElementNumber)
Returns the name of the trajectory in execution (Linearc1.trj), the trajectory
velocity (10), the trajectory acceleration (100) and the number of the current
executed trajectory element.

XPS-D Controller Features Manual

 31 EDH0407En1052 – 08/22

4.2 Splines

4.2.1 Trajectory Terminology
Trajectory: Continuous multidimensional motion path. Spline trajectories are defined
in a three-dimensional XYZ space. They are available with XYZ groups only. The
major benefit provided by a spline trajectory is to hit all points (except for the first and
the last point that are needed to define the start and the end) and to maintain an almost
constant speed (speed being the scalar of the vector velocity) throughout the entire path
(except during the acceleration and deceleration periods). Please note that the trajectory
speed can vary in some areas depending on the distribution of the reference points. This
is related to the spline algorithm used.
Trajectory element (segment): An element of a spline trajectory is defined by a 3rd
order polynomial curve joining two consecutive control points.
Trajectory velocity: The tangential linear velocity (speed) along the trajectory during
its execution.
Trajectory acceleration: The tangential linear acceleration used to start and end a
trajectory. Trajectory acceleration and trajectory deceleration are always equal and by
default.

4.2.2 Trajectory Conventions
When defining and executing a spline trajectory, a number of rules must be followed:

• The motion group must be an XYZ group.
• All trajectories must be stored in the controller’s memory under ..\public\trajectories

(one file for each trajectory). Once a trajectory is started, it executes in the
background allowing other groups or positioners to work independently and
simultaneously.

• Each trajectory must have a defined beginning and end. Endless (infinite)
trajectories are not allowed. Although, N-times (N defined by user) non-stop
execution of a trajectory is allowed. As the trajectory is stored in a file, the
trajectory’s maximum size (maximum elements number) is unlimited for practical
purposes.

• Spline trajectory elements (segments) are 3rd order polynomial curve segments Si(u),
joining the positions Pi-1 (Xi-1, Yi-1, Zi-1) and Pi (Xi, Yi, Zi). Here “u” is the
normalized time parameter that varies from 0 (corresponding to Pi-1) to 1
(corresponding to Pi).

• Spline trajectories form a continuous path (each segment’s output position is equal
to the next segment’s input position), and the segment tangential angles at the
connection point of any two consecutive segments are continuous, including its
derivative. For reference, this discontinuity is categorized as R1, wherein position
and velocity are continuous, but not acceleration.

4.2.3 Geometric Conventions
The Spline trajectory's coordinate system is an XYZ orthogonal system.
The X-axis of this system correlates to the XPositioner, the Y-axis to the YPositioner,
and the Z-axis to the ZPositioner of the XYZ group as defined in the stages.ini.
The origin of the XYZ coordinate system is in the lower left corner, with positive values
up (Z), to the right (X) and forward (Y).
All angles are measured in degrees, presented as floating point numbers. Angle origin
and sign follow the trigonometric convention: positive angles are measured counter-
clockwise.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 32

4.2.4 Catmull-Rom Interpolating Splines
To trace a smooth curve that links different predefined trajectory points, the
intermediate points must be calculated following a mathematical model. For the sake of
simplicity, in most cases this is done by a polynomial curve (polynomial interpolation).
For motion systems, the resulting curve should hit all predefined points. This is called
precise interpolation in contrast to approximate interpolation (like Bezier splines),
where the predefined points act only as control points. Within this class of precise
interpolation are:

• Global polynomial interpolation: One polynomial represents the whole trajectory.
Examples are Lagrange polynomials or Newton polynomials.

• Local polynomial interpolation: Each segment that links two consecutive trajectory
points has its own polynomial. The resulting curve is obtained by segment
polynomial concatenation. To limit oscillations inside segments, the polynomial
order is generally limited to 3 or less. This is called spline interpolation. If the
polynomial order is equal to 3, it is called cubic spline interpolation.

The interpolation methods are also classified by the continuity criterion Ck. An
interpolating curve has the continuity Ck if it and its derivatives up to k-degrees are
continuous in all its points. The interpolating spline curves generally have C1 or C2
continuity.
Catmull-Rom splines are a family of local cubic interpolating splines where the
tangent at each point pi is calculated based on the previous pi-1 and the next point pi+1 on
the spline. In case of the spline curve tension τ = 1/2 (normal case), the Catmull-Rom
spline is described by the following equation:

Here, pi are the coordinates of the predefined trajectory point in x, y and z (pxi, pyi, pzi).
“u” is the normalized interpolating parameter, varying from 0 (starting at pi) to 1
(ending at pi+1).
Catmull-Rom splines have a C1 continuity (continuity up to the first derivative), local
control and interpolation. Catmull-Rom splines have the advantage of simple
calculation without matrix inversion for on-line calculations, which is a great advantage
for splines with a large number of trajectory points. For this reason, the XPS controller
uses the Catmull-Rom spline interpolation.

Figure 15: A Catmull-Rom spline.

4.2.5 Trajectory Elements Arc Length Calculation
Spline contouring at constant speed requires an accurate calculation of the segment’s
arc length. The segment’s arc length can be expressed as follows:

XPS-D Controller Features Manual

 33 EDH0407En1052 – 08/22

Here, u0 = 0 is the segment starting point and u1 = 1 is the segment ending point. Sx, Sy,
Sz are x-, y-, and z-components of the segment function.
This integral can only be numerically calculated, which is done by the XPS controller
using the Romberg numerical integration algorithm. This guarantees that the arc length
is calculated with an error less than 10-7 units.

4.2.6 Trajectory File Description
The spline trajectory is described in a file in the \Admin\Public\Trajectories folder of
the XPS controller. Each line of this file represents one point of the spline trajectory
except for the first and the last lines that are needed only to define the start and the end
of the trajectory. Two consecutive points form a trajectory segment.
The format of a line in a file is:

X-POSITION, Y-POSITION, Z-POSITION
The separator between the X-, Y-, and Z-Position is a comma.
As mentioned before, the first and last lines of the file are needed only for the
interpolation of the first and the last spline segments. These define the angle the
trajectory starts and ends, but the motion system will not hit these points. So, the
trajectory’s first “real” point (starting point) is the one defined by the second line and
the trajectory’s real “last” point (end point) is the one defined by the second to the last
line.
The position values in the data file are relative to the physical position of the motion
group at the start of the trajectory. If the position in the second line of the file (starting
point) is not equal to zero (0, 0, 0), the real trajectory positions (those that the motion
group will hit) are shifted further by this value.

Example
The spline trajectory file has the following format:

At the moment the trajectory is executed, the motion group is at the position XC, YC, ZC.
So, the real matrix in absolute coordinates of the motion group is:

4.2.7 Trajectory File Example
This trajectory example represents a spiral starting from (0, 20, 0) and ending at (0, -20,
24). As described before, the trajectory’s first (-5, 19.365, -1) and last (5, -19.365, 25)
points are only needed to define the start and end conditions of the trajectory. Because

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 34

the second line (0, 20, 0) is not equal to zero (0, 0, 0), all points that the motion group
will hit during the execution of the trajectory are reduced by this value from the
physical starting position of the motion group.
The original data file is (except for the tabs that are only added for better readability):

 -5, 19.365, -1
 0, 20, 0
 5, 19.365, 1
 10, 17.321, 2
 15, 13.229, 3
 20, 0, 4
 15, -13.229, 5
 10, -17.321, 6
 5, -19.365, 7
 0, -20, 8
 -5, -19.365, 9
 -10, -17.321, 10
 -15, -13.229, 11
 -20, 0, 12

 -15, 13.229, 13
 -10, 17.321, 14
 -5, 19.365, 15
 0, 20, 16
 5, 19.365, 17
 10, 17.321, 18
 15, 13.229, 19
 20, 0, 20
 15, -13.229, 21
 10, -17.321, 22
 5, -19.365, 23
 0, -20, 24
 5, -19.365, 25

With this data file, the real trajectory points relative to the physical start position of the
motion group are (first and last lines are eliminated because the motion group will not
hit these points and the values from the second column are reduced by 20 as the first
line was (0, 20, 0)):

 0, 0, 0
 5, -0.635, 1
 10, -2.679, 2
 15, -6.771, 3
 20, -20, 4
 15, -33.229, 5
 10, -37.321, 6
 5, -39.365, 7
 0, -40, 8
 -5, -39.365, 9
 -10, -37.321, 10
 -15, -33.229, 11
 -20, -20, 12

 -15, -6.771, 13
 -10, -2.679, 14
 -5, -0.635, 15
 0, 0, 16
 5, -0.635, 17
 10, -2.679, 18
 15, -6.771, 19
 20, -20, 20
 15, -33.229, 21
 10, -37.321, 22
 5, -39.365, 23
 0, -40, 24

Figure 16: Executing the above normalized trajectory data file
with the Catmull-Rom spline algorithm.

XPS-D Controller Features Manual

 35 EDH0407En1052 – 08/22

4.2.8 Spline Trajectory Verification and Execution
Here are four functions to verify or execute a spline trajectory:

• XYZSplineVerification(): Verifies a spline trajectory data file.
• XYZSplineVerificationResultGet(): Returns the last trajectory verification results,

actuator by actuator. This function works only after an XYZSplineVerification().
• XYZSplineExecution(): Executes a trajectory.
• XYZSplineParametersGet(): Returns the trajectory current execution parameters.

This function works only while executing of the trajectory.
The function XYZSplineVerification() can be executed at any moment and is
independent from the trajectory execution. This function performs the following:

• Checks the trajectory file for data and syntax coherence.
• Calculates the trajectory limits, which are the required travel per positioner, the

maximum possible trajectory velocity and the maximum possible trajectory
acceleration. This function defines the parameters for trajectory execution.

• If all is OK, it returns an “OK” (0). Otherwise, it returns a corresponding error.
The function XYZSplineVerificationResultGet() can be executed only after an
XYZSplineVerification() and returns the following:

• Travel requirement in the positive and negative directions for each positioner.
• The maximum possible trajectory velocity (speed) that is compatible with all

positioners’ velocity parameters. It returns a value for the trajectory velocity, that
when applied, at least one of the positioners will reach its maximum allowed speed
at least once along the trajectory. So, the returned value varies between

Min{Vmax_actuator} and . However,

this value does not take into account that the positioners’ acceleration can limit the
trajectory velocity. This is the case with splines that contain sharp curved segments.

• The maximum trajectory acceleration that is compatible with all positioner
parameters. At this trajectory acceleration, one of the positioners will reach its
maximum allowed acceleration during trajectory execution.

The function XYZSplineVerificationResultGet() returns the trajectory execution
limits that have previously been calculated by the XYZSplineVerification function.
Note on this function’s response: Only the returned travel requirements are specific for
each positioner, the returned velocity/acceleration values are the same for all
positioners, because they represent the trajectory’s velocity/acceleration.
To execute a spline trajectory, send the function XYZSplineExecution() with the
parameters for the trajectory velocity and the trajectory acceleration (the trajectory
acceleration that is used during the start and the end of the trajectory). The motion
profile for spline trajectories is trapezoidal. The function XYZSplineExecution() does
not verify the trajectory’s coherence or geometric conditions (exceeding any
positioner’s min. or max. travel, speed or acceleration) before execution, so users must
pay attention when executing a trajectory without verifying the trajectory the maximum
possible values. In case of an error during execution, because of bad data or because of
a following error (for example the trajectory acceleration or speed was set too high) the
motion group will make an emergency stop and will go to the disabled state. The
parameters for trajectory velocity and trajectory acceleration can also be set to zero. In
this case the controller uses executable default values which are the Min{All
Vmax_actuator} for trajectory velocity and Min{All Amax_actuator} for trajectory acceleration.
Finally, the function XYZSplineParametersGet() returns the trajectory execution
status with trajectory name, trajectory velocity, trajectory acceleration and current
executed trajectory element. This function returns an error if the trajectory is not
executing.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 36

4.2.9 Examples
XYZSplineVerification (XYZGroup, Spline1.trj)
This function returns a 0 if the trajectory is executable.
XYZSplineVerificationResultGet (XYZGroup.XPositioner, *Name,
*NegTravel, *PosTravel, *MaxSpeed, *MaxAcceleration)
This function returns the name of the trajectory checked with the last sent
function XYZSplineVerification to that motion group (Spline1.trj), the
negative travel required for the XYZGroup.XPositioner, the positive travel
required for the XYZGroup.XPositioner, the maximum trajectory velocity and
the maximum trajectory acceleration.
XYZSplineExecution (XYZGroup, Spline1.trj, 10, 100)
Executes the trajectory Spline1.trj with a trajectory velocity of 10 units/s and
a trajectory acceleration of 100 units/s2.
XYZSplineParametersGet (XYZGroup, *FileName,
*TrajectoryVelocity, *TrajectoryAcceleration, *ElementNumber)
Returns the name of the trajectory being executed (Spline1.trj), the trajectory
velocity (10), the trajectory acceleration (100) and the number of the
currently executed trajectory element.

4.3 PVT Trajectories

4.3.1 Trajectory Terminology
Trajectory: continuous, multidimensional motion path. PVT stands for Position,
Velocity, and Time. PVT trajectories are defined in an n-dimensional space (n = 1 to 4)
and are only available with MultipleAxes groups. A PVT trajectory is generated with
continuous movements of the group’s positioners over several time periods. For each
period, each positioner must complete a defined displacement from its current position
and a defined output velocity at the end of the period. By definition, there is no constant
vector velocity and no definition for a vector acceleration in contrast to Line-arc
trajectories or splines.
Trajectory element (segment): An element of a PVT trajectory is defined by a set of all
positioner displacements and output velocities and the duration for the segment. In the
PVT data file, each element is represented by a line of values:
DT, DP1, VO1, DP2, VO2, … DPn, VOn
DT: The segment duration in seconds.
DP1, DP2,…, DPn: Positioners’ (#1, #2,…, #n) displacements during DT.
VO1, VO2,…, VOn: Positioners’ output velocities at the end of DT.

4.3.2 Trajectory Conventions
When defining or executing a PVT trajectory, a number of rules must be followed:

• The motion group must be a MultipleAxes group.
• All trajectories must be stored in the controller’s memory. Use the XPS webpage

Files → Trajectory files to edit, upload or download a PVT trajectory file. Once a
trajectory is started, it executes in the background allowing other groups to work
independently and simultaneously.

• Each trajectory must have a beginning and an end. Endless (infinite) trajectories are
not allowed. Although, execution of a trajectory file N-times (N defined by user) is
allowed. Since the trajectory is stored in a file, the trajectory’s maximum size
(maximum elements number) is practically not limited.

• PVT trajectory elements (segments) are 3rd order polynomial pieces for each
positioner that hit the positions Pi-1 (at time ti-1 with a velocity vi-1) and positions Pi

XPS-D Controller Features Manual

 37 EDH0407En1052 – 08/22

(at time ti with a velocity vi). There is no direct link between the trajectories of the
different positioners in the group.

• PVT trajectories form a continuous path (each segment output position is equal to
the next segment input position), and the segment tangential angles at the connection
point of any two consecutive segments are continuous including its derivative. It
means that the PVT trajectory continuity property is R1.

• The input velocity of any element is equal to the output velocity of the previous
element. The input velocity for the first element is always zero. The output velocity
of the last element must be zero as well.

4.3.3 Geometric Conventions

• The coordinate system can be any convention, it does not need to be an orthogonal
system.

• A PVT trajectory can be defined for a MultipleAxes group. The number of
positioners in the PVT trajectory must match that of the linked with MultipleAxes
group.

4.3.4 PVT Interpolation
For each positioner belonging to the MultipleAxes group, the PVT trajectory calculates
a 3rd order polynomial curve P(u) that can be presented by the following equations:

Profile coefficient
• Acceleration jerk:

• Initial acceleration:

• Final acceleration:

Profile equation
• Acceleration:

• Velocity:

• Position:

Here:
DT is the segment duration in seconds
DX is the displacement during DT
Vin is the output velocity of the previous segment (which is equal to the input

velocity of the current segment)
Vout is the output velocity of the current segment.
t is the time in seconds starting at 0 (entry of the current element) and ending at

DT (end of the segment)

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 38

4.3.5 Influence of the Element Output Velocity to the Trajectory
The contour of each PVT trajectory element is influenced not only by the displacement,
but also by the input and output velocities. As the user decides on these velocities,
attention must be placed on these values to get the desired results.
The effect of the velocity is illustrated in the following example which shows the
position and velocity profiles for one segment of a PVT trajectory that has a
displacement of 5 mm, a duration of 100 ms, an input velocity of 10 mm/s and an output
velocity of either 50 mm/s or 500 mm/s:

• If the output velocity is equal to 50 mm/s.

• If the output velocity is equal to 500 mm/s.

Figure 17: PVT trajectory element in execution: the comparison.

A PVT trajectory must have three parameters: position, velocity and time. With a given
target displacement, output velocity and time duration, the PVT trajectory calculates
intermediate positions and velocities as a function of time.

XPS-D Controller Features Manual

 39 EDH0407En1052 – 08/22

With an output velocity of 50 mm/s, the positioner has “enough” time to achieve the
displacement within the assigned time (100 ms) in the forward direction. The velocity
increases at the beginning and then slows down towards the end. The position always
increases up to the target position (5 mm).
On the other hand, when the output velocity is set to 500 mm/s, the positioner does not
have enough time to achieve the displacement and speed output required in the forward
direction. So, the positioner will first reverse the direction of motion to be able to
approach the end position with a speed of 500 mm/s.

4.3.6 Trajectory File Description
The PVT trajectory described must be stored in the controller’s memory. Use the XPS
webpage Files → Trajectory files to edit, upload or download a PVT trajectory file.
Each line of this file represents one element of the trajectory.
A line contains several data separated by a comma. The number of data in each line
depends on the number of positioners in the group. The first data in each line is the
duration of the element. The following data is grouped in pairs of two representing the
displacement and the output velocity for each positioner of the group. Comment lines
are possible, they must be preceded with a semi-colon (“;”) character.
So, the line format is as follows:

Data #1: Element duration (seconds).
Data #2: 1st positioner’s displacement (units).
Data #3: 1st positioner’s output velocity (units/s).
Data #4: 2nd positioner’s displacement (units).
Data #5: 2nd positioner’s output velocity (units/s).
(And so on…)

NOTE
The first positioner is always the first defined in the system.ini of the MultipleAxes
group (see PositionerInUse), the second positioner is always defined as second, and
so on…

Option to add GPIO outputs
To add either analog or digital outputs during the trajectory the first line of the file
should specify the selected outputs and each element should define the GPIO output per
plug with the following data:

• Digital Outputs
For digital outputs, two values must be specified per element and per selected GPIO
plug to define the state of the output at the end of the element, namely Mask and
DigitalOutputValue.

• Analog Outputs
Analog outputs are handled like position to output a controlled voltage profile. For
analog outputs, two values per element and per selected output plug must be
specified, the voltage variation (DU) during the element and the rate of change (VU)
at the end of the element.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 40

Example format:
; Comment: A MultipleAxes group with two positioners, one digital output and two
analog outputs.

GPIO3.DO, GPIO4.DAC1, GPIO4.DAC2
DT1, DX1, DX2, Mask1, Value1, DU1, VU1, DU2, VU2
DT2, DX1, DX2, Mask1, Value1, DU1, VU1, DU2, VU2
DT3, DX1, DX2, Mask1, Value1, DU1, VU1, DU2, VU2
…
DTm, DX1, DX2, Mask1, Value1, DU1, VU1, DU2, VU2

4.3.7 Trajectory File Example
Following is an example of a PVT trajectory defined in a MultipleAxes group that
contains two positioners. The tabs are added for better readability and are ignored in a
line:

 1.0, 0.4167, 1.25, 0, 0
 1.0, 2.9167, 5, 0, 0
 1.0, 7.0833, 8.75, 0, 0
 1.0, 9.5833, 10, 0, 0
 1.0, 10, 10, 0.4167, 1.25
 1.0, 10, 10, 2.9167, 5
 1.0, 10, 10, 7.0833, 8.75
 1.0, 10, 10, 9.5833, 10
 1.0, 9.5833, 8.75, 10, 10
 1.0, 7.0833, 5, 10, 10
 1.0, 2.91667, 1.25, 10, 10
 1.0, 0.41667, 0, 10, 10
 1.0, 0, 0, 9.5833, 8.75
 1.0, 0, 0, 7.0833, 5
 1.0, 0, 0, 2.91667, 1.25
 1.0, 0, 0, 0.41667, 0

This file represents the following data:

 Time Axis #1 Axis #1 Axis #2 Axis #2
 Period (s) Displacement Velocity Out Displacement Velocity Out
 1.0 0.4167 1.25 0 0
 1.0 2.9167 5.0 0 0
 1.0 7.0833 8.75 0 0
 1.0 9.5833 10 0 0
 1.0 10 10 0.4167 1.25
 1.0 10 10 2.9167 5
 1.0 10 10 7.0833 8.75
 1.0 10 10 9.5833 10
 1.0 9.5833 8.75 10 10
 1.0 7.0833 5 10 10
 1.0 2.9167 1.25 10 10
 1.0 0.4167 0 10 10
 1.0 0 0 9.5833 8.75
 1.0 0 0 7.0833 5
 1.0 0 0 2.9167 1.25
 1.0 0 0 0.4167 0

Table 1: The trajectory data file.

XPS-D Controller Features Manual

 41 EDH0407En1052 – 08/22

Figure 18: Executing the trajectory data file with the PVT algorithm.

4.3.8 PVT Trajectory Verification and Execution
Here are four functions to verify or execute a PVT trajectory :

• MultipleAxesPVTVerification(): Verifies a PVT trajectory data file.
• MultipleAxesPVTVerificationResultGet(): Returns the results of the last

trajectory verification call, actuator by actuator. This function works only after a
MultipleAxesPVTVerification().

• MultipleAxesPVTExecution(): Executes a PVT trajectory.

• MultipleAxesPVTParametersGet(): Returns the trajectory’s current execution
parameters. This function works only while executing a trajectory.

The function MultipleAxesPVTVerification() can be executed at any moment and is
independent of the trajectory execution. This function does the following:

• Checks the trajectory file for data and syntax coherence.
• Simulates the trajectory to determine the positioner’s travel requirements in negative

and positive directions and the maximum allowed speed and acceleration for each
positioner. This function determines whether the trajectory is executable.

• If all is OK, it returns an “OK” (value 0). Otherwise it returns a corresponding error.
An error for instance is reported if one of the positioner’s speed or acceleration
reached during the trajectory exceeds the maximum allowed speed or acceleration.

The function MultipleAxesPVTVerificationResultGet() can be executed only after a
MultipleAxesPVTVerification(). It returns the trajectory limits for each positioner,
which are the travel requirements in positive and negative directions, the achieved
maximum speed and acceleration.
To execute a PVT trajectory, send the function MultipleAxesPVTExecution() while
specifying the file name and the number of cycles. This function does not verify the
trajectory’s coherence or geometric conditions (exceeding any positioner’s min. or max.
travel, speed or acceleration) before execution, so users must be careful when executing

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 42

a trajectory without verifying the trajectory first. In case of an error during execution,
because of bad data or because of a following error, the motion group will make an
emergency stop and will go to the disabled state.
Finally, the function MultipleAxesPVTParametersGet() returns the trajectory name and
the number of the trajectory element that is currently being executed. This function
returns an error if the trajectory is not executing.

4.3.9 Example with a MultpleAxes Group
MultipleAxesPVTVerification (MyGroup, PVT1.trj)
This function returns a 0 if the trajectory is executable.
MultipleAxesPVTVerificationResultGet (MyGroup.MyPositioner1, *Name,
*NegTravel, *PosTravel, *MaxSpeed, *MaxAcceleration)
This function returns the name of the trajectory verified with the last functions call of
MultipleAxesPVTVerification to the motion group MyGroup(PVT1.trj) and the
trajectory limits for the positioner MyGroup.MyPositioner1. These trajectory limits are:
the negative or left travel requirement, the positive or right travel requirement, the
achieved maximum speed and acceleration. Make sure that these trajectory limits
(required negative and positive travel, speed and acceleration) are within the soft limits
of the stages defined in the stages.ini file (section Travel: MinimumTargetPosition,
MaximumTargetPosition and section Profiler: MaximumVelocity,
MaximumAcceleration).
MultipleAxesPVTExecution (MyGroup, PVT1.trj, 5)
Executes the trajectory PVT1.trj five (5) times.
MultipleAxesPVTParametersGet (MyGroup, *FileName, *ElementNumber)
Returns the currently executed trajectory file name (PVT1.trj) and the number of the
currently executed trajectory element.

4.4 PT Trajectories

4.4.1 Trajectory Terminology
Trajectory: continuous, multidimensional motion path. PT stands for Position and Time.
PT trajectories are defined in an n-dimensional space (n = 1 to 4) and are available only
with MultipleAxes groups. A PT trajectory is generated with continuous movements of
the group’s positioners over several time periods. For each period, each positioner must
complete a defined displacement from its current position. By definition, there is no
constant vector velocity and no definition for vector acceleration compared to Line-arc
trajectories or splines.
Trajectory element (segment): An element of a PT trajectory is defined by a set of all
positioner displacements and the duration for the segment. In the PT data file, each
element is represented by a line of values:

DT, DP1, DP2, … DPn
DT: The segment duration in seconds.
DP1, DP2,…, DPn: Positioners’ (#1, #2,…, #n) displacements during DT.

4.4.2 Trajectory Conventions
When defining or executing a PT trajectory, a number of rules must be followed:

• The motion group must be a MultipleAxes group.
• All trajectories must be stored in the controller’s memory. Use the XPS webpage

Files → Trajectory files to edit, upload or download a PT trajectory file. Once a
trajectory is started, it executes in the background allowing other groups to work
independently and simultaneously.

XPS-D Controller Features Manual

 43 EDH0407En1052 – 08/22

• Each trajectory must have a beginning and an end. Endless (infinite) trajectories are
not allowed. Although, execution of a trajectory file N-times (N defined by user) is
allowed. Since the trajectory is stored in a file, the trajectory’s maximum size
(maximum elements number) is practically not limited.

• PT trajectory elements (segments) are 3rd order polynomial pieces for each
positioner that hit the positions Pi-1, at time ti-1, and positions Pi, at time ti. There is
no direct link between the trajectories of the different positioners in the group.

• PT trajectories form a continuous path: each segment output position is equal to the
next segment input position and the input velocity of any element is equal to the
output velocity of the previous element. Hence the segment tangential angles at the
connection point of any two consecutive segments are continuous including its
derivative. It means that the PT trajectory continuity property is R1.

• The input velocity for the first element is always zero. The output velocity of the last
element must be zero as well.

4.4.3 Geometric Conventions

• The coordinate system can be any convention; it does not need to be an orthogonal
system.

• A PT trajectory can be defined for a MultipleAxes group. The number of positioners
in the PT trajectory must match that of the linked with MultipleAxes group.

4.4.4 PT Interpolation
For each positioner belonging to the MultipleAxes group, the PT trajectory calculates a
3rd order polynomial curve X(t) that can be represented by the following equations:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑒𝑒𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 = (𝐷𝐷𝐷𝐷1,𝐷𝐷𝐷𝐷1)

𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶 𝐶𝐶𝑒𝑒𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 = (𝐷𝐷𝐷𝐷2,𝐷𝐷𝐷𝐷2)

𝐷𝐷𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜 (𝑝𝑝𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝑝𝑝)

𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 (𝑝𝑝𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝑝𝑝)

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 =
𝐷𝐷𝐷𝐷2 ∙ 𝐷𝐷𝐷𝐷12 + 𝐷𝐷𝐷𝐷1 ∙ 𝐷𝐷𝐷𝐷22
𝐷𝐷𝐷𝐷1 ∙ 𝐷𝐷𝐷𝐷2 ∙ (𝐷𝐷𝐷𝐷1 + 𝐷𝐷𝐷𝐷2)

𝐺𝐺𝑖𝑖𝑖𝑖 =
2 ∙ [3 ∙ 𝐷𝐷𝐷𝐷1 − 𝐷𝐷𝐷𝐷1 ∙ (2 ∙ 𝑉𝑉𝑖𝑖𝑖𝑖 + 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜)]

𝐷𝐷𝐷𝐷12

𝐽𝐽𝐶𝐶𝐶𝐶𝐽𝐽 =
6 ∙ (𝐷𝐷𝐷𝐷1 ∙ 𝑉𝑉𝑖𝑖𝑖𝑖 − 2 ∙ 𝐷𝐷𝐷𝐷1 + 𝐷𝐷𝐷𝐷1 ∙ 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜)

𝐷𝐷𝐷𝐷13

𝐷𝐷(𝐶𝐶) = 𝐷𝐷𝑖𝑖𝑖𝑖 + 𝑉𝑉𝑖𝑖𝑖𝑖 ∙ 𝐶𝐶 +
1
2
∙ 𝐺𝐺𝑖𝑖𝑖𝑖 ∙ 𝐶𝐶2 +

1
6
∙ 𝐽𝐽𝐶𝐶𝐶𝐶𝐽𝐽 ∙ 𝐶𝐶3

The algorithm is the same as for PVT mode except that the output velocity is not set in
the trajectory file, but calculated by the firmware using the following rule:
The crossing velocity of a point is defined by taking into account the previous and the
following point, as if the three points where to be crossed with a constant acceleration.
This crossing velocity becomes the set output velocity of the element defined by the
first two points. The result is a lower speed ripple than a path at constant acceleration.

4.4.5 Trajectory File Description
The PT trajectory described must be stored in the controller’s memory. Use the XPS
webpage Files → Trajectory files to edit, upload or download a PT trajectory file.
Each line of this file represents one element of the trajectory.
A line contains several data entries separated by a comma. Comment lines are possible
and must be preceded with a semi-colon (“;”) character. The number of data entries in
each line depends on the number of positioners in the MultipleAxes group. The first

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 44

data entry in each line is the duration of the element. The following data entries
represent the displacement for each positioner of the group.
So, a generic format is as follows:

DT1, DX1, DX2, …, DXn
DT2, DX1, DX2, …, DXn
…
DTm-2, DX1, DX2, …, DXn
DTm-1, 0, 0, …, 0
DTm, 0, 0, …, 0

NOTES
To guarantee that the output velocity is null at the end of PT trajectory execution,
two data lines with zero displacements must be present at the end of the PT
trajectory.
The first positioner is always the first defined in the system.ini of the MultipleAxes
group (see PositionerInUse), the second positioner is always defined as second, and
so on…

Option to add GPIO outputs
To add either analog or digital outputs during the trajectory the first line of the file
should specify the selected outputs and each element should define the GPIO output per
plug with the following data:

• Digital Outputs
For digital outputs, two values must be specified per element and per selected GPIO
plug to define the state of the output at the end of the element, namely Mask and
DigitalOutputValue.

• Analog Outputs
Analog outputs are handled like position to output a controlled voltage profile. For
analog outputs, one value per element and per output plug must be specified, the
voltage variation (DU) during the element.

Example format:
Comment: A MultipleAxes group with two positioners, one digital output and two
analog outputs

GPIO3.DO, GPIO4.DAC1, GPIO4.DAC2
DT1, DX1, DX2, Mask1, Value1, DU1, DU2
DT2, DX1, DX2, Mask1, Value1, DU1, DU2
DT3, DX1, DX2, Mask1, Value1, DU1, DU2
…
DTM, DX1, DX2, Mask1, Value1, DU1, DU2

XPS-D Controller Features Manual

 45 EDH0407En1052 – 08/22

4.4.6 Trajectory File Example
Following is an example of a PT trajectory defined in a MultipleAxes group that
contains two positioners and configured to output one digital and one analog output.
The data entries in a line are separated by a comma (","). Comment lines are possible
and must be preceded with a semi-colon (";") character. Because of the PT trajectory
internal calculation of elements end velocity, two lines with zero displacements must be
present at the end of the PT trajectory file to guarantee that the elements end velocity be
zero at the end of trajectory execution. In the example below tabs were added for better
readability:

; PT trajectory data

GPIO3.DO, GPIO4.DAC1,

1.0, 0.4167, 0, 65535, 1, 0.04167

1.0, 2.9167, 0, 65535, 2, 0.29167

1.0, 7.0833, 0, 65535, 4, 0.70833

1.0, 9.5833, 0, 65535, 8, 0.95833

1.0, 10, 0.4167, 65535, 16, 1.0

1.0, 10, 2.9167, 65535, 32, 1.0

1.0, 10, 7.0833, 65535, 64, 1.0

1.0, 10, 9.5833, 65535, 128, 1.0

1.0, 9.5833, 10, 65535, 64, 0.95833

1.0, 7.0833, 10, 65535, 32, 0.70833

1.0, 2.9167, 10, 65535, 16, 0.29167

1.0, 0.4167, 10, 65535, 8, 0.04167

1.0, 0, 9.5833, 65535, 4, 0

1.0, 0, 7.0833, 65535, 2, 0

1.0, 0, 2.9167, 65535, 1, 0

1.0, 0, 0.4167, 65535, 0, 0

1.0, -0.4167, 0, 65535, 1, -0.04167

1.0, -2.9167, 0, 65535, 2, -0.29167

1.0, -7.0833, 0, 65535, 4, -0.70833

1.0, -9.5833, 0, 65535, 8, -0.95833

1.0, -10, -0.4167, 65535, 16, -1.0

1.0, -10, -2.9167, 65535, 32, -1.0

1.0, -10, -7.0833, 65535, 64, -1.0

1.0, -10, -9.5833, 65535, 128, -1.0

1.0, -9.5833, -10, 65535, 64, -0.95833

1.0, -7.0833, -10, 65535, 32, -0.70833

1.0, -2.9167, -10, 65535, 16, -0.29167

1.0, -0.4167, -10, 65535, 8, -0.04167

1.0, 0, -9.5833, 65535, 4, 0

1.0, 0, -7.0833, 65535, 2, 0

1.0, 0, -2.9167, 65535, 1, 0

1.0, 0, -0.4167, 65535, 0, 0

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 46

This file represents the following data:

GPIO #3
Digital Output

GPIO #4
Analog Output

GPIO3.DO GPIO4.DAC1

Time
Period (S)

Axis #1
Displacement

Axis #2
Displacement

GPIO #3
Mask1

GPIO #3
Value 1

GPIO #4
Analog voltage variation DU2

1.0 0.4167 0 65535 1 0.04167

1.0 2.9167 0 65535 2 0.29167

1.0 7.0833 0 65535 4 0.70833

1.0 9.5833 0 65535 8 0.95833

1.0 10 0.4167 65535 16 1.0

1.0 10 2.9167 65535 32 1.0

1.0 10 7.0833 65535 64 1.0

1.0 10 9.5833 65535 128 1.0

1.0 9.5833 10 65535 64 0.95833

1.0 7.0833 10 65535 32 0.70833

1.0 2.9167 10 65535 16 0.29167

1.0 0.4167 10 65535 8 0.04167

1.0 0 9.5833 65535 4 0

1.0 0 7.0833 65535 2 0

1.0 0 2.9167 65535 1 0

1.0 0 0.4167 65535 0 0

1.0 -0.4167 0 65535 1 -0.04167

1.0 -2.9167 0 65535 2 -0.29167

1.0 -7.0833 0 65535 4 -0.70833

1.0 -9.5833 0 65535 8 -0.95833

1.0 -10 -0.4167 65535 16 -1.0

1.0 -10 -2.9167 65535 32 -1.0

1.0 -10 -7.0833 65535 64 -1.0

1.0 -10 -9.5833 65535 128 -1.0

1.0 -9.5833 -10 65535 64 -0.95833

1.0 -7.0833 -10 65535 32 -0.70833

1.0 -2.9167 -10 65535 16 -0.29167

1.0 -0.4167 -10 65535 8 -0.04167

1.0 0 -9.5833 65535 4 0

1.0 0 -7.0833 65535 2 0

1.0 0 -2.9167 65535 1 0

1.0 0 -0.4167 65535 0 0

XPS-D Controller Features Manual

 47 EDH0407En1052 – 08/22

4.4.7 PT Trajectory Verification and Execution
Here are four functions to verify or execute a PT trajectory :

• MultipleAxesPTVerification(): Verifies a PT trajectory data file.
• MultipleAxesPTVerificationResultGet(): Returns the results of the last trajectory

verification call, positioner by positioner. This function works only after a
MultipleAxesPTVerification().

• MultipleAxesPTExecution(): Executes a PT trajectory.

• MultipleAxesPTParametersGet(): Returns the trajectory’s current execution
parameters. This function works only while executing a trajectory.

The function MultipleAxesPTVerification() can be executed at any moment and is
independent of the trajectory execution. This function does the following:

• Checks the trajectory file for data and syntax coherence.
• Simulates the trajectory to determine the positioner’s travel requirements in negative

and positive directions and the maximum allowed speed and acceleration for each
positioner. This function determines whether the trajectory is executable.

• If all is OK, it returns an “OK” (value 0). Otherwise it returns a corresponding error.
An error for instance is reported if one of the positioner’s speed or acceleration
reached during the trajectory exceeds the maximum allowed speed or acceleration.

The function MultipleAxesPTVerificationResultGet() can be executed only after a
MultipleAxesPTVerification(). It returns the trajectory limits for each positioner, which
are the travel requirements in positive and negative directions, the achieved maximum
speed and acceleration.
To execute a PT trajectory, send the function MultipleAxesPTExecution() while
specifying the file name and the number of cycles. This function does not verify the
trajectory’s coherence or geometric conditions (exceeding any positioner’s min. or max.
travel, speed or acceleration) before execution, so users must be careful when executing
a trajectory without verifying the trajectory first. In case of an error during execution,
because of bad data or because of a following error, the motion group will make an
emergency stop and will go to the disabled state.
Finally, the function MultipleAxesPTParametersGet() returns the trajectory name and
the number of the trajectory element that is currently being executed. This function
returns an error if the trajectory is not executing.

4.4.8 Example of how to use PT functions
MultipleAxesPTVerification (MultipleGroup, PTExample.trj)
This function returns a 0 if the trajectory is executable.
MultipleAxesPTVerificationResultGet (MultipleGroup.Pos1, *Name, *NegTravel,
*PosTravel, *MaxSpeed, *MaxAcceleration)
This function returns the name of the trajectory verified with the last functions call of
MultipleAxesPTVerification to the motion group MultipleGroup (PTExample.trj) and
the trajectory limits for the positioner MultipleGroup.Pos1. These trajectory limits are:
the negative or left travel requirement, the positive or right travel requirement, the
achieved maximum speed and acceleration. Make sure that these trajectory limits
(required negative and positive travel, speed and acceleration) are within the soft limits
of the stages defined in the stages.ini file (section Travel: MinimumTargetPosition,
MaximumTargetPosition and section Profiler: MaximumVelocity,
MaximumAcceleration).
MultipleAxesPTExecution (MultipleGroup, PTExample.trj, 5)
This function executes the trajectory, PTExample.trj, five times.
MultipleAxesPTParametersGet (MultipleGroup, *FileName, *ElementNumber)
Returns the currently executed trajectory file name (PTExample.trj) and the number of
the currently executed trajectory element.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 48

4.4.9 XY LineArc to PT trajectory convertion
This additional function is used to convert a Line Arc trajectory to moves array with
constant time intervals at constant trajectory length intervals.
The positions are calculated between a start length and an end length. All lengths are
calculated in an orthogonal XY plane and the XY LineArc start point coordinates are
supposed to be (0,0).
The trajectory length is calculated with TimeInterval and trajectory velocity.
Trajectory velocity is therefore the same all along the trajectory. It is equal to
MaximumVelocity, reduced if necessary to limit the acceleration in the arc elements to
the specified MaximumAcceleration.

Vmax = √𝑀𝑀𝑀𝑀𝑁𝑁𝑝𝑝𝑒𝑒𝐶𝐶𝑒𝑒𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶𝑀𝑀𝐶𝐶𝑝𝑝𝑝𝑝𝐶𝐶 ∗ 𝑅𝑅𝑀𝑀𝑅𝑅𝑝𝑝𝐶𝐶𝑝𝑝

- XY LineArc to PT trajectory conversion:

ConvertLineArctoPTTrajectory(FileName, MaximumVelocity,
MaximumAcceleration, TimeInterval)

FileName is the XY LineArc trajectory filename. The PT trajectory filename is always
"ConvertedLineARC.PT"

XPS-D Controller Features Manual

 49 EDH0407En1052 – 08/22

5.0 Emergency Brake and Emergency Stop Cases

5.1 Principle

NOTE
Emergency brake brings a stage to a stop, then sets the motor power to Off.
Emergency stop: sets motor power to Off only.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 50

5.2 Emergency Brake Cases

Case Error
Standard end of run driver safety supervisor
Standard limit and home encoder safety supervisor
Standard limit and limit encoder safety supervisor

• Plus end of run is detected
• Minus end of run is detected

Line arc trajectory execution • Error occurs when reading or
getting trajectory parameters

• The user target position is
outside the
MinimumTargetPosition and
MaximumTargetPosition value

• Actual positioner velocity is
greater than the
MaximumVelocity value

Spline trajectory execution • Error occurs when reading or
getting trajectory parameters

• The user target position is
outside the
MinimumTargetPosition and
MaximalTargetPosition value

• Actual positioner velocity is
greater than the
MaximumVelocity value

PVT trajectory execution • Error occurs when reading or
getting trajectory parameters

• Error occurs during trajectory
execution

• The user target position is
outside the
MinimumTargetPosition and
MaximalTargetPosition values

• Actual positioner velocity is
greater than the
MaximumVelocity value

S-gamma motion of a slave • Group positioner is not in the
home process,

• And end of run detection is
enabled

• And the group is not a spindle
group

• And the user target position is
outside the
MinimumTargetPosition and
MaximalTargetPosition value

XPS-D Controller Features Manual

 51 EDH0407En1052 – 08/22

5.3 Emergency Stop Cases

Case Error
AquadBEncoder fault • Quadrature error

• FOC fault (over run error)
Analog interpolator encoder fault • Quadrature error

• FOC fault
• Sin Cos radius error

AnalogAccelerationMotorInterface
AnalogDualSinAccelerationMotorInterface
AnalogPositionMotorInterface
AnalogSinAccelerationMotorInterface
AnalogStepperPositionMotorInterface
AnalogVelocityMotorInterface
AnalogVoltageMotorInterface
DigitalStepperPositionMotorInterface
AnalogSinAccelerationLMIMotorInterface
AnalogAccelerationTZMotorInterface
AnalogPositionPiezoMotorInterface

• Driver fault

Single Axis with clamping control
Single Axis theta

• Unclamped state

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 52

6.0 Compensation

6.1 Definitions
The XPS controller features different compensation methods that improve the
performance of a motion system namely, Backlash, Linear error, Positioner mapping,
XY mapping and XYZ mapping. To understand the different compensation methods it
is important to define terms used to calculated the compensation.
TargetPosition: The TargetPosition is the position where the positioner must be after
the completion of a move.
SetpointPosition : The SetpointPosition is the theoretical position commanded to the
servo loop. It is the position where the positioner should be, during and after the end of
the move.
CurrentPosition: The CurrentPosition is the current physical position of the positioner.
It is equal to the encoder position after all compensations (backlash, linear error and
mapping) have been taken into account.
SetpointVelocity: The SetpointVelocity is calculated by the motion profiler and
represents the “theoretical” velocity to reach during the motion.
SetpointAcceleration: The SetpointAcceleration is calculated by the motion profiler
and represents the “theoretical” acceleration to reach during the motion.
FollowingError: The FollowingError is the difference between the CurrentPosition and
the SetpointPosition.
A short description of the different compensation methods that improves the
performance of a motion system follows:
Backlash compensation: The use of backlash compensation improves the bi-
directional repeatability and accuracy of a motion device that has mechanical play.
Backlash compensation is applicable to all positioners, but it is not available in all
motion modes. When backlash compensation is activated, the XPS controller adds a
user-defined BacklashValue to the TargetPosition to calculate a new target position
whenever the direction of motion reverses. This internally used new target position is
then the basis for the calculations of the motion profiler. No modification of the actual
target is performed.
Linear error compensation: The linear error compensation helps improve the
accuracy of a motion device by eliminating linear error sources. Linear errors can be
caused by screw pitch errors, linear increasing angular deviations (abbe errors), thermal
effects or cosine errors (misalignment between the feedback device and the direction of
motion). Linear error compensation is applicable to all positioners. Its value is defined
in the stages.ini. When set to other than zero, the encoder positions are compensated by
this value. Linear error compensation can be used in conjunction with other
compensation. For this reason, keep in mind the effects of using linear error
compensation in addition to other compensation methods.
Positioner mapping: In contrast to the linear error compensation, positioner mapping
also allows compensation for nonlinear error sources. Positioner mapping is done by
sending a compensation table to the XPS controller and configuring the needed settings
in the stages.ini. Positioner mapping is available with all positioners and works in
parallel with other compensations except for the backlash compensation method. Better
accuracy performance is achievable with linear compensation and positioner mapping
combined.
XY mapping: XY mapping is only available with XY groups. It allows compensation
for all errors of an XY group at any position of the XY group by sending two
compensation tables to the XPS controller (x and y compensations mapped to x and y
positions). The XY mapping is dynamically taken into account on the corrector loop of
the XPS controller. XY mapping works in parallel to other compensation methods.

XPS-D Controller Features Manual

 53 EDH0407En1052 – 08/22

Keep in mind that the results of XY mapping may not be the same as those of Positioner
mapping or linear compensation alone.
XYZ mapping: XYZ mapping is only available with XYZ groups. It compensates for
all errors of an XYZ group at any position of the XYZ group by sending three
compensation files to the XPS controller (x compensations mapped to x, y, and z
positions, and so on). The XYZ mapping is dynamically taken into account on the
corrector loop of the XPS controller. XYZ mapping works in parallel to other
compensation methods. Keep in mind that the results of XYZ mapping may not be the
same as those of Positioner mapping or linear compensation alone.
TargetPosition, SetpointPosition & CurrentPosition are accessible via function and
Gathering (Data Collection).
SetpointVelocity, SetpointAcceleration & FollowingError are accessible via
Gathering (Data Collection).

6.2 Backlash Compensation
Backlash compensation is applicable on all positioners, but works only under certain
conditions:

• The “HomeSearchSequenceType” in the stages.ini must be different from
“CurrentPositionAsHome”.

• Backlash compensation is not compatible with positioner mapping. So, for
positioners with backlash compensation, it is not allowed to have an entry for
“PositionerMappingFileName” in the stages.ini.

• Backlash compensation is not compatible with trajectories (Line-Arc, Spline, PVT),
jog or analog tracking. So, it is not possible to execute any trajectory, to use the jog
mode or to enable the analog tracking with any motion group that contains
positioners with backlash compensation enabled.

After the above has been taken into consideration, a number of steps need to be taken to
enable backlash compensation. First of all, there must be a value larger than 0 for
“backlash” in the stages.ini. But this setting does not automatically enable backlash
compensation. To do so, send the function PositionerBacklashEnable() while the
motion group, which includes the positioner is disabled. To disable backlash
compensation (for instance to execute a jog motion or to use analog tracking), use the
function PositionerBacklashDisable(). The value for backlash compensation can be
changed at any time with the function PositionerBacklashSet(). The new value for the
backlash will be taken into account with the next following move. Finally, the function
PositionerBacklashGet() returns the current value of the backlash and the backlash
status (“enabled” or “disabled”).
For backlash setting to remain set after power down, the stages.ini file must be modified
with the value desired.

Example
In the Backlash section of the stages.ini file, set a value greater than or equal to 0:

;--- Backlash
Backlash = 5 ; units

This example shows the sequence of functions that enable backlash compensation:
PositionerBacklashEnable (MyGroup.MyPositioner)
GroupInitialize (MyGroup)
GroupHomeSearch (MyGroup)
…
PositionerBacklashSet (MyGroup.MyPositioner, 10)

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 54

PositionerBacklashGet (MyGroup.MyPositioner, *Backlash, *Status)
Returns the backlash value (10) and the backlash status (Enable).
…
PositionerBacklashDisable (MyGroup.MyPositioner)

6.3 Linear Error Correction
Linear error correction is applicable on all positioners and works in parallel with any
other compensation. To use linear error correction, you need to set a value for
“LinearErrorCorrection” in the stages.ini. When set, the corrected positions are
calculated in the following way:

Corrected position = HomePreset +
(EncoderPosition – HomePreset) x (1 + LinearEncoderCorrection/106)

The value of LinearEncoderCorrection is specified in ppm (parts per million). The
correction is applied relative to the physical home position of the positioner (the
Encoder position by definition is set to the HomePreset value at the home position).
This hardware reference for linear error correction has the advantage of being
independent of the value of the HomePreset.

Example
In the Encoder section of the stages.ini file, set a value other than 0,
but -0.5 x 106 < value < 0.5 x 106, in parameter LinearEncoderCorrection:

;--- Encoder
EncoderType =AquadB
EncoderResolution = 0.001 ; unit
LinearEncoderCorrection =5 ; ppm

6.4 Positioner Mapping
Positioner mapping corrects for any nonlinear errors of a positioner. Positioner mapping
is applicable on all positioners and can be used with other compensations except
backlash compensation. The positioner mapping is applied after linear correction is
done.
The positioner mapping data is defined in a text file. Each line of that file represents one
set of data. Each set of data is composed of the position and the error at this position.
The separator between the two data entries in each line is a tab. All positions are relative
to the physical home position of the positioner. The data file must contain the line “0 0”,
which means that the error at the home position is 0. This hardware reference for
positioner mapping has the advantage of being independent of the value of the
HomePreset.
The following shows the general structure of such a data file:

PosMin Error 0
Pos 1 Error 1
Pos 2 Error 2
… …
0 0
… …
PosMax Error LineNumber-1

XPS-D Controller Features Manual

 55 EDH0407En1052 – 08/22

To activate positioner mapping, the mapping file must be in the ..\admin\config
directory of the XPS controller and the following settings must be configured in the
stages.ini:

• PositionerMappingFileName: Name of the mapping file.
• PositionerMappingLineNumber: Number of lines of the file.
• PositionerMappingMaxPositionError: Maximum absolute error in the file must

be larger than any entry in the mapping file.
PositionerMappingLineNumber and PositionerMappingMaxPositionError are only used
to check for the correctness of the mapping file.
To be read properly, the error entries must be ordered in ascendant position, see
example.

Example
The following shows an example of a positioner mapping data file:
PosMapping.txt

 -3.00 -0.00125
 -2.00 -0.00112
 -1.00 -0.00137
 0.00 0.00000
 1.00 0.00140
 2.00 0.00145
 3.00 0.00154

Define the positioner mapping in the stages.ini file:

;--- Backlash
Backlash =0 ; unit

;--- Positioner mapping
PositionerMappingFileName = PosMapping.txt
PositionerMappingLineNumber = 7
PositionerMappingMaxPositionError = 0.00154

;--- Travels
MinimumTargetPosition =-3 ; unit
HomePreset =0 ; unit
MaximumTargetPosition =3 ; unit

NOTE
These travel limits must be equal to or be within the positioner’s limit positions of
the mapping file (+3 and -3 in the above example).

Use of the functions:

• GroupInitialize(MyGroup)

• GroupHomeSearch(MyGroup)
• GroupMoveAbsolute(MyGroup.Positioner, 0.25)
The mapping file must at least cover the minimum and the maximum travel of the
positioner. It must cover MinimumTargetPosition and MaximumTargetPosition
parameters defined in the stages.ini, section Travels. In the example above, the travel of
the positioner can not be larger than ±3 units, but it can be smaller than this. The units
for the data are the same as defined by EncoderResolution in the stages.ini.
The data reads as follows: the corrected position at position 3.00 units is 2.99846 units
(3.00 - 0.00154). Between two data points, the XPS controller performs a linear

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 56

interpolation of the error. The corrected position at position 0.25 units is 0.24965 units
(0.25 - 0.00140*0.25/1).

NOTE
Mapping is a function implemented within the controller to correct positioning
errors. Once activated, mapping is transparent to the user.
When a position of 0.25 is commanded, the positioner goes to the corrected
position 0.24965 (0.25 - 0.00140*0.25/1) but displays 0.25. The function
GroupPositionCurrentGet doesn’t return 0.24965 but 0.25.

6.5 XY Mapping
XY mapping is only available to XY groups. It compensates for all errors of an XY
group at any position of that XY group. XY mapping can be used in addition to other
compensations, including positioner mapping. So, care must be taken about the
unwanted cross-effects of using XY mapping and other compensation at the same time.
XY mapping is defined by 2 compensation tables, in text file format, each for X and Y
errors. In each of these files:

• The first entry in that file must be 0 (zero).

• The first column specifies the X positions (X being the first positioner of the XY
group).

• The first row specifies the Y positions.
• Each cell represents the error for that X, Y position.
• The separator between the different data in each row is the tab.
• All positions are relative to the physical home position of the XY group.

• The data files must contain the X position = 0 and the Y position = 0.
• The error at X = Y = 0 must be 0, which means that the error at the home position

is 0.
This hardware reference for XY mapping has the advantage of being independent of the
value of the HomePreset.
The following shows the structure of such mapping files:

Figure 19: XY mapping files.

NOTE
Error in X = Y = 0 must be 0. This value in the file corresponds to the HomePreset
position in the XY group reference.

To activate XY mapping, the mapping files must be in the ..\admin\config directory of
the XPS controller and the following settings must be configured in the system.ini:

• XMappingFileName: Name of the mapping file.
• XMappingLineNumber: Total number of lines of that file.

XPS-D Controller Features Manual

 57 EDH0407En1052 – 08/22

• XMappingColumnNumber: Total number of columns of that file.

• XMappingMaxPositionError: Maximum absolute error in that file as shown in the
tables below (any value larger than the actual largest value in that file will be
accepted as well).

• YMappingFileName: Name of the mapping file.
• YMappingLineNumber: Total number of lines of that file.
• YMappingColumnNumber: Total number of columns of that file.
• YMappingMaxPositionError: Maximum absolute error in that file (any value

larger than the actual largest value in that file will be accepted as well).
The X(Y)MappingLineNumber, X(Y)MappingColumnNumber and
X(Y)MappingMaxPositionError are only used to check for the correctness of the
mapping file.

Example
The following shows an example of the X and Y mapping files:
Matrix X: XYMapping_X.txt

 0 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00
 -3.00 -0.00192 -0.00534 -0.00254 0.00023 0.00254 0.00534 0.00192
 -2.00 -0.00453 -0.00322 -0.00676 0.00049 0.00676 0.00322 0.00453
 -1.00 -0.00331 -0.00845 -0.00769 0.00102 0.00769 0.00845 0.00331
 0.00 -0.00787 -0.00228 -0.00787 0 0.00787 0.00228 0.00787

 1.00 -0.00232 -0.00210 -0.00342 0.00089 0.00342 0.00210 0.00232
 2.00 -0.00134 -0.00308 -0.00675 0.00101 0.00675 0.00308 0.00134
 3.00 -0.00789 -0.00145 -0.00234 0.00121 0.00234 0.00148 0.00789

Matrix Y: XYMapping_Y.txt

 0 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00
 -3.00 -0.00172 -0.00434 -0.00154 0.00013 0.00204 0.00234 0.00122
 -2.00 -0.00433 -0.00222 -0.00376 0.00029 0.00636 0.00222 0.00353
 -1.00 -0.00311 -0.00635 -0.00569 0.00089 0.00739 0.00245 0.00231
 0.00 -0.00737 -0.00128 -0.00387 0 0.00567 0.00128 0.00387
 1.00 -0.00212 -0.00110 -0.00142 0.00079 0.00332 0.00310 0.00132
 2.00 -0.00114 -0.00208 -0.00375 0.00089 0.00375 0.00348 0.00122
 3.00 -0.00689 -0.00128 -0.00134 0.00101 0.00232 0.00138 0.00689

Verify in the stages.ini for both stages:

;--- Travels
MinimumTargetPosition =-3 ; unit
HomePreset =0; unit
MaximumTargetPosition =3 ; unit

NOTE
The limit travels must be equal or within the X and Y limit positions of the
mapping files, +3 and –3, respectively in this example.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 58

Apply the following settings in the system.ini file:

;--- Mapping XY
XMappingFileName = XYMapping_X.txt
XMappingLineNumber = 7
XMappingColumnNumber = 7
XMappingMaxPositionError = 0.00845

YMappingFileName = XYMapping_Y.txt
YMappingLineNumber = 7
YMappingColumnNumber = 7
YMappingMaxPositionError = 0.00739

Use of the functions:

• GroupInitialize(XY)
• GroupHomeSearch(XY)

• GroupMoveAbsolute(XY, 3, 2)
The mapping files must at least cover the minimum and the maximum travel of the XY
group (they must cover the MinimumTargetPosition and the MaximumTargetPosition
for the X and Y positioners, parameters defined in the stages.ini, see section Travels).
So, in the above example, the travel of the X and Y positioners can not be larger than ±3
units, but they can be smaller than this. The units for the data are the same as defined by
the EncoderResolution in the stages.ini.
In the example above (see green values), the data reads as follows: at position X = 3.00
units, Y = 2.00 units the corrected X position is 2.99852 units (3.00 - 0.00148) and the
corrected Y position is 1.99862 units (2.00 - 0.00138). Between two data points, the
XPS controller performs a linear interpolation of the error. The two mapping files don’t
need to contain the same X and Y positions.

NOTE
Mapping is a function implemented within the XPS controller to correct
positioning errors. When mapping is activated, it is transparent to the user.
For commanded position (X,Y) = (3.00, 2.00), the system goes to (2.9985, 1.99862)
but displays (3.00, 2.00). The function GroupPositionCurrentGet(XY.X) doesn’t
return 2.99852 (3.00 - 0.00148) but 3.00.

6.5.1 Multiple XY Mappings in Series
For PP Firmware Version (only), two additional XY mapping parameters are permitted
for an XY group.

Below is the mapping section from system.ini for three XY mappings in series.

[GroupXY]

…

;--- Mapping XY #1
XMappingFileName =

XPS-D Controller Features Manual

 59 EDH0407En1052 – 08/22

XMappingColumnNumber=
XMappingLineNumber=
XMappingMaxPositionError=

YMappingFileName =
YMappingColumnNumber=
YMappingLineNumber=
YMappingMaxPositionError=

;--- Mapping XY #2 (PP only)
XMapping2FileName=
XMapping2ColumnNumber=
XMapping2LineNumber=
XMapping2MaxPositionError=

YMapping2FileName=
YMapping2ColumnNumber=
YMapping2LineNumber=
YMapping2MaxPositionError=

;--- Mapping XY #3 (PP only)
XMapping3FileName=
XMapping3ColumnNumber=
XMapping3LineNumber=
XMapping3MaxPositionError=

YMapping3FileName=
YMapping3ColumnNumber=
YMapping3LineNumber=
YMapping3MaxPositionError=

6.6 XYZ Mapping
XYZ mapping is available only with XYZ groups. It compensates for all errors of an
XYZ group at any position of that XYZ group. XYZ mapping can be used in
conjunction with other compensations, including positioner mapping. Care must be
taken to consider the effects when using XYZ mapping and other compensations at the
same time.
XYZ mapping is defined by 3 compensation files (compensation for errors in X, Y or
Z), in text format. Each of these files can be seen as the juxtaposition of successive
tables where the first column of the first table contains the X positions; the first row of
the first table contains the Y positions; and the first cell of each table contains one of the
Z positions. Each table represents a plane defined by the Z position of the first cell. The
separator between the different data in each row is a tab. For legibility, inserting an
empty line between successive tables is recommended, but not mandatory. The other
cells contain the corresponding error.
All positions are relative to the physical home position of the XYZ group. The data files
must contain the X position = 0, the Y position = 0, and the Z position = 0. The error at
X = Y = Z = 0 must be 0, which means that the error at the home position is 0. This
hardware reference for XYZ mapping has the advantage of being independent of the
value of the HomePreset.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 60

Figure 20 shows the structure for the three mapping files for X, Y, and Z corrections:

• XYZMappingCorrectionX.dat: All Err entries are X errors (corrections for X).
• XYZMappingCorrectionY.dat: All Err entries are Y errors (corrections for Y).
• XYZMappingCorrectionZ.dat: All Err entries are Z errors (corrections for Z).

Figure 20: XYZ mapping files.
Error in each compensation file can either be Xerr, Yerr or Zerr.

NOTE
The error at X = Y = Z = 0 must be 0. This value in the file corresponds to the
HomePreset positions in the XY group reference. A terminator (#) must be added
at end of each table.

To activate XYZ mapping, the mapping files must be in the ..\admin\config directory of
the XPS controller and the following settings must be configured in the system.ini:

• XMappingFileName: Name of the mapping file.
• XMappingXLineNumber: Total number of lines of each table including the

header.
• XMappingYColumnNumber: Total number of columns.
• XMappingZDimNumber: Number of tables.
• XMappingMaxPositionError: Maximum absolute error in that file must be larger

than any entry in the mapping file.
• YMappingFileName: Name of the mapping file.
• YMappingXLineNumber: Total number of lines of each table including header.

• YMappingYColumnNumber: Total number of columns.

XPS-D Controller Features Manual

 61 EDH0407En1052 – 08/22

• YMappingZDimNumber: Number of tables.

• YMappingMaxPositionError: Maximum absolute error in that file must be larger
than any entry in the mapping file.

• ZMappingFileName: Name of the mapping file.
• ZMappingXLineNumber: Total number of lines of each table including header.
• ZMappingYColumnNumber: Total number of columns.
• ZMappingZDimNumber: Number of tables.

• ZMappingMaxPositionError: Maximum absolute error in that file must be larger
than any entry in the mapping file.

The X(Y,Z)MappingXLineNumber, X(Y,Z)MappingYColumnNumber,
X(Y,Z)MappingZDimNumber and X(Y,Z)MappingMaxPositionError are only used to
check for the correctness of the mapping file.

Example
The following example shows the X error mapping files for an XYZ mapping. Note that
it is not necessary to repeat the XY coordinates in the table, Z = -1 to the other tables, Z
= 0 and Z = 1.
Matrix of X errors: XYZMapping_X.txt

 -1.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00
 -3.00 -0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
 -2.00 0.00453 -0.00322 0.00376 -0.00412 -0.00258 -0.00111 -0.00287
 -1.00 -0.00331 0.00445 -0.00769 -0.00126 -0.00153 0.00298 0.00487
 0.00 -0.00787 0.00228 -0.00787 0.00320 0.00154 -0.00169 -0.00369
 1.00 0.00232 0.00210 -0.00342 0.00169 0.00265 0.00169 0.00125
 2.00 -0.00134 0.00308 0.00275 -0.00369 0.00337 -0.00214 -0.00456
 3.00 0.00189 -0.00148 0.00234 0.00458 -0.00333 0.00152 0.00335

 0 0 0 0 0 0 0 0
 0 -0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
 0 0.00453 -0.00322 0.00376 -0.00412 -0.00258 -0.00111 -0.00287

 0 -0.00331 0.00445 -0.00769 -0.00126 -0.00153 0.00298 0.00487
 0 -0.00787 0.00228 -0.00787 0 0.00154 -0.00169 -0.00369
 0 0.00232 0.00210 -0.00342 0.00169 0.00265 0.00169 0.00125
 0 -0.00134 0.00308 0.00275 -0.00369 0.00337 -0.00214 -0.00456
 0 0.00189 -0.00148 0.00234 0.00458 -0.00333 0.00152 0.00335

 1.00 0 0 0 0 0 0 0
 0 -0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
 0 0.00453 -0.00322 0.00376 -0.00412 -0.00258 -0.00111 -0.00287
 0 -0.00331 0.00445 -0.00769 -0.00126 -0.00153 0.00298 0.00487
 0 -0.00787 0.00228 -0.00787 0.00320 0.00154 -0.00169 -0.00369
 0 0.00232 0.00210 -0.00342 0.00169 0.00265 0.00169 0.00125

 0 -0.00134 0.00308 0.00275 -0.00369 0.00337 -0.00214 -0.00456
 0 0.00189 -0.00148 0.00234 0.00458 -0.00333 0.00152 0.00335

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 62

Matrix of Y errors: XYZMapping_Y.txt

 -1.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00
 -3.00 -0.00190 -0.00530 0.00190 0.00125 -0.00190 0.00530 0.00190
 -2.00 -0.00190 -0.00530 0.00190 0.00125 -0.00190 0.00530 0.00190
 -1.00 -0.00190 -0.00530 0.00190 0.00125 -0.00190 0.00530 0.00190
 0.00 -0.00190 -0.00530 0.00190 0.00125 -0.00190 0.00530 0.00190
 1.00 -0.00190 -0.00530 0.00190 0.00125 -0.00190 0.00530 0.00190
 2.00 -0.00190 -0.00530 0.00190 0.00125 -0.00190 0.00530 0.00190
 3.00 -0.00190 -0.00530 0.00190 0.00125 -0.00190 0.00530 0.00190

 0 0 0 0 0 0 0 0
 0 -0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
 0 -0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
 0 -0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
 0 -0.00192 -0.00534 0.00254 0 -0.00137 0.00110 0.00123
 0 -0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
 0 -0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
 0 -0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123

 1.00 0 0 0 0 0 0 0
 0 -0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
 0 -0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
 0 -0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
 0 -0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
 0 -0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
 0 -0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123
 0 -0.00192 -0.00534 0.00254 0.00125 -0.00137 0.00110 0.00123

Matrix of Z errors: XYZMapping_Z.txt

 -1.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00
 -3.00 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
 -2.00 -0.0003 -0.0003 0.0003 0.0003 -0.0003 -0.0003 0.0003
 -1.00 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
 0.00 -0.0003 -0.0003 0.0003 0.0003 -0.0003 -0.0003 0.0003
 1.00 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
 2.00 -0.0003 -0.0003 0.0003 0.0003 -0.0003 -0.0003 0.0003
 3.00 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002

 0 0 0 0 0 0 0 0
 0 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
 0 -0.0003 -0.0003 0.0003 0.0003 -0.0003 -0.0003 0.0003
 0 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
 0 -0.0003 -0.0003 0.0003 0 -0.0003 -0.0003 0.0003
 0 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
 0 -0.0003 -0.0003 0.0003 0.0003 -0.0003 -0.0003 0.0003
 0 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002

 1.00 0 0 0 0 0 0 0
 0 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
 0 -0.0003 -0.0003 0.0003 0.0003 -0.0003 -0.0003 0.0003
 0 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
 0 -0.0003 -0.0003 0.0003 0.0003 -0.0003 -0.0003 0.0003
 0 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002
 0 -0.0003 -0.0003 0.0003 0.0003 -0.0003 -0.0003 0.0003
 0 -0.0002 -0.0002 0.0002 0.0002 -0.0002 -0.0002 0.0002

XPS-D Controller Features Manual

 63 EDH0407En1052 – 08/22

Verify in the corresponding sections of the stages.ini:
For the X axis:

;--- Travels
MinimumTargetPosition =-3 ; unit
HomePreset =0; unit
MaximumTargetPosition =3 ; unit

NOTE
The limit travels must be equal or within the X limit positions of the mapping files
(shown here +3 and -3).

For the Y axis:

;--- Travels
MinimumTargetPosition =-3 ; unit
HomePreset =0; unit
MaximumTargetPosition =3 ; unit

NOTE
The limit travels must be equal or within the Y limit positions of the mapping files
(shown here +3 and -3).

For Z axis:

;--- Travels
MinimumTargetPosition =-1 ; unit
HomePreset =0; unit
MaximumTargetPosition =1 ; unit

NOTE
The limit travels must be equal or within the Z limit positions of the mapping files
(shown here +1 and -1).

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 64

In the system.ini file:

;--- Mapping XYZ
XMappingFileName = XYZMapping_X.txt
XMappingXLineNumber = 7
XMappingYColumnNumber = 7
XMappingZDimNumber = 3
XMappingMaxPositionError = 0.00787
YMappingFileName = XYZMapping_Y.txt
YMappingXLineNumber = 7
YMappingYColumnNumber = 7
YMappingZDimNumber = 3
YMappingMaxPositionError = 0.00534
ZMappingFileName = XYZMapping_Z.txt
ZMappingXLineNumber = 7
ZMappingYColumnNumber = 7
ZMappingZDimNumber = 3
ZMappingMaxPositionError = 0.0003

Use of the functions:

• GroupInitialize(XYZ)
• GroupHomeSearch(XYZ)
• GroupMoveAbsolute(XYZ, 3, 1, 1)
The mapping files must at least cover the minimum and the maximum travel of the
XYZ group (they must cover the MinimumTargetPosition and the
MaximumTargetPosition for the X, Y and Z positioners, parameters defined in the
stages.ini, see section Travels). So in the above example the travel of the X and Y
positioners can not be larger than ±3 units, and the travel for the Z positioner can not be
larger than ±1 unit. But the travel can be smaller than these. The unit of the data is the
same as defined by EncoderResolution in the stages.ini.
The data reads as follows: at position (X,Y,Z) = (3.00, 2.00, 1.00), the corrected X
position is 2.99848 units (3.00 - 0.00152), the corrected Y position is 1.9989 units (2.00
- 0.00110) and the corrected Z position is 1.0002 units (1.00 + 0.0002). Between two
datas, the XPS controller does a linear interpolation of the error. The three mapping
files for X, Y, and Z don’t need to contain the same X, Y and Z positions.

NOTE
Mapping is a function implemented in the XPS controller to correct errors. But
when mapping is activated, it is transparent to the user.
For commanded position (X,Y,Z) = (3.00, 2.00, 1.00), the system goes to (2.99848,
1.9989, 1.0002) but displays (3.00, 2.00, 1.00). The function
GroupPositionCurrentGet(XYZ.X) doesn’t return 2.99848 (3.00 – 0.00152) but
returns 3.00.

Represents the errors
in the X axis.

Represents the errors
in the Y axis.

Represents the errors
in the Z axis.

XPS-D Controller Features Manual

 65 EDH0407En1052 – 08/22

7.0 Event Triggers

XPS event triggers work similar to IF/THEN statements in programming. “If” the event
occurs, “then” an action is triggered. Programmers can trigger any action (from a list of
possible actions, see section 7.2) at any event (from a large list of possible events, see
section 7.1). It is also possible to trigger several actions with the same event.
Furthermore, it is possible to link several events to an event configuration. In this case,
all events must happen at the same time to trigger the action(s). It is comparable to a
logic AND between the different events.
Some events are one-time events like “motion start”. They will trigger an action only
once when the event occurs. Some other events have a duration like “motion state”.
They will trigger the same action each time (as applicable) as long as the event occurs.
For events with duration, the event can be also considered as a statement that is checked
whether it is true or not. A third event category are the permanent events “Always”
(always happens) and “Timer” (happens every nth servo cycle). They will trigger the
action on each or on every nth servo cycle.
As the XPS controller provides the utmost flexibility in programming event triggers, the
user must be careful and consider possible unwanted effects. Some events might have a
duration although only one single action is asked. Some other events might never occur.
This is especially true when linking several events to an event configuration. The
different possible effects are illustrated in section 7.4 by a few examples.
To trigger an action with an event, the event and the associated action must first be
configured using the functions EventExtendedConfigurationTriggerSet() and
EventExtendedConfigurationActionSet(). Then, the event trigger is activated using
the function EventExtendedStart(). When activated, the XPS controller checks for the
event at each servo cycle (or each profiler cycle for those events that are motion related)
and triggers the action when the event happens. Hence, the maximum latency between
the event and the action is equal to the servo cycle or equal to the profiler cycle time.
For events with duration, it means that the same action is triggered at each servo cycle,
or at each profiler cycle, as long as the event is happening.
Event triggers (and their associated actions) are automatically removed after the event
configuration has happened at least once and is no longer true. The only exception is if
the event configuration contains any of the permanent events “Always” or “Timer”. In
this case the event trigger will always stay active. With the function
EventExtendedRemove(), any event trigger can get removed.
The function EventExtendedWait() can be used to halt a process. It essentially blocks
the socket until the event occurs. Once the event occurs, it is deleted. It requires a
preceding function EventExtendedConfigurationTriggerSet() to define the event at
which the process continues.
The functions EventExtendedGet() and EventExtendedAllGet() return details of the
event and action configurations.

7.1 Events
General events are defined as “Always”, “Immediate” and “Timer”. With the event
“Always”, an action is triggered each servo cycle. For events that are defined as
“Immediate”, an action is triggered once immediately (during the very next servo
cycle). For the events defined as “Timer”, an action is triggered immediately and every
nth servo cycle. Here, “n” corresponds to the “FrequencyTicks” defined in the function
TimerSet(). There are five different timers available that can be selected by the actor
(1…5) (Actor is the object that actions/events are linked to).
All events that are motion related (from MotionStart to TrajectoryPulseOutputState in
the below table, except MotionDone) refer to the motion profiler of the XPS controller.
Thus, events triggered by the motion profiler have a resolution equivalent to the profiler

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 66

cycle. Consequently, events with duration, such as MotionState, will trigger an action
every profiler cycle. All motion related events, except MotionDone, have a category
such as “Sgamma” or “Jog”. This category refers to the motion profiler. Here, SGamma
refers to the profiler used with the function GroupMoveRelative and
GroupMoveAbsolute and Jog refers to the profiler used in the Jogging state. The other
event categories refer to trajectories. The separator between the category, the actor, and
the event name is a dot (.).

NOTE
The table is not an exhaustive list. Refer to the Programmer's Manual for more
information.

[Actor.] [Category.] Event Name Parameters

G
ro

up

Po
sit

io
ne

r

G
PI

O

Ti
m

er
X

SG
am

m
a

Jo
g

X
Y

Li
ne

A
rc

Sp
lin

e

PV
T

PT

1 2 3 4

 Immediate 0 0 0 0
 Always 0 0 0 0
 Timer 0 0 0 0
 MotionStart 0 0 0 0
 MotionEnd 0 0 0 0
 MotionState 0 0 0 0
 MotionDone 0 0 0 0
 ConstantVelocityStart 0 0 0 0
 ConstantVelocityEnd 0 0 0 0
 ConstantVelocityState 0 0 0 0
 ConstantAccelerationStart 0 0 0 0
 ConstantAccelerationEnd 0 0 0 0
 ConstantAccelerationState 0 0 0 0
 ConstantDecelerationStart 0 0 0 0
 ConstantDecelerationEnd 0 0 0 0
 ConstantDecelerationState 0 0 0 0
 TrajectoryStart 0 0 0 0
 TrajectoryEnd 0 0 0 0
 TrajectoryState 0 0 0 0
 ElementNumberStart Element index 0 0 0
 ElementNumberState Element index 0 0 0
 TrajectoryPulse 0 0 0 0
 TrajectoryPulseState 0 0 0 0
 DILowState Bit index 0 0 0
 DIHighState Bit index 0 0 0
 DILowHigh Bit index 0 0 0
 DIHighLow Bit index 0 0 0
 DIToggled Bit index 0 0 0
 ADCHighLimit Value 0 0 0
 ADCLowLimit Value 0 0 0
 ADCInWindow min max 0 0
 ADCOutWindow min max 0 0
 PositionerError Mask 0 0 0
 PositionerHardwareStatus Mask 0 0 0
 ExcitationSignalStart 0 0 0 0
 ExcitationSignalEnd 0 0 0 0
 WarningFollowingError 0 0 0 0
 WaitForPositionLeftToRight Target position 0 0 0

XPS-D Controller Features Manual

 67 EDH0407En1052 – 08/22

 WaitForPositionRightToLeft Target position 0 0 0
 WaitForPositionToggled Target position 0 0 0
 DoubleGlobalArrayEqual Global variable number value 0 0
 DoubleGlobalArrayDifferent Global variable number value 0 0
 DoubleGlobalArrayInferiorOrEqual Global variable number value 0 0
 DoubleGlobalArraySuperiorOrEqual Global variable number value 0 0
 DoubleGlobalArrayInferior Global variable number value 0 0
 DoubleGlobalArraySuperior Global variable number value 0 0
 DoubleGlobalArrayInWindow Global variable number min max 0
 DoubleGlobalArrayOutWindow Global variable number min max 0

An event is entirely composed of:

[Actor].[Category].Event Name, Parameter1, Parameter2, Parameter3,
Parameter4

Not all event names have a preceding actor and category, but all events have four
parameters, even though some parameters are not needed. For these parameters, it is
still required to use zero (0) as default.
To define an Event, use the function EventExtendedConfigurationTriggerSet().
Examples

EventExtendedConfigurationTriggerSet
(MyGroup.MyPositioner.SGamma.MotionStart, 0, 0, 0, 0)

In this case, the actor is a positioner (MyGroup.MyPositioner) and the event has a
category. The event happens when the next motion with the SGamma profiler on the
positioner MyGroup.MyPositioner starts. After the motion has started, the event is
removed.

EventExtendedConfigurationTriggerSet
(MyGroup.XYLineArc.ElementNumberStart, 5, 0, 0, 0)

In this case, the actor is a group (MyGroup) and the event has a category. The event
happens when the trajectory element number 5 on the next LineArc trajectory on this
group starts.

EventExtendedConfigurationTriggerSet
(GPIO4.ADC2.ADCHighLimit, 3, 0, 0, 0)

In this case, the actor is a GPIO name (GPIO4.ADC2) and the event has no category.
The event happens when the voltage on the GPIO.ADC2 exceeds 3 Volts.
It is also possible to link different events to an event configuration. The same function
EventExtendedConfigurationTriggerSet() is used, and the different events are just
separated by a comma. The event combination happens when all individual events
happen at the same time. It is comparable to a logic AND between the different events.
Examples

EventExtendedConfigurationTriggerSet (GPIO4.ADC2.ADCHighLimit,
3, 0, 0, 0, MyGroup.MyPositioner.SGamma.MotionState, 0, 0, 0, 0)

This event will happen when the voltage of the GPIO.ADC2 exceeds 3 Volts during a
SGamma motion of the MyGroup.MyPositioner.

EventExtendedConfigurationTriggerSet (Always, 0, 0, 0, 0,
MyGroup.MyPositioner.SGamma.MotionStart, 0, 0, 0, 0)

This event will happen during each SGamma motion starts of the positioner
MyGroup.MyPositioner. The addition of the event Always has the effect of keeping the
event after the next motion has been started (see differences compared to the first
example above).

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 68

The exact meaning of the different events and event parameters are as follows:
Always: Triggers an action ALWAYS, means at each servo cycle.

Event parameter 1 to 4 = 0 by default.
NOTE: This event is PERMANENT until the next reboot.
Call the EventExtendedRemove function to remove it.

Immediate: Triggers an action IMMEDIATELY, meaning once during
the very next servo cycle:
Event parameter 1 to 4 = 0 by default.
NOTE: This event is TEMPORARY.

Timer: Triggers an action every nth servo cycle, where n is defined
with the function TimerSet.
Event parameter 1 to 4 = 0 by default.
NOTE: This event is PERMANENT until the next reboot.
Call the EventExtendedRemove function to remove it.

MotionDone: Triggers an action when a position is reached.
Event parameter 1 to 4 = 0 by default.
For the exact definition of MotionDone, please refer to
section 3.5.

ConstantVelocityStart: Triggers an action when constant velocity is reached. Event
parameter 1 to 4 = 0 by default.

ConstantVelocityEnd: Triggers an action when constant velocity is finished. Event
parameter 1 to 4 = 0 by default.

ConstantVelocityState: Triggers an action during constant velocity. Event
parameter 1 to 4 = 0 by default.

Figure 21: Constant velocity event.

ConstantAccelerationStart: Triggers an action when constant acceleration is
reached. Event parameter 1 to 4 = 0 by default.

ConstantAccelerationEnd: Triggers an action when constant acceleration is
finished. Event parameter 1 to 4 = 0 by default.

ConstantAccelerationState: Triggers an action during constant acceleration. Event
parameter 1 to 4 = 0 by default.

Figure 22: Constant acceleration event.

XPS-D Controller Features Manual

 69 EDH0407En1052 – 08/22

The same definition applies to ConstantDecelerationStart, ConstantDecelerationEnd and
ConstantDecelerationState.

Figure 23: Constant deceleration event.

MotionStart: Triggers an action when motion starts. Event parameter 1 to
4 = 0 by default.

MotionEnd: Trigger an action when motion is ended. Event parameter 1
to 4 = 0 by default. Note, MotionEnd refers to the end of
the theoretical motion which is not the same as the
definition of MotionDone (see section 3.5).

MotionState: Triggers an action during motion. Event parameter 1 to 4 =
0 by default.

Figure 24: Motion event.

There are also several trajectory events that can be defined:
TrajectoryStart: Triggers an action when the trajectory has started. Event

parameter 1 to 4 = 0 by default.
TrajectoryEnd: Triggers an action when the trajectory has stopped. Event

parameter 1 to 4 = 0 by default.
TrajectoryState: Triggers an action during trajectory execution. Event

parameter 1 to 4 = 0 by default.

Figure 25: Trajectory event.

ElementNumberStart: Triggers an action when the trajectory element number has
started. The first event parameter specifies the number of
the trajectory element. The other event parameters are 0 by
default.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 70

ElementNumberState: Triggers an action during the execution of that trajectory
element number. The first event parameter specifies the
number of the trajectory element. The other event
parameters are 0 by default.

Figure 26: Element number event.

TrajectoryPulse: Triggers an action when a pulse on the trajectory is
generated (see chapter 9.0: “Output Triggers” for details).
All event parameters are 0 by default.

TrajectoryPulseState: Triggers an action during the trajectory pulse output state,
meaning between the start and the end of the trajectory
output pulses (see chapter 9.0: “Output Triggers” for
details). All event parameters are 0 by default.

ILowState: Triggers an action when the digital input bit is in a low
state. The first event parameter is the bit index (0 to 15).
The other event parameters are 0 by default.

DILowHigh: Triggers an action when the digital input bit switches from
a low state to a high state. The first event parameter is the
bit index (0 to 15). The other event parameters are 0 by
default.

DIHighState: Triggers an action when the digital input bit is in a high
state. The first event parameter is the bit index (0 to 15).
The other event parameters are 0 by default.

DIHighLow: Triggers an action when the digital input bit switches from
a high to a low state. The first event parameter is the bit
index (0 to 15). The other event parameters are 0 by default.

DIToggled: Triggers an action when the digital input bit switches from
low to high or from high to low. The first event parameter
is the bit index (0 to 15). The other event parameters are 0
by default.

ADCHighLimit: Triggers an action when the analog input value exceeds the
limit. The first event parameter is the limit value in volts.
The other event parameters are 0 by default.

ADCLowLimit: Triggers an action when the analog input value is below the
limit. The first event parameter is the limit value in volts.
The other event parameters are 0 by default.

ADCInWindow: Triggers an action when the analog input value is inside the
window defined by min and max values. The first event
parameter is the minimum value in volts and the second
event parameter is the maximum value in volts. The other
event parameters are 0 by default.

ADCOutWindow: Triggers an action when the analog input value is out of the
window defined by min and max values. The first event
parameter is the minimum value in volts and the second
event parameter is the maximum value in volts. The other
event parameters are 0 by default.

XPS-D Controller Features Manual

 71 EDH0407En1052 – 08/22

PositionerError: Triggers an action when the current positioner error applied
with the error mask (for the 32 bit register) results in a
value other than zero. The first event parameter specifies
the error mask in a decimal format. The other event
parameters are 0 by default.

NOTE
Refer to the Programmer's Manual for Positioner Error list.

Examples
EventExtendedConfigurationTriggerSet
(MyGroup.MyPositioner.PositionerError, 2, 0, 0, 0)
This event happens when the positioner MyGroup.MyPositioner has a fatal
following error.
EventExtendedConfigurationTriggerSet
(MyGroup.MyPositioner.PositionerError, 12, 0, 0, 0)
This event happens when the positioner MyGroup.MyPositioner has either a
home search time out or a motion done time out.

PositionerHardwareStatus: Triggers an action when the current hardware status
applied with the error mask results in a value other than
zero. The first event parameter specifies the status mask in
decimal format. The other event parameters are 0 by
default.

NOTE
Refer to the Programmer's Manual for Positioner Hardware Status list.

Example
EventExtendedConfigurationTriggerSet
(MyGroup.MyPositioner.PositionerHardwareStatus, 768, 0, 0, 0)
This event happens when the positioner MyGroup.MyPositioner either the
plus end of run or a minus end of run is detected.

WarningFollowingError: Triggers an action when the following error exceeds the
warning following error value. In the PositionCompare
mode (activated by the PositionerPositionCompareEnable()
function), during a move (relative or absolute) and inside
the zone set by PositionerPositionCompareSet(), if the
current following error exceeds the WarningFollowingError
value, the PositionCompareWarningFollowingErrorFlag is
activated and the move returns a corresponding error (-120 :
Warning following error during move with position
compare enabled).
To reset the PositionCompareWarningFollowingErrorFlag,
send the PositionerPositionCompareDisable() function.
The WarningFollowingError is set to FatalFollowingError
(defined in stages.ini file) by default, but it can be modified
with PositionerWarningErrorSet().

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 72

Example
EventExtendedConfigurationTriggerSet
 (MyGroup.MyPositioner. WarningFollowingError, 0, 0, 0, 0)
This event happens when the positioner MyGroup.MyPositioner has a
following error that exceeds the warning following error value.

DoubleGlobalArrayEqual: Triggers an action when the value of the variable in the
DoubleGlobalArray and referenced by the global variable
number is equal to the value to check. The variable can be
modified by using the DoubleGlobalArraySet() function.

DoubleGlobalArrayDifferent: Triggers an action when the value of the variable in the
DoubleGlobalArray and referenced by the global variable
number is different from the value to check. The variable
can be modified by using the DoubleGlobalArraySet()
function.

DoubleGlobalArrayInferiorOrEqual: Triggers an action when the value of the
variable in the DoubleGlobalArray and referenced by the
global variable number is less than or equal to the value to
check. The variable can be modified by using the
DoubleGlobalArraySet() function.

DoubleGlobalArraySuperiorOrEqual: Triggers an action when the value of the
variable in the DoubleGlobalArray and referenced by the
global variable number is greater than or equal to the value
to check. The variable can be modified by using the
DoubleGlobalArraySet() function.

DoubleGlobalArrayInferior: Triggers an action when the value of the variable in the
DoubleGlobalArray and referenced by the global variable
number is lower than the value to check. The variable can
be modified by using the DoubleGlobalArraySet() function.

DoubleGlobalArraySuperior: Triggers an action when the value of the variable in the
DoubleGlobalArray and referenced by the global variable
number is higher than the value to check. The variable can
be modified by using the DoubleGlobalArraySet() function.

DoubleGlobalArrayInWindow: Triggers an action when the value of the variable in
the DoubleGlobalArray and referenced by the global
variable number is superior to MinValue and inferior to

MaxValue.
DoubleGlobalArrayOutWindow: Triggers an action when the value of the variable in

the DoubleGlobalArray and referenced by the global
variable number is outside the interval defined by
MinValue and MaxValue.

WaitForPositionLeftToRight:
Triggers an action when the target position is detected during a displacement or if the
target position has already passed, the action is triggered at the beginning of the
displacement. The target position is checked only for all positive displacements. The
first event parameter is the target position. The other event parameters are 0 by default.

NOTE
It is recommended to use this event trigger only after the home search is done.
Once the event has occurred, it is deleted automatically. Reactivate the event
trigger with the API function EventExtendedStart().

XPS-D Controller Features Manual

 73 EDH0407En1052 – 08/22

WaitForPositionRightToLeft:
Triggers an action when the target position is detected during a displacement or if the
target position has already passed, the action is triggered at the beginning of the
displacement. The target position is checked only for all negative displacements. The
first event parameter is the target position. The other event parameters are 0 by default.

NOTE
It is recommended to use this event trigger only after the home search is done.
Once the event has occurred, it is deleted automatically. Reactivate the event
trigger with the API function EventExtendedStart().

WaitForPositionToggled:
Triggers an action when the target position is detected during a displacement or if the
target position has already passed, the action is triggered at the beginning of the
displacement. The target position is checked for all displacements. The first event
parameter is the target position. The other event parameters are 0 by default.

NOTE
It is recommended to use this event trigger only after the home search is done.
Once the event has occurred, it is deleted automatically. Reactivate the event
trigger with the API function EventExtendedStart().

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 74

Example
GroupInitialize(MyGroup)
GroupHomeSearch(MyGroup)
EventExtendedConfigurationTriggerSet(MyPositioner.WaitForPositionToggled,
8.0, 0, 0, 0)
EventExtendedConfigurationActionSet(GatheringRun, 10000, 1, 0, 0)
EventExtendedStart(int *ID)

The event will trigger the configured action, Gathering Run, when the target position is
detected for MyPositioner or at the beginning of the displacement if the target position
is already passed.

XPS-D Controller Features Manual

 75 EDH0407En1052 – 08/22

7.2 Actions
There are several actions that can be triggered by the events discussed previously. Users
have the full flexibility to trigger any action (out of the list of possible actions) at any
event (out of the list of possible events). It is also possible to trigger several actions at
the same event by adding several sets of parameters to the function
EventExtendedConfigurationActionSet(), similar to how it is done with events.

NOTE
The table is not an exhaustive list. Refer to the Programmer's Manual for more
information.

[Actor.] Action Name Parameters

G
ro

up

Po
sit

io
ne

r

G
PI

O

Ti
m

er
X

1 2 3 4

 DACSet.CurrentPosition Positioner name Gain Offset 0
 DACSet. CurrentVelocity Positioner name Gain Offset 0
 DACSet. SetpointPosition Positioner name Gain Offset 0
 DACSet. SetpointVelocity Positioner name Gain Offset 0
 DACSet. SetpointAcceleration Positioner name Gain Offset 0
 DACSet.Value Value 0 0 0
 DOPulse Mask 0 0 0
 DOToggle Mask 0 0 0
 DOSet Mask Value 0 0

 EventRemove Trigger identifier
(-1 for itself) 0 0 0

 ExecuteCommand Function name

Parameters
(Between {} and
separator is the
semi-column)

Task name

 ExecuteTCLScript TCL file name Task name Arguments

 ExternalGatheringRun Nb of points 1 0 0
 GatheringOneData 0 0 0 0
 GatheringRun Nb of points Divisor 0 0
 GatheringRunAppend 0 0 0 0
 GatheringStop 0 0 0 0
 GlobalArrayDoubleSet Global variable number Double value 0 0
 GlobalArrayStringSet Global variable number String value 0 0
 KillTCLScript Task name 0 0 0

 MoveAbort 0 0 0 0

 MoveAbortFast Deceleration multiplier 0 0 0

 SynchronizeProfiler 0 0 0 0

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 76

CAUTION
Certain events like MotionState have a duration. These events trigger the
associated action in each motion profiler cycle as long as the event is true. For
example, associating the action DOToggle with the event MotionState will toggle
the value of the digital output in each profiler cycle as long as the MotionState
event is true.
An event doesn’t reset the action after the event: For example, to set a digital
output to a certain value during a constant velocity state and to set it to its
previous value afterwards, two event triggers are needed: One to set to the digital
output of the desired value at the event ConstantVelocityStart and another one to
set it to its original value at the event ConstantVelocityEnd. The same effect
CANNOT be achieved by using the event ConstantVelocityState by itself.

An action is composed entirely of:
[Actor].ActionName, Parameter1, Parameter2, Parameter3, Parameter4

Not all action names have a preceding actor, but all actions have four parameters. Even
though all four parameters may not be defined in an action, it is still required to have an
entry, with zero (0) as the default.
To define an action, use the function EventExtendedConfigurationActionSet().

Example:
EventExtendedConfigurationActionSet(GPIO3.DO.DOToggled,4,0,0,0)

In this case the actor is the digital output GPIO3.DO and the action is to toggle the
output. The value 4 refers to bit #3, 00000100. Hence, this action toggles the value of
bit 3 on the digital output GPIO.DO.

EventExtendedConfigurationActionSet(ExecuteTCLScript,Example.tcl,1,0,0)
The action ExecuteTCLScript has no preceding actor. This action will execute the TCL
script “Example.tcl”. The task name is 1 and the TCL script has no arguments (a zero
for the third parameter means there are no arguments).

EventExtendedConfigurationActionSet(GatheringRun,1000,8,0,0)
The action GatheringRun has no preceding actor. This action will start an internal data
gathering. It will gather a total of 1000 data points, one data point every 8th servo cycle.
It is also possible to trigger several actions with the same event. To do so, just define
another action in the SAME function. Several actions must be separated by a comma (,).

Example:
EventExtendedConfigurationTriggerSet
(MyGroup.MyPositioner.PositionerError, 2, 0, 0, 0)
EventExtendedConfigurationActionSet (ExecuteTCLScript,
ShutDown.tcl, 1, 0, 0, ExecuteTCLScript, ErrorDiagnostic.tcl, 2, 0, 0)
EventExtendedStart()

In this example, the TCL scripts ShutDown.tcl and ErrorDiagnostic.tcl are executed
when a fatal following error is detected on the positioner MyGroup.MyPositioner.
The exact meaning of the different actions and action parameters is as follows:

DOToggle: This action is used to reverse the value of one or many bits of the
Digital Output. When using this action with an event that has some duration (for
example motion state) the value of the bits will be toggled at each profiler cycle as
long as the event occurs.
Action Parameter #1 – Mask The mask defines which bits on the GPIO

output will be toggled (change their value).
For example, if the GPIO output is an 8 bit
output and the mask is set to 4 then the

XPS-D Controller Features Manual

 77 EDH0407En1052 – 08/22

equivalent binary number is 00000100. So as
an action, bit #3 will be toggled.

Action Parameter #2 to #4 These parameters are 0 by default.
DOPulse: This action is used to generate a positive pulse on the Digital Output. The
duration of the pulse is 1 microsecond. To function, the bits on which the pulse is
generated should be set to zero before. When using this action with an event that has
some duration (for example motion state), a 1 µs pulse will be generated at each
cycle of the motion profiler as long as the event occurs.
Action Parameter #1 – Mask The mask defines on which bits on the GPIO

output the pulse will be generated. For
example, if the GPIO output is an 8 bit output
and the mask is set to 6 then the equivalent
binary number is 00000110. So as an action,
a 1 µs pulse will be generated on bit #2 and
#3 of the GPIO output.

Action Parameter #2 to #4 These parameters are 0 by default.
DOSet: This action is used to modify the value of bit(s) on a Digital Output.

Action Parameter #1 – Mask The mask defines which bits on the GPIO
output are being addressed. For example, if
the GPIO output is an 8 bit output and the
mask is set to 26 then the equivalent binary
number is 00011010. Therefore with a Mask
setting of 26, only bits # 2, #4 and #5 are
being addressed on the GPIO output.

Action Parameter #2 – Value This parameter sets the value of the bits that
are being addressed according to the Mask
setting. For example since a Mask setting of
26, bits #2, #4 and #5 can be modified, a
value of 8 (00001000) will set the bits #2 and
#5 to 0 and the bit #4 to 1.

Action parameter #3 and #4 These parameters are 0 by default.
DACSet.CurrentPosition and DACSet.SetpointPosition: This action sets a
voltage on the Analog output in relation to the actual (current) or theoretical
(Setpoint) position. The gain and offset are used to calibrate the output. This action
makes the most sense with events that have some duration (always, MotionState,
ElementNumberState, etc.) as the analog output will be updated at each servo cycle
or at each profiler cycle as long as the event occurs. When used with events that
have no duration (like MotionStart or MotionEnd), the analog output is only updated
once and this value is kept until it is changed.
Action Parameter #1 – Positioner Name This parameter defines the name of the

positioner on which the position value is
used.

Action Parameter #2 – Gain The position value is multiplied by the gain
value. For example, if the gain is set to 10
and the position value is 1 mm (or any other
unit), then the output voltage is 10 V.

Action Parameter #3 – Offset The offset value is used to correct for any
voltage that may already be present in the
Analog output.

Analog output = Position value * gain + offset
Action parameter #4 This parameter is 0 by default.
DACSet.CurrentVelocity and DACSet.SetpointVelocity: This action sets a
voltage on the Analog output relative to the actual (current) or theoretical (Setpoint)
velocity. The gain and the offset are used to calibrate the output. This action makes

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 78

most sense with events that have duration (Always, MotionState,
ElementNumberState, etc.) as the analog output is updated at each servo cycle or at
each profiler cycle as long as the event occurs. When used with events that have no
duration (like MotionStart or MotionEnd), the analog output is only updated once
and this value is kept until it is changed.
Action Parameter #1 – Positioner Name This parameter defines the name of the

positioner in which the Velocity value is
used.

Action Parameter #2 – Gain The Velocity value is multiplied by the gain
value. For example, if the gain is set to 10
and the velocity value is 1 mm/s (or any other
velocity unit), then the output voltage is
10 V.

Action Parameter #3 – Offset The offset value is used to correct for any
voltage that may initially be present in the
Analog output.

Analog output = Velocity value * gain + offset
Action parameter #4 This parameter must be 0 by default.
DACSet.SetpointAcceleration: This action is used to output a voltage on the
Analog output to form an image of the theoretical acceleration. The gain and the
offset are used to calibrate this image. This action makes most sense with events that
have duration (Always, MotionState, ElementNumberState, etc.) as the analog
output will be updated at each servo cycle or at each profiler cycle as long as the
event lasts. When used with events that have no duration (like MotionStart or
MotionEnd), the analog output is only updated once and keep this value until it is
changed.
Action Parameter #1 – Positioner Name This parameter defines the name of the

positioner in which the SetpointAcceleration
is used to output in the analog output.

Action Parameter #2 – Gain The SetpointAcceleration is multiplied by the
gain value. For example, if the gain is set to
10 and the corrected SetpointAcceleration is
1 mm/s2 then the output voltage will be 10 V.

Action Parameter #3 – Offset The offset value is used to correct for any
voltage that may initially be present in the
Analog output.

Analog output = SetpointAcceleration value * gain + offset
Action parameter #4 This parameter is 0 by default.

NOTE
The gain can be any constant value used to scale the output voltage and the
offset value can be any constant value used to correct for any offset voltage in
the analog output.

XPS-D Controller Features Manual

 79 EDH0407En1052 – 08/22

ExecuteTCLScript: This action executes a TCL script on an event.
Action Parameter #1 – TCL File Name This parameter defines the file name of

the TCL program.
Action Parameter #2 – TCL Task Name Since several TCL scripts can run

simultaneously different or even the same,
the TCL Task Name is used to track
individual TCL programs. For example, the
TCL Task Name stops a particular program
without stopping all other TCL programs that
are running simultaneously.

Action Parameter #3 – TCL Argument List The Argument list is used to run
the TCL scripts with input parameters. For
the argument parameter, any input can be
used (number, string). These parameters are
used inside the script. To get the number of
arguments, use $tcl_argc” inside the script.
To get each argument, use “$tcl_argc($i)”
inside the script. For example, this parameter
can be used to specify a number of loops
inside the TCL script. A zero (0) for this
parameter means there are no input
arguments.

Action parameter #4 This parameter is 0 by default.
KillTCLScript: This action stops a TCL script on an event.
Action parameter #1 – Task name This parameter defines which TCL script is

stopped. Since several TCL scripts can run
simultaneously, different or even the same
script, the TCL Task Name is used to track
individual TCL programs.

Action parameter #2 to #4 These parameters are 0 by default.
GatheringOneData: This action acquires one data as defined by the function
GatheringConfigurationSet. Different from the GatheringRun (see next action),
which generates a new gathering file, the GatheringOneData appends the data to the
current gathering file stored in memory. In order to store the data in a new file, first
launch the function GatheringReset, which deletes the current gathering file from
memory.
Action parameter #1 to #4 These parameters are 0 by default.
GatheringRun: This action starts an internal data gathering. It requires that an
internal gathering was previously configured with the function
GatheringConfigurationSet. The gathering must be launched by a punctual event and
does not work with events that have duration.
Action Parameter #1 – NbPoints This parameter defines the number of data

acquisitions. NbPoints multiplied by the
number of gathered data types must be
smaller than 1,000,000. For instance, if 4
types of data are collected, NbPoints can not
be larger than 250,000 (4*250,000 =
1,000,000).

Action Parameter #2 This parameter is 1 by default.
Action Parameter #3 and #4 These parameters are 0 by default.
GatheringRunAppend: This action continues a gathering previously stopped with
the action GatheringStop, see next action.
Action parameter #1 to #4 These parameters are 0 by default.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 80

GatheringStop: This action halts a data gathering previously launched by the action
GatheringStart. Use the action GatheringRunAppend to continue data gathering.
Note that the action GatheringStop does not automatically store the gathered data
from the buffer to the flash disk of the controller. To store data, use the function
GatheringStopAndSave. For more details about data gathering, refer to chapter 8.0:
“Data Gathering”.
Action parameter #1 to #4 These parameters are 0 by default.
ExternalGatheringRun: This action starts an external data gathering. It requires
that an external data gathering was previously configured with the function
GatheringExternalConfigurationSet. The gathering must be launched by a punctual
event and does not work with events that have duration.
Action Parameter #1 – NbPoints This parameter defines the number of data

acquisitions. NbPoints multiplied by the
number of gathered data types must be
smaller than 1,000,000. For instance, if 4
types of data are collected, NbPoints can not
be larger than 250,000 (4*250,000 =
1,000,000).

Action Parameter #2 – Divisor This parameter defines every Nth number of
the trigger input signal at which the gathering
will take place. This parameter must be an
integer and greater than or equal to 1. For
example if the divisor is set to 5 then
gathering will take place every 5th trigger on
the trigger input signal.

Action Parameter #3 and #4 These parameters are 0 by default.
For further details on data gathering, see chapter 8.0: “Data Gathering”.
MoveAbort: This action stops (abort) a motion on an event. It is similar to sending
a MoveAbort() function on the event. After stopping, the group is in the READY
state.
Action Parameter #1 to #4 These parameters are 0 by default.

7.3 Functions
The following functions are related to event triggers:

• EventExtendedConfigurationTriggerSet(): This function configures one or
several events. In the case of several events, the different events are separated by a
comma (,) in the argument list. Before activating an event, one or several actions
must be configured with the function EventExtendedConfigurationActionSet(). Only
then, the event and the associated action(s) can be activated with the function
EventExtendedStart().

• EventExtendedConfigurationTriggerGet(): This function returns the event
configuration defined by the last EventExtendedConfigurationTriggerSet() function.

• EventExtendedConfigurationActionSet(): This function associates an action to
the event defined by the last EventExtendedConfigurationTriggerSet() function.

• EventExtendedConfigurationActionGet(): This function returns the action
configuration defined by the last EventExtendedConfigurationActionSet() function.

• EventExtendedStart(): This function launches (activates) the last configured event
and the associated action(s) defined by the last
EventExtendedConfigurationTriggerSet() and
EventExtendedConfigurationActionSet() and returns an event identifier. When
activated, the XPS controller checks for the event at each servo cycle (or at each
profiler cycle for those events that are motion related) and triggers the action when

XPS-D Controller Features Manual

 81 EDH0407En1052 – 08/22

the event occurs. Hence, the maximum latency between the event and the action is
equal to the servo cycle time or equal to the profiler cycle time for motion related
events. For events with duration, it also means that the same action is triggered at
each servo cycle, or at each profiler cycle, as long as the event occurs.

Event triggers (and their associated action) are automatically removed after the
event configuration has happened at least once and is no longer true. The only
exception is if the event configuration contains any of the permanent events
“Always” or “Trigger”. In this case the event trigger will always stay active. With
the function EventExtendedRemove(), any event trigger can get removed.

• EventExtendedWait(): This function halts a process (essentially by blocking the
socket) until the event defined by the last EventExtendedConfigurationTriggerSet()
occurs.

• EventExtendedRemove(): This function removes the event trigger associated with
the defined event identifier.

• EventExtendedGet(): This function returns the event configuration and the action
configuration associated with the defined event identifier.

• EventExtendedAllGet(): This function returns, for all active event triggers, the
event identifier, the event configuration and the action configuration. The details of
the different event triggers are separated by a comma (,).

7.4 Examples
Below is a table that shows possible events that can be associated with possible actions.
Some of these examples however, may have unwanted results. Since the XPS controller
provides great flexibility to trigger almost any action at any event, the user must be
aware of the possible unwanted effects.

Figure 27: Possible events.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 82

Examples
1. EventExtendedConfigurationTriggerSet

(G1.P1.SGamma.ConstantVelocityStart, 0, 0, 0, 0)
EventExtendedConfigurationActionSet (GPIO3.DO.DOSet, 4, 4, 0, 0)
EventExtendedStart()
GroupMoveAbsolute (G1.P1, 50)
In this example, when positioner G1.P1 reaches constant velocity, bit #3 on the
digital output on connector number 1 is set to 1 (Note: 4 = 00000100). Note, that the
state of the bit will not change when the constant velocity of the positioner has
ended. In order to do so, a second event trigger would be required (see next
example).

2. EventExtendedConfigurationTriggerSet
(G1.P1.SGamma.ConstantVelocityStart, 0, 0, 0, 0)
EventExtendedConfigurationActionSet (GPIO3.DO.DOSet, 4, 4, 0, 0)
EventExtendedStart()
EventExtendedConfigurationTriggerSet
(G1.P1.SGamma.ConstantVelocityEnd, 0, 0, 0, 0)
EventExtendedConfigurationActionSet (GPIO3.DO.DOSet, 4, 0, 0, 0)
EventExtendedStart()
GroupMoveAbsolute (G1.P1, 50)
In this example, when positioner G1.P1 reaches constant velocity, bit #3 on the
digital output on connector number 1 is set to 1 (Note: 4 = 00000100) and when the
constant velocity of the positioner G1.P1 is over, bit #3 will be set to zero. Note, that
the same effect can not be reached with the event name ConstantVelocityState.
After both events have happened, the event triggers will get automatically removed.
In order to trigger the same action at each motion, it is required to link the events
with the event “Always” (see next example). This link will avoid that the event
trigger gets removed after it is not happening anymore.

3. EventExtendedConfigurationTriggerSet (Always, 0, 0, 0, 0,
G1.P1.SGamma.ConstantVelocityStart, 0, 0, 0, 0)
EventExtendedConfigurationActionSet (GPIO3.DO.DOSet, 4, 4, 0, 0)
EventExtendedStart()
EventExtendedConfigurationTriggerSet (Always, 0, 0, 0, 0,
G1.P1.SGamma.ConstantVelocityEnd, 0, 0, 0, 0)
EventExtendedConfigurationActionSet (GPIO3.DO.DOSet, 4, 0, 0, 0)
EventExtendedStart()
GroupMoveAbsolute (G1.P1, 50)
GroupMoveAbsolute (G1.P1, -50)
In this example, when positioner G1.P1 reaches constant velocity, bit #3 on the
digital output on connector number 1 is set to 1 (Note: 4 = 00000100) and when the
constant velocity of the positioner G1.P1 is over, bit #3 will be set to zero. Different
from the previous example, adding the event “Always” avoids the event trigger
being removed after the event is over. Hence, the state of the bit #3 will change with
every beginning and with every end of the constant velocity state of a motion.

XPS-D Controller Features Manual

 83 EDH0407En1052 – 08/22

4. EventExtendedConfigurationTriggerSet
(G1.P1.SGamma.ConstantVelocityState, 0, 0, 0, 0)
EventExtendedConfigurationActionSet (GPIO3.DO.DOSet, 255, 0, 0, 0)
EventExtendedStart()
GroupMoveAbsolute (G1.P1, 50)
In this example, during the constant velocity state of the positioner G1.P1, 1 µs
pulses are generated on all 8 bits in the digital output on connector number 1, at
every cycle of the motion profiler (Note: 255 = 11111111) (see picture below).

5. EventExtendedConfigurationTriggerSet (Always, 0, 0, 0, 0)

EventExtendedConfigurationActionSet
(GPIO4.DAC1.DACSet.SetpointPosition, G1.P1, 0.1, -10, 0,
GPIO4.DAC2.DACSet.SetpointVelocity, G1.P1, 0.5, 0, 0)
EventExtendedStart()
In this example, the analog output #1 on GPIO4 will always output a voltage in
relation to the SetpointPosition of the positioner G1.P1, and the output #2 on GPIO4
will always output a voltage in relation to the SetpointVelocity of the same
positioner. The gain on output #1 is set to 0.1 V/unit and the offset to -10 V. This
means that when the stage is at the position 0 units, a voltage of -10 V will be sent.
When the stage is at the position 10 units, a voltage of -9 V will be sent.
Here, the event “Always” means that these values will be updated every servo cycle.
If instead of the event “Always”, the event “Immediate” will be used, only the most
recent values will be sent and kept. If instead of the event “Always”, a motion
related event such as MotionState is used, the update will only happen at every
profiler cycle.

6. TimerSet(Timer1,8000)
EventExtendedConfigurationTriggerSet (Timer1.Timer, 0, 0, 0, 0)
EventExtendedConfigurationActionSet (GPIO3.DO.DOToggle, 255, 0, 0, 0)
EventExtendedStart()
EventExtendedRemove(1)
The function Timer() sets the Timer1 at every 8,000th servo cycle. Hence, in this
example, all the digital outputs on connector GPIO3 will be toggled (Note: 255 =
11111111). The event Timer is permanent. In order to remove the event trigger, use
the function EventExtendedRemove() with the associated event identifier (1 in this
case).

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 84

7. MultipleAxesPVTPulseOutputSet(G1,2,20,1)
GatheringConfigurationSet(G1.P1.CurrentPosition)
EventExtendedConfigurationTriggerSet(Always,
0,0,0,0,G1.PVT.TrajectoryPulse,0,0,0,0)
EventExtendedConfigurationActionSet(GatheringOneData,0,0,0,0)
EventExtendedStart()
MultipleAxesPVTExecution(G1,Traj.trj,1)
In this example, the generation of an output pulse every one second between the 2nd
and the 20th element in the next PVT trajectory executed on the group G1 is first
defined (function MultipleAxisPVTPulseOutputSet). Then, data gathering is defined
(CurrentPosition of positioner G1.P1).
Hence, in this example, with every trajectory pulse, one data point is gathered and
appended to the current gathering file in memory. Here, adding the event
TrajectoryPulse with the permanent event Always makes sure that the event trigger
is always active. Without the event Always, only one data point will be gathered.
This is because any event is automatically removed once it happens and does not
happen in the next servo or profiler cycle .
Please note that the action GatheringOneData appends data to the current data file.
In order to store the data in a new file it is required to first launch the function
GatheringReset() which deletes the current data file from memory.

8. GatheringConfigurationSet(G1.P1.CurrentPosition)
EventExtendedConfigurationTriggerSet
(G1.P1.SGamma.MotionStart,0,0,0,0)
EventExtendedConfigurationActionSet(GatheringRun,20,800,0,0)
EventExtendedStart()
GroupMoveAbsolute (G1.P1, 50)
GatheringStopAndSave()
In this example, an internal data gathering of 20 data points every 800th servo cycle
is launched with the start of the next motion of the positioner G1.P1. The type of
data that gathered is defined with the function GatheringConfigurationSet
(CurrentPosition of positioner G1.P1). To store the data from internal memory to the
flash disk in the XPS controller, send the function GatheringStopAndSave(). The
GatheringRun deletes the current data file in internal memory (in contrast to the
GatheringOneData which appends data to the current file). Also, the function
GatheringStopAndSave() stores the data file under a default name Gathering.dat on
the flash disk of the XPS controller and will overwrite any older file of the same
name in the same folder. Hence, make sure to store valuable data files under a
different name before a GatheringStopAndSave().

XPS-D Controller Features Manual

 85 EDH0407En1052 – 08/22

NOTE
When using the function EventExtendedConfigurationTriggerSet() or
EventExtendedConfigurationActionSet() from the terminal screen of the XPS
utility, the syntax for one parameter is not directly accessible. For instance, for the
event XY.X.SGamma.MotionStart, first select XY.X from the choice list. Then,
click on the choice field again and select SGammaMotionStart. See also screen
shots below.
For specifying more than one data type, use the “ADD BLOCK” button. Select the
next parameter as described above.

Step 1:
Click “SELECT EXTENDED EVENT” then
select the positioner name and click “OK”.

Step 2:
Click “SELECT EXTENDED EVENT” again then
select the parameter name and click “OK”.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 86

Step 3:
Define event parameters. To add another event
click “ADD BLOCK”. Repeat Step 1 and Step 2,
or else click “OK”.

XPS-D Controller Features Manual

 87 EDH0407En1052 – 08/22

8.0 Data Gathering

The XPS controller provides four methods for data gathering:
1. Time-based (internal) data gathering. With this method one data set is gathered for

every nth servo cycle.
2. Event-based (internal) data gathering. With this method one data set is gathered at

an event.
3. Function-based (internal) data gathering. With this method one data set is gathered

by a function.
4. Trigger-based (external) data gathering. With this method one data set is gathered

for every nth external trigger input (see also chapter 9.0: “Output Triggers “).
Method 1, 2, and 3, these are also referred to as internal or servo cycle synchronous data
gathering. With the trigger-based data gathering, this is also referred to as an external
data gathering, as the event that triggers the data gathering or the receipt of a trigger
input, is asynchronous to the servo cycle.
The time-based, the event-based and the function-based data gathering store the data in
a common file called gathering.dat. The trigger-based (external) data gathering stores
the data in a different file, called ExternalGathering.dat. The type of data that can be
gathered differs also between the internal and the external data gathering.
Before starting any data gathering, the type of data to be gathered needs to be defined
using the functions GatheringConfigurationSet() (in case of an internal data gathering)
or ExternalGatheringConfigurationSet() (in case of an external data gathering). Refer to
the Programmer's Manual and the Gathering functions for a complete list of data types.
During data gathering, new data is appended to a buffer. With the functions
GatheringCurrentNumberGet() and GatheringExternalCurrentNumberGet(), the current
number of data sets in this buffer and the maximum possible number of data sets that
fits into this buffer can be recalled. The maximum possible number of data sets equals
1,000,000 divided by the number of data types belonging to one data set.
The function GatheringDataGet(index) returns one set of data from the buffer. Here, the
index 0 refers to the 1st data set, the index (n-1) to the n-th data set. When using this
function from the Terminal screen of the XPS utility, the different data types belonging
to one data line are separated by a semicolon (;).
To save the data from the buffer to the flash disk of the XPS controller, use the
functions GatheringStopAndSave() and GatheringExternalStopAndSave(). These
functions will store the gathering files in the XPS controller under the name
Gathering.dat (with function GatheringStopAndSave() for internal gathering) or
GatheringExternal.dat (with function GatheringExternalStopAndSave() for external
gathering). To rename the gathering file use the API function FileGatheringRename().

 CAUTION
The functions GatheringStopAndSave() and GatheringExternalStopAndSave()
overwrite any older files with the same name. After a data gathering, it is required
to rename (use the API function FileGatheringRename() to rename the gathering
file) or better, to download to a PC using the XPS webpage Files -> Gathering files.

A gathering file can have a maximum of 1,000,000 data entries and a maximum of 25
different data types. The first line of the data file contains the sample period in seconds
(minimum period = CorrectorISRPeriod), the second line contains the names of the data
type(s) and the other lines contain the acquired data. A sample file is shown below.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 88

Gathering.dat

SamplePeriod 0 0
GatheringTypeA GatheringTypeB GatheringTypeC
ValueA1 ValueB1 ValueC1
ValueA2 ValueB2 ValueC2
… … …
ValueAN ValueBN ValueCN

NOTE
Refer to Programmer’s manual to get a list of gathering data types and a list of
external gathering data types.

8.1 Time-Based (Internal) Data Gathering
The data for time-based gathering are latched by an internal interrupt related to the
servo cycle of the XPS. The function GatheringConfigurationSet() defines the type of
data that will be stored in the data file. The following is a list of all the data type(s) that
can be collected:

PositionerName.CurrentPosition
PositionerName.SetpointPosition
PositionerName.FollowingError
PositionerName.CurrentVelocity
PositionerName.SetpointVelocity
PositionerName.CurrentAcceleration
PositionerName.SetpointAcceleration
PositionerName.CorrectorOutput
GPIO (ADC, DAC, DI, DO) See the Programmer’s Manual for a list of all
the GPIO Names of the Analog and Digital I/O.

The Setpoint values refer to the theoretical values from the profiler whereas the current
values refer to the actual or real values of position, velocity and acceleration.
It is possible to start the gathering either by a function call or at an event. The following
sequence of functions is used for a time-based data gathering started by a function call:

GatheringConfigurationSet()
GatheringRun()

The following sequence of functions is used to start a time-based data gathering at an
event:

GatheringConfigurationSet()
EventExtendedConfigurationTriggerSet()
EventExtendedConfigurationActionSet()
EventExtendedStart()

A function triggers the action, for instance, a GroupMoveRelative().
When all data is gathered, use the function GatheringStopAndSave() to save the data
from the buffer to the flash disk of the XPS controller. To rename the gathering file use
the API function FileGatheringRename().

XPS-D Controller Features Manual

 89 EDH0407En1052 – 08/22

Other functions associated with internal Gathering are:
GatheringConfigurationGet()
GatheringCurrentNumberGet()
GatheringDataGet()
GatheringDataMultipleLinesGet()
GatheringStop()
GatheringRunAppend()

See the Programmer’s Manual for details about these functions.

NOTE
When using the function GatheringConfigurationSet() from the terminal screen of
the XPS utility, the syntax for one parameter is not directly accessible. For
instance, for the parameter XY.X.SetpointPosition, first select XY.X from the
choice list. Then, click on the choice field again and select SetpointPosition. See
also screen shots on the next page.
For specifying more than one data type, use the ADD button. Select the next
parameter as described below.

Step 1:
Click “SELECT GATHERING” then select
the positioner name and click “OK”.

Step 2:
Click “SELECT GATHERING” again then
select the parameter name and click “OK”.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 90

Step 3:
To add another parameter, click “ADD BLOCK”.
Repeat Step 1 and Step 2.

Example 1
Using the terminal screen of the XPS utility, this example shows the sequence of
functions to accomplish a time-based data gathering triggered at an event.

GroupInitialize(XY)
GroupHomeSearch(XY)
GatheringConfigurationSet(XY.X.SetpointPosition,
XY.X.CurrentVelocity, XY.X.SetpointAcceleration)
The 3 data XY.X.SetpointPosition, XY.X.CurrentVelocity and
XY.X.SetpointAcceleration will be gathered.
EventExtendedConfigurationTriggerSet
(XY.X.SGamma.MotionStart,0,0,0,0)
EventExtendedConfigurationActionSet(GatheringRun,4000,8,0,0)
EventExtendedStart()
GroupMoveRelative(XY.X, 50)
GatheringStopAndSave()

In this example, gathering is started when the positioner XY.X starts its next motion
using the Sgamma profiler, in this case with GroupMoveRelative() or possibly with
GroupMoveAbsolute(). The types of data being collected are the Setpoint Position,
Current Velocity and Setpoint Acceleration for the positioner XY.X. A total of 4000
data sets is collected, one data point every 8th servo cycles.
Example 2
Using the terminal screen of the XPS utility, this example shows the sequence of
functions to accomplish a time-based data gathering started by a function call.

GroupInitialize(X)
GroupHomeSearch(X)
GatheringConfigurationSet(X.X.SetpointPosition, X.X.FollowingError)
GatheringRun (5000,8)
GroupMoveRelative (X, 10)
GatheringStop()
GatheringStopAndSave()

In this example, gathering is started by a function call. The SetpointPosition and
FollowingError of the positioner XY.X are gathered (every 8th servo cycle). Data
gathering is stopped after the relative move is completed.

XPS-D Controller Features Manual

 91 EDH0407En1052 – 08/22

Gathering will stop automatically once the number of points specified has been
collected. However, data will not be saved automatically to a file. The function
GatheringStopAndSave() must be used to save the data to a file.
It is also possible to halt data gathering at an event. To do so, define another event
trigger and assign the action GatheringStop to that event. Use another event trigger and
assign the action GatheringRunAppend to continue with gathering. For details, see
chapter 7.0: “Event Triggers“.

NOTE
The function GatheringRun() always starts a new internal data gathering and
deletes any previous internal gathering data hold in the buffer. If you want to
append data to the file, use the function GatheringRunAppend() instead.

8.2 Event-Based (Internal) Data Gathering
The event-based gathering provides a method to gather data at an event. For instance,
gathering data at a certain value of a digital or analog input, during a constant velocity
state of a motion or on a trajectory pulse.
The event-based data gathering uses the same file as the time-based and the function
based data gathering (see sections 8.1 and 8.3). However, unlike the time-based
gathering, the event-based gathering appends data to the existing file in memory. This
allows gathering of data during several periods or even with different methods in one
common file, see examples. To start data gathering in a new file, use the function
GatheringReset(), which deletes the current gathering file from memory.
The data type(s) that can be collected with event-based gathering are the same as data
for time-based and function-based gathering:

PositionerName.CurrentPosition
PositionerName.SetpointPosition
PositionerName.FollowingError
PositionerName.CurrentVelocity
PositionerName.SetpointVelocity
PositonerName.CurrentAcceleration
PositionerName.SetpointAcceleration
PositionerName.CorrectorOutput
GPIO (ADC, DAC, DI, DO) See Programmer’s manual for a list of all the
GPIO Names for the Analog and Digital I/O.

The Setpoint values refer to the theoretical values from the profiler where as the current
values refer to the actual or real values of position, velocity and acceleration.

The following sequence of functions is used in event-based data gathering:

GatheringReset()
GatheringConfigurationSet()
EventExtendedConfigurationTriggerSet()
EventExtendedConfigurationActionSet(GatheringOneData,0,0,0,0)
EventExtendedStart()
…
Use the function GatheringStopAndSave() to store the gathered file from the
buffer to the flash disk of the XPS controller.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 92

Other functions associated with the event-based gathering are:
GatheringConfigurationGet()
GatheringCurrentNumberGet()
GatheringDataGet()
FileGatheringRename()

Please refer to the programmer’s manual for details.

Example 1
GatheringReset()
Deletes gathering buffer in memory.
GatheringConfigurationSet(XY.X.CurrentPosition,
XY.Y.CurrentPosition, GPIO4.ADC1)
The 3 data XY.X.CurrentPosition, XY.Y.CurrentPosition and GPIO4.ADC1
will be gathered.
EventExtendedConfigurationTriggerSet(GPIO4.ADC1.ADCHighLimit,
5,0,0,0)
EventExtendedConfigurationActionSet(GatheringOneData,0,0,0,0)
EventExtendedStart()

Data gathering starts when the value of the GPIO4.ADC1 exceeds 5 Volts. One set of
data will be gathered at each servo cycle (as the event is checked at each servo cycle).
Data gathering automatically stops when the value of the GPIO4.ADC1 falls below 5 V
again and the event is automatically removed (see chapter 7.0: “Event Triggers“ for
details).

Example 2
TimerSet(Timer1, 8)
Sets the timer 1 to 8 servo ticks.
GatheringReset()
Deletes gathering buffer from memory.
GatheringConfigurationSet(XY.X.CurrentPosition,
XY.Y.CurrentPosition, GPIO4.ADC1)
The 3 data XY.X.CurrentPosition, XY.Y.CurrentPosition and GPIO4.ADC1
will be gathered.
EventExtendedConfigurationTriggerSet(Timer1,0,0,0,0,
GPIO4.ADC1.ADCHighLimit,5,0,0,0)
EventExtendedConfigurationActionSet(GatheringOneData,0,0,0,0)
EventExtendedStart()

Different from the previous example, here the event ADCHighLimit is linked to the
event Timer1. This has two effects. First, the event becomes permanent as the event
timer is permanent. Second, one set of data is gathered only every 8 servo cycles
(combination of events must be true). For details on the event definition, please see
chapter 7.0: “Event Triggers“.
As a result, one set of data is gathered every 8 servo cycles whenever the value of the
GPIO4.ADC1 exceeds 5.

XPS-D Controller Features Manual

 93 EDH0407En1052 – 08/22

Example 3
TimerSet(Timer1, 8)
Sets the timer 1 to 8 servo ticks.
GatheringReset()
Deletes gathering buffer from memory.
GatheringConfigurationSet(XYZ.X.CurrentPosition,
XYZ.Y.CurrentPosition, XYZ.Z.CurrentPosition)
EventExtendedConfigurationTriggerSet(Timer1,0,0,0,0,
XYZ.Spline.TrajectoryState,0,0,0,0)
EventExtendedConfigurationActionSet(GatheringOneData,0,0,0,0)
EventExtendedStart()

In this example, during the execution of the next spline trajectory on the group XYZ,
one set of data will be gathered every 8 servo cycles. In contrast to time-based
gathering, which allows programming of a similar function, data gathering will
automatically stop at the end of the trajectory. Also, it is not needed to define the total
number of data sets that will be gathered.

8.3 Function-Based (Internal) Data Gathering
Function-based gathering provides a method to gather one set of data using a function.
It uses the same data file as the time-based and the event-based data gathering, see
chapter 8.1 for details. At receipt of the function, one set of data is appended to the
gathering file in memory.
The data type(s) that can be collected with the function-based gathering are the same as
for the time based and the event-based gathering, see section 8.1 and 8.2 for details.

Example
GatheringReset()
Deletes gathering buffer.
GatheringConfigurationSet(XY.X.CurrentPosition,
XY.Y.CurrentPosition)
The 2 data XY.X.CurrentPosition and XY.Y.CurrentPosition will be gathered.
GatheringDataAcquire()
Gathers one set of data.
GatheringCurrentNumberGet()
This function will return 1, 500000; 1 set of data acquired, max. 500 000 sets
of data can be acquired.
GatheringDataAcquire()
GatheringDataAcquire()
GatheringCurrentNumberGet()
This function will return 3, 500000; 3 sets of data acquired, max. 500,000
sets of data can be acquired.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 94

8.4 Trigger-Based (External) Data Gathering
The trigger-based data gathering allows acquiring position and analog input data at
receipt of an external trigger input (GPIO synchronization input 1 of the XPS, see
applicable Start-Up Manual for more details).
The position data is latched by dedicated hardware. The jitter between the trigger signal
and the acquisition of the position data is minimized. The analog inputs, however, are
only latched by an internal interrupt at the servo rate and the XPS will store the most
recent value. Hence, the acquired analog input data might be as old as the
CorrectorISRPeriod.

NOTE
There must be a minimum time of one Corrector Period between two successive
trigger inputs.

The data of the trigger-based (external) data gathering is stored in a file named
ExternalGathering.dat, which is different from the file used for the internal data
gathering (Gathering.dat). Hence, internal and external data gathering can be used at the
same time.
The function GatheringExternalConfigurationSet() defines which type of data will be
gathered and stored in the data file. The following data types can be collected:

PositionerName.ExternalLatchPosition
GPIO (ADC, DAC) See the Programmer’s Manual for the GPIO Name of
the Analog I/O.

The external latch positions refer to the uncorrected encoder position, meaning no error
corrections are taken into account. For devices with RS422 differential encoders, the
resolution of the position information is equal to the encoder resolution.
For devices with sine/cosine 1 Vpp analog encoder interface, the resolution is equal to
the encoder scale pitch divided by the value of the positioner hard interpolator. This
value is set to 65536 (see function PositionerHardInterpolatorFactorGet()) and can not
be changed. Please refer to the Programmer’s Manual for details.
The external latch positions require that the device has an encoder. No position data can
be latched with this method for devices that have no encoder.

The following sequence of functions is used for a trigger-based data gathering:

GatheringExternalConfigurationSet()
EventExtendedConfigurationTriggerSet()
EventExtendedConfigurationActionSet()
EventExtendedStart()

Other functions associated with trigger-based gathering are:
GatheringConfigurationGet()
GatheringCurrentNumberGet()
GatheringExternalDataGet()
FileGatheringRename()

Please refer to the Programmer’s Manual for details.

XPS-D Controller Features Manual

 95 EDH0407En1052 – 08/22

Example
GatheringExternalConfigurationSet(XY.X.ExternalLatchPosition,
GPIO4.ADC1)
EventExtendedConfigurationTriggerSet(Immediate,0,0,0,0)
EventExtendedConfigurationActionSet(ExternalGatheringRun,100,1,0,0)
EventExtendedStart()

In this example, a trigger-based (external) gathering is started immediately (with the
function EventExtendedStart()). The types of data being collected are the XY.X encoder
position and the value of the GPIO4.ADC1. A total of 100 data sets are collected; one
set of data at each trigger input. Gathering will stop automatically after the 100th data
acquisition. Use the function GatheringExternalStopAndSave() to save the data to a
file. The file format is the same as for internal data gathering. To rename the gathering
file use the API function FileGatheringRename().

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 96

9.0 Output Triggers

External data acquisition tools, lasers, and other devices can be synchronized to the
motion. For this purpose, the XPS features one dedicated Position Compare Output
(PCO) for certain axes, see Start-Up Manual for PCO connector details. The XPS can
be configured to either output distance spaced pulses, AquadB encoder signals, or time
spaced pulses on this connector, synchronized with one or several axes.
In the distance spaced configuration, one output pulse is generated when crossing a
defined position and a new pulse is generated at every defined distance until a
maximum position has been reached. In most cases, this mode provides the most precise
synchronization of the motion to an external tool.
In the AquadB configuration, AquadB encoder signals are output on the PCO
connector. These signals can be provided either always or only if the positioner is
within a defined position window. When used with stages that feature a digital encoder
(AquadB) as opposed to a SinCos encoder (AnalogInterpolated), the AquadB
configuration essentially provides an image of the encoder signals on the PCO
connector.
In the time spaced (also called time flasher) configuration, an output pulse is generated
when crossing a defined position and a new pulse is generated at a defined time interval
until a maximum position has been reached. In some cases, this mode can provide an
even more precise synchronization of the motion to an external tool, in particular if the
variation of the speed multiplied with the time interval is smaller than the error of the
encoder signals during the same period.
Dedicated hardware is used to check the position crossing and the time interval to
minimize latency between the position crossing and the trigger output.
For the distance spaced pulses configuration, time flasher configuration or AquadB
signals on PCO connector configuration, it is recommended to calibrate the position
compare before all PCO pulses generation. It is also recommended to set the position
compare hardware to the scanning range you intend to use to get the best performances
(refer to section 9.1: “Position Compare” for details).
In addition, and independent from the above, the XPS controller can output distance
spaced pulses on Line-arc trajectories and time spaced pulses on PT and PVT
trajectories. In these cases, the pulse signals are generated on one of the GPIO
connector (and not on a PCO connector), and the distance/time intervals are only
checked on the servo cycle.

9.1 Position Compare Output Triggers on positioners

9.1.1 Even Distance Spaced Pulses Position Compare
In the even distance spaced pulse configuration, one first output pulse is generated when
the positioner enters the defined position window. This is independent of the positioner
entering the window from the minimum position or from the maximum position. From
this first pulse position, a new pulse is generated at every position step until the stage
exits the window.

NOTE
To make sure that the trigger pulses are always at the same positions independent
of the positioner entering the window from the minimum or from the maximum
window position, the difference between the minimum and the maximum window
position should be an integer multiple of the position step.

XPS-D Controller Features Manual

 97 EDH0407En1052 – 08/22

The duration of the trigger pulse is 2 µs by default and can be modified using the
function PositionerPositionComparePulseParametersSet (PositionerName,
PCOPulseWidth). Possible values for PCOPulseWidth are: 35 ns to 327.68 µs (5 ns
resolution). Successive trigger pulses should have a minimum time lag of 625 ns
(200 ns for less than 4096 pulses).
The following functions are used to configure the distance spaced pulses:

PositionerPositionCompareSet
PositionerPositionCompareGet
PositionerPositionCompareEnable
PositionerPositionCompareDisable

The function PositonerPositonCompareSet() defines the position window and the
distance for the trigger pulses. It has four input parameters:

Positioner Name
Minimum Position
Maximum Position
Position Step

To enable the distance spaced pulses, the function PositionerPositionCompareEnable()
must be sent.
Example

GroupInitialize(MyStage)
GroupHomeSearch(MyStage)
PositionerPositionCompareSet(MyStage.X,5, 25, 0.002)
PositonerPositionCompareEnable(MyStage.X)
PositionerPositionCompareGet(MyStage, &MinimumPosition,
&MaximumPosition, &PositionStep, &EnableState)
This function returns the parameters previously defined, the minimum
position 5, the maximum position 25, the position step 0.002 and the enabled
state (1=enabled, 0 =disabled).
GroupMoveAbsolute(MyStage,30)
PositionerPositionCompareDisable(MyStage.X)

The group has to be in a READY state for the position compare to be enabled. Also, the
PositionerPositionCompareSet() function must be completed before the
PositionerPositionCompareEnable() function. In this example, one trigger pulse is
generated every 0.002 mm between the minimum position of 5 mm and the maximum
position of 25 mm. The first trigger pulse will be at 5 mm and the last trigger pulse will
be at 25 mm.
The output pulses are accessible from the PCO connector at the back of the XPS
controller, see Start-Up Manual for details.

This table summarizes the results of the example above:

 Position Pulse enable Pulse 1
 of the stage 1 state activation Explanation
 0 0 No Position compare not enabled
 5 1 Yes Position compare enabled, first pulse
 5…25 1 Yes One pulse every 0.002 mm
 25 1 Yes Last pulse
 25.002 0 No Position compare disabled
 30 0 No Position compare disabled

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 98

The figure below shows actual screen shots from an oscilloscope for the example above.
The enable window is displayed in ch1 and the pulses in ch2:

At position 5 mm, the position compare output functionality becomes active and the
first pulse is generated. Then, pulses are generated every 2 µm which equals a time span
of 100 µs at a speed of 20 mm/s (2 µm/20 mm/s = 100 µs).

This second picture shows a zoom of the second pulse. The duration of the pulse should
be 200 ns.

XPS-D Controller Features Manual

 99 EDH0407En1052 – 08/22

NOTE
The parameters PositionStep, MinimumPosition, and MaximumPosition (specified
with the function PositionerPositionCompareSet) are rounded to the nearest
detectable trigger position. When using the Position Compare function with
AquadB encoders, the trigger resolution is equal to the EncoderResolution of the
positioner specified in the stages.ini. When using the Position Compare function
with AnalogInterpolated encoders, the trigger resolution is equal to the
EncoderScalePitch defined in the stages.ini divided by 256 (basic PCO) or 65536
(extended PCO).

AnalogInterpolated encoder

Figure 28: Analog interpolated encoder.

Trigger resolution =

InterpolationFactor = 256 with basic PCO or 65536 with extended PCO.

Trigger pulses

Figure 29: Trigger pulses.

MinimumPosition, MaximumPosition, and PositionStep should be multiples of the
Trigger resolution. If not, rounding to the nearest multiple value is made.

9.1.2 Compensated Position Compare
This feature is used to output a pulse each time the stage moves over user predefined
positions compensated through error mapping. Available only for a XPS with the
Extended PCO feature.

9.1.2.1 XPS System of Coordinates
To explore the details of the XPS coordinate system, use the example of the XY group
but the same is true for the other groups.
The firing positions are defined in the called user’s system of coordinates (X, Y). The
controller will convert the (X, Y) coordinates to raw encoder positions (XE, YE) to take
into account the group mapping, the encoder mapping and the encoder linear
compensation to accurately fire the pulses at the requested positions.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 100

To know the positions in the different systems of coordinates, the following functions
are provided:
- GroupPositionCorrectedProfilerGet() function has as input a (X, Y) position in the

user’s system of coordinates and will output the (XM, YM) position in the machine’s
system of coordinates by applying the XY mapping compensation.

- XYGroupPositionPCORawEncoderGet() function has as input a (X, Y) position in the
user’s coordinate system and will output the (XE, YE) position in the encoder’s system
of coordinates without any compensation.

XPS-D Controller Features Manual

 101 EDH0407En1052 – 08/22

9.1.2.2 Compensated Position compare signals definition
If the compensated PCO pulses generation is activated, the PCO pulses will be
generated at each predefined position with a pulse time duration that can be set with the
PositionerCompensatedFastPCOPulseParametersSet() function (cf. XPS Programmer’s
Manual for details).
The PCO enable will be generated from the beginning of the first pulse to the end of the
last pulse.

The pulse rate is limited by 2 things:
• The minimum time between 2 successive pulses: 200 ns
• The transfer rate of the target positions from CPU memory to CIE internal memory

(4096 positions FIFO): 1.6 MHz
If there are less than 4096 pulses to generate, the only limitation is the time between 2
successive points and the maximum pulses frequency is 5 MHz.

MinimumTriggerPulseDistance > ScanningVelocity * 200 ns
For more than 4096 pulses the limitation is the transfer frequency and the maximum
frequency is 1.6 MHz.

MinimumTriggerPulseDistance > ScanningVelocity * 625 ns
The margin to take in account will depend on many parameters such as the speed
stability.
If there are two PCO running on the same CIE board, the maximum transfer frequency
of 1.6 MHz is divided by 2, but the minimum time between 2 successives pulses when
there are less than 4096 points is still 200 ns.
If the transfer rate limitation is reached, the PCO error flag will be set.
If the time between two successive pulse is too short, the position will not be detected,
and the pulse generation will stop.

9.1.2.3 Compensated Position compare scanning process description

Scan preparation
- Initialize and home the scanning group:

GroupInitialize(Group) ; Initialize scanning group
GroupHomeSearch(Group) ; Search home for the scanning

Scan execution
- If needed, set PCO pulse duration and polarity/type (pulse or toggle):

PositionerCompensatedFastPCOPulseParametersSet(Positioner,PulseDuration,Pul
sePolarity,PulseToggle)

- Move the scanning group to the scan start position (outside of the scanning zone):
GroupMoveAbsolute (Group, Position1, Position2, …)

- Set the firing positions by reading data from file or loading to controller’s memory or
with a “set” function.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 102

Note that the firing positions defined with the following functions are only the offsets
relative to the scanning positioner start position, that will be specified with the
PositionerCompensatedFastPCOPrepare() function.

PositionerCompensatedFastPCOFromFile (Positioner,File)

PositionerCompensatedFastPCOSet (Positioner,Start,Stop,Step)

PositionerCompensatedFastPCOLoadToMemory (Positioner,DataLines)

- Calculate the firing absolute positions in the user’s coordinate system and convert
them to raw encoder positions:

PositionerCompensatedFastPCOPrepare (Positioner,Direction,StartPos1,StartPos2,…)

- Activate compensated PCO pulses generation

PositionerCompensatedFastPCOEnable (Positioner)

- Set motion parameters for scan:

PositionerSGammaParametersSet(Positioner, ScanVelocity, ScanAcceleration,
MinimumJerkTime,MaximumJerkTime)

- Move the scanning positioner across the scanning zone, during this move the firing
pulses will be generated:
GroupMoveRelative (Positioner, ScanDistance)

9.1.2.4 Compensated Position Compare Related Functions
Here is the list of the associated functions with a brief description. For detailed
information, refer to the Programmer’s Manual.

Firing positions definition
There are three ways to enter the firing positions: reading from file, writing directly to
the controller’s memory or calculating with a “set” function.

• Firing positions definition from a data file
Function PositionerCompensatedFastPCOFromFile(Positioner, FileName) reads firing
positions from a data file to the controller’s memory.

• Firing positions definition from a “load to memory” function
Function PositionerCompensatedFastPCOFromFile(Positioner, DataLines) appends
firing positions to the controller’s memory from DataLines parameter.
To reset the controller’s memory, the PositionerCompensatedFastPCOMemoryReset()
function is provided.

• Firing positions definition from a “set” function
Function PositionerCompensatedFastPCOSet (Positioner,Start,Stop,Step) calculates a
set of evenly spaced firing positions to the controller’s memory.

Data file

UserPos[i]
buffer, i=0…N-1

RawPos[i] buffer,
i=0…N-1

PCO pulse
generator (CIE

board)
Activate the CIE DMA to transfer PCO positions from
CPU memory to CIE internal FIFO

XPS-D Controller Features Manual

 103 EDH0407En1052 – 08/22

Firing positions preparation
Function PositionerCompensatedFastPCOPrepare (Positioner, ScanDirection,
StartPosition1, StartPosition2, …) calculates the firing at absolute positions, in user’s
coordinate system and converts them to firing absolute raw PCO positions, in encoder’s
coordinate system.
When mappings are enabled, the correction between the user’s coordinate system
position and raw encoder position will be different at each different location. For this
reason, the prepare function must know the location (positions of all positioners in the
scanning group) where the scan will be done.

Associated functions

• Pulses generation enable
Function PositionerCompensatedFastPCOEnable (Positioner) activates the
compensated PCO pulses generation (status becomes running (value 1)). The pulses
will be generated when the scanning positioner will move across the predefined
positions. When the last pulse is generated, the compensated PCO mode will become
inactive (status becomes inactive (value 0)). To get the status of the compensated PCO
pulses generation, use the PositionerCompensatedFastPCOCurrentStatusGet()
function.
Note that only the scanning positioner positions are used to fire pulses: if you prepare a
set of positions at a given location but you enable the firing pulses generation and start
the move from a different location, the pulses could be generated but their accuracy will
be impacted by the mapping difference between the two locations.

• Pulses generation abort
Function PositionerCompensatedFastPCOAbort (Positioner) disables the compensated
PCO pulses generation. The pulses generation is stopped immediately; no more pulse
will be generated even if the scanning positioner continues to move across the
predefined firing positions. To stop the scanning move, use GroupMoveAbort()
function.

• Pulses data reset
The function PositionerCompensatedFastPCOMemoryReset (Positioner) resets the
compensated PCO data memory. This function is useful to remove the data that was
previously entered with the PositionerCompensatedFastPCOLoadToMemory()
function.

• Pulses generation status get
The function PositionerCompensatedFastPCOCurrentStatusGet (Positioner, Status)
gets the current status of compensated PCO pulses generation.

9.1.3 Time Spaced Pulses (Time Flasher)
In the time spaced configuration, a first pulse is generated when the motion axis enters
the time pulse window. From this first pulse, a new pulse is generated at every time
interval until the positioner exits the time pulse window.
Hardware attains less than 5 ns jitter for the trigger pulses. The duration of the pulse is
2 µs by default and can be modified using the function
PositionerPositionComparePulseParametersSet(). Possible values for the
PCOPulseWidth are: 35 ns to 327.68 µs (5 ns resolution). Successive trigger pulses
should have a minimum time lag of 50 ns.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 104

The following functions are used to generate time spaced pulses:
PositionerTimeFlasherSet
PositionerTimeFlasherGet
PositionerTimeFlasherEnable
PositionerTimeFlasherDisable

The function PositonerTimeFlasherSet() defines the position window and the time
intervals for the trigger signals. It has four input parameters:

Position Name
Minimum Position
Maximum Position
Time Interval

The time interval must be greater than or equal to 0.00000005 seconds (50 ns) and less
than or equal to 21.47483648 seconds. Furthermore, the time interval must be a multiple
of 5 ns.
To enable the time spaced pulses, the function PositionerTimeFlasherEnable() must be
sent.
Example 1

GroupInitialize(MyStage)
GroupHomeSearch(MyStage)
PositionerTimeFlasherSet(MyStage.X,5, 25, 0.00001)
PositonerTimeFlasherEnable(MyStage.X)
GroupMoveAbsolute(MyStage,30)
PositionerTimeFlasherDisable(MyStage.X)

The group has to be in a READY state for the time flasher to be enabled. Also, the
PositionerTimeFlasherSet() function must be completed before the
PositionerTimeFlasherEnable() function. In this example, one trigger pulse is generated
every 0.00001 seconds or at a rate of 100 kHz between the minimum position of 5 mm
and the maximum position of 25 mm. The first trigger pulse will be at 5 mm and the last
trigger pulse will be at 25 mm or before.
The output pulses are accessible from the PCO connector at the back of the XPS
controller, See Start-Up Manual for details.

XPS-D Controller Features Manual

 105 EDH0407En1052 – 08/22

Figure 30: Temporal resolution of time spaced pulses in oscilloscope view.

Example 2
The time flasher function is of particular use with high precision (direct drive) stages.
At high speeds, these stages typically provide very good speed stability. In other words,
the position change over a short time interval is highly consistent and repeatable. Hence,
time spaced pulses can be used for synchronization with similar, in some cases even
higher precision as distance spaced pulses. The time spaced pulse configuration,
however, provides some further flexibility with regards to the nominal distance between
successive triggers.
Consider an XM stage for instance. XM stages feature an analog encoder with 4 µm
signal period. The max. resolution of the distance spaced pulses is 15.625 nm (256x
interpolation). If the goal is to get pulses at a nominal distance of 272.5 nm at a speed of
200 mm/s speed, this is not possible using the distance spaced pulse configuration.
Either 265.625 nm or 281.25 nm are possible, but not 272.5 nm. With some minor
adjustments to the target speed, however, this is possible using the time spaced pulse
configuration:
• The target speed is 200 mm/s, the desired distance between successive pulses is

272.5 nm. So, the nominal time interval between successive pulses is:
272.5 nm/200 mm/s = 1.3625 µs

• Round this nominal value to the next possible time interval, means to the next integer
multiple of 5 ns : 1.365 µs
Use this rounded time interval to calculate a corrected velocity:
272.5 nm/1.365 µs = 199.6337 mm/s

PositionerSGammaVelocityAndAccelerationSet(MyStage.X,199.6337,2500)
PositionerTimeFlasherSet(MyStage.X, -30, 30, 0.000001365)
PositionerTimeFlasherEnable(MyStage.X)
GroupMoveAbsolute(MyStage.X)
PositionerTimeFlasherDisable(MyStage.X)

In this example, a first pulse is generated when the stage crosses the position -30 mm.
Further pulses are generated every 1.350 µs until the stage reaches the maximum
position of +30 mm. Since the stage moves at a speed of 199.6337 mm/s, the nominal
distance between successive pulses is: 199.6337 mm/s * 1.365 µs = 272.5 nm.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 106

9.1.4 AquadB Signals on PCO Connector
In the AquadB signals configuration, AquadB encoder signals are provided on the PCO
connector, see Start-Up Manual for details and pinning. These signals are either output
always (Always configuration), or only when the positioner is within a defined position
window (Windowed configuration).
When used with stages that feature a digital encoder (AquadB), the AquadB signals are
the same as the encoder signals of the stage. When used with SinCos encoders
(AnalogInterpolated), the resolution of the AquadB signal is defined by the signal
period of the encoder and the settings of the prescaler by the function
PositionerPositionCompareAquadBPrescalerSet().
Example
XM stages feature an analog encoder with a signal period of 4 µm. With the setting
PositionerPositionCompareAquadBPrescalerSet(MyStage.X,256) the post-quadrature
resolution of the AquadB signals is: 4 µm/256 = 0.015625 µm. In this case one full
period of the AquadB signals equals 0.0625 µm.
The following functions are used to configure AquadB signals:

PositionerPositionCompareAquadBWindowedSet
PositionerPositionCompareAquadBWindowedGet
PositionerPositionCompareEnable
PositionerPositionCompareAquadBAlwaysEnable
PositionerPositionCompareDisable
PositionerPositionCompareAquadBPrescalerSet

The function PositonerPositonCompareAquadBAlwaysEnable() has only one input
parameter, the positioner name. When sent, AquadB signals are generated always. To
disable this mode use the function PositionerPositionCompareDisable().
The function PositonerPositonCompareAquadBWindowedSet() has three input
parameters.

Positioner name
Minimum Position
Maximum Position

To enable the AquadB signals, the function PositionerPositionCompareEnable() must
be sent.
Example

GroupInitialize(MyStage)
GroupHomeSearch(MyStage)
PositionerPositionCompareAquadBWindowedSet(MyStage.X, 10, 20)
PositonerPositionCompareEnable(MyStage.X)
PositionerPositionCompareGet(MyStage, &MinimumPosition,
&MaximumPosition, &EnableState)
This function returns the parameters previously defined, the minimum
position 10, the maximum position 20 and the enabled state (1=enabled, 0
=disabled).
GroupMoveAbsolute(MyStage,30)
PositionerPositionCompareDisable(MyStage.X)

The figure below shows a screen shots from an oscilloscope for the example above.

XPS-D Controller Features Manual

 107 EDH0407En1052 – 08/22

The group has to be in a READY state for the position compare to be enabled. Also, the
PositionerPositionCompareAquadBWindowedSet() function must be completed before
the PositionerPositionCompareEnable() function. In this example, AquadB signals are
generated when the positioner is between the minimum position of 10 mm and the
maximum position of 20 mm.

NOTE
The AquadB signal configuration is only available with positioners that have an
encoder (AquadB or AnalogInterpolated).
The AquadB signals can not be provided at the same time as the distance spaced
pulses (PCO) or the time spaced pulses.
The function PositionerPositionCompareEnable() enables always the last
configuration sent, either distance spaced pulses defined with the function
PositionerPositionCompareSet() or AquadB pulses defined with the function
PositionerPositionCompareAquadBWindowedSet().

9.2 Output Triggers on trajectories

9.2.1 Triggers on Line-Arc Trajectories
This capability outputs pulses at constant trajectory length intervals on Line-Arc-
Trajectories. The pulses are generated between a start length and an end length. All
lengths are calculated in an orthogonal XY plane. The StartLength, EndLength, and
PathLengthInterval refer to the Setpoint positions.
The trajectory length is calculated at the servo rate. The trajectory length is =
CorrectorISRPeriod * trajectory velocity. If the programmed PathLengthInterval is
not a multiple of this resolution, the pulses can be off from the ideal positions by a
maximum ± half of this resolution.
Two signals are provided on one of the GPIO connectors:

Window: A constant 5 V signal is sent between the StartLength and the EndLength.
Pulse: A 1µs pulse with 5 V peak voltage is sent every PathLengthInterval.

For details about the XPS GPIO connectors involved, see Start-Up Manual.
To define the StartLength, EndLength, and PathLengthInterval, use the function
XYLineArcPulseOutputSet().

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 108

Example
XYLineArcPulseOutputSet(XY, 10, 30, 0.01)
One pulse will be generated every 10 µm on the next Line-Arc Trajectory
between 10 mm and 30 mm.
XYLineArcVerification(XY, Traj.trj)
Loads and verifies the trajectory Traj.trj
XYLineArcExecution(XY, Traj.trj, 10, 100, 1)
Executes the trajectory at a trajectory speed of 10 mm/s and with a trajectory
acceleration of 100 mm/s one time.

Please note, that the pulse output settings are automatically removed when the trajectory
is over. Hence, with the execution of every new trajectory, it is also required to define
the pulse output settings again.
It is also possible to use the trajectory pulses and the pulse window state as events in the
event triggers (see chapter 7.0: “Event Triggers“ for details). This allows the gathering
of data on a trajectory at constant length intervals.

Example
XYLineArcPulseOutputSet(XY, 10, 30, 0.01)
One pulse every 10 µm will be generated on the Line-Arc Trajectory between
10 mm and 30 mm.
XYLineArcVerification(XY, Traj.trj)
Loads and verifies the trajectory Traj.trj
GatheringConfigurationSet(XY.X.CurrentPosition,
XY.Y.CurrentPosition, GPIO4.ADC1)
Configures data gathering to capture the current positions of the XY.X and
the XY.Y and the analog input GPIO4.ADC1
EventExtendedConfigurationTriggerSet(Always,
0,0,0,0,XY.LineArc.TrajectoryPulse,0,0,0,0)
Triggers an action for every trajectory pulse. The link of the event
TrajectorPulse with the event Always is important to make the event
permanent. Otherwise, the event will be removed after the first pulse.
EventExtendedConfigurationActionSet(GatheringOneData,0,0,0,0)
Defines the action; gathers one set of data each trajectory pulse.
EventExtendedStart()
Starts the event trigger.
XYLineArcExecution(XY, Traj.trj, 10, 100, 1)
Executes the trajectory at a trajectory speed of 10 mm/s and a trajectory
acceleration of 100 mm/s one time.
GatheringStopAndSave()
Saves the gathering data from memory into a file gathering.dat in the
..Admin/Public/Gathering folder of the XPS.

In this example, one set of data will be gathered on the trajectory between length 10 mm
and 30 mm at constant trajectory length intervals of 10 µm.

XPS-D Controller Features Manual

 109 EDH0407En1052 – 08/22

9.2.2 Triggers on PVT Trajectories
This capability outputs pulses at constant time intervals on a PVT trajectory. The pulses
are generated between a first and a last trajectory element (see section 4.3: PVT
Trajectories for details). The minimum possible time interval is one servo cycle.
Two signals are provided on one of the GPIO connectors:

Window: A constant 5 V signal is sent between the StartLength and the EndLength.
Pulse: A 1µs pulse with 5 V peak voltage is sent every PathLengthInterval.

For details about the XPS GPIO connectors involved, see Start-Up Manual.
To define the first element, the last element and the time interval, use the function
MultipleAxesPVTPulseOutputSet().
Example 1

MultipleAxesPVTPulseOutputSet(Group1, 3, 5, 0.01)
One pulse will be generated every 10 ms between the start of the 3rd element
and the end of the 5th element.
MultipleAxesPVTVerification(Group1, Traj.trj)
Loads and verifies the trajectory Traj.trj
MultipleAxesPVTExecution(Group1, Traj.trj, 1)
Executes the trajectory Traj.trj one time.

Note that the pulse output settings are automatically removed when the trajectory is
over. Hence, with the execution of every new trajectory, the pulse output settings must
be defined again.
It is also possible to use the trajectory pulses and the pulse window state as events in the
event triggers (see chapter 7.0: “Event Triggers” for details). This allows the gathering
of data on a trajectory.

Example 2
MultipleAxesPVTPulseOutputSet(Group1, 3, 5, 0.01)
One pulse will be generated every 10 ms between the start of the 3rd element
and the end of the 5th element.
MultipleAxesPVTVerification(Group1, Traj.trj)
Loads and verifies the trajectory Traj.trj
GatheringConfigurationSet(Group1.P.CurrentPosition, GPIO4.ADC1)
Configures data gathering to capture the current position of the Group1.P
positioner and the analog input GPIO4.ADC1
EventExtendedConfigurationTriggerSet(Always,
0,0,0,0,Group1.PVT.TrajectoryPulse,0,0,0,0)
Triggers an action for every trajectory pulse. The link of the event
TrajectorPulse with the event Always is important to make the event
permanent. Otherwise, the event will be removed after the first pulse.
EventExtendedConfigurationActionSet(GatheringOneData,0,0,0,0)
Defines the action; gathers one set of data each trajectory pulse.
EventExtendedStart()
Starts the event trigger
MultipleAxesPVTExecution(XY, Traj.trj, 1)
Executes the trajectory Traj.trj one time.
GatheringStopAndSave()
Saves the gathering data from memory in a file gathering.dat in the
..Admin/Public/Gathering folder of the XPS.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 110

In this example, one set of data will be gathered every 10 ms on the trajectory between
the start of the 3rd and the end of the 5th element.

9.2.3 Triggers on PT Trajectories
This capability outputs pulses at constant time intervals on a PT trajectory. The pulses
are generated between a first and a last trajectory element (see section 8.4: PT
Trajectories for details). The minimum possible time interval is one servo cycle.
Two signals are provided on one of the GPIO connectors:

Window: A constant 5 V signal is sent between the StartLength and the EndLength.
Pulse: A 1µs pulse with 5 V peak voltage is sent every PathLengthInterval.

For details about the XPS GPIO connectors involved, see Start-Up Manual.
To define the first element, the last element and the time interval, use the function
MultipleAxesPTPulseOutputSet().

Example 1
MultipleAxesPTPulseOutputSet (MultipleGroup, 3, 5, 0.01)
One pulse will be generated every 10 ms between the start of the 3rd element
and the end of the 5th element.
MultipleAxesPTVerification(MultipleGroup, Traj.trj)
Loads and verifies the trajectory Traj.trj
MultipleAxesPTExecution(MultipleGroup, Traj.trj, 1)
Executes the trajectory Traj.trj one time.

Note that the pulse output settings are automatically removed when the trajectory is
over. Hence, with the execution of every new trajectory, the pulse output settings must
be defined again.
It is also possible to use the trajectory pulses and the pulse window state as events in the
event triggers (see chapter 7.0: “Event Triggers” for details). This allows the gathering
of data on a trajectory.

Example 2
MultipleAxesPTPulseOutputSet(MultipleGroup, 3, 5, 0.01)
One pulse will be generated every 10 ms between the start of the 3rd element
and the end of the 5th element.
MultipleAxesPTVerification(Group1, Traj.trj)
Loads and verifies the trajectory Traj.trj
GatheringConfigurationSet(MultipleGroup.Pos1.CurrentPosition,
GPIO4.ADC1)
Configures data gathering to capture the current position of the
MultipleGroup.Pos1 positioner and the analog input GPIO4.ADC1
EventExtendedConfigurationTriggerSet(Always, 0,0,0,0,
MultipleGroup.PT.TrajectoryPulse,0,0,0,0)
Triggers an action for every trajectory pulse. The link of the event
TrajectorPulse with the event “Always” is important to make the event
permanent. Otherwise, the event will be removed after the first pulse.
EventExtendedConfigurationActionSet(GatheringOneData,0,0,0,0)
Defines the action; gathers one set of data each trajectory pulse.
EventExtendedStart()
Starts the event trigger

XPS-D Controller Features Manual

 111 EDH0407En1052 – 08/22

MultipleAxesPTExecution(MultipleGroup, Traj.trj, 1)
Executes the trajectory Traj.trj one time.
GatheringStopAndSave()
Saves the gathering data from memory in a file “gathering.dat” in the
“Admin/Public/Gathering” folder of the XPS.

In this example, one set of data will be gathered every 10 ms on the trajectory between
the start of the 3rd and the end of the 5th element.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 112

10.0 Control Loops

10.1 XPS Servo Loops

10.1.1 Servo structure and Basics
The XPS controller can be used to control a wide range of motion devices, which are
categorized by the XPS as “positioners”. Within the structure of the XPS' firmware, a
“positioner” is defined as an object with an associated profile (trajectory), a PID
corrector, a motor interface, a driver, a stage and an encoder.
The general schematic of a positioner servo loop is below.

Figure 31: Servo structure and basics.

The calculations done by the “servo loop” result in a voltage output from the controller
that is applied to the driver, which can be either any of Newport's Universal drive
modules or to an external driver through the XPS pass-through module. Depending on
the corrector loop type selected, the level of this output voltage can be the result of two
gain factors, the PID corrector and the FeedForward loop. The XPS has imbedded
configuration files that provide optimized corrector loop settings for all Newport stages.
Non-Newport stages may need to be assigned a specific corrector loop setting during
the set-up process. In addition to the two main gain loops the XPS also adds filtering
and error compensation parameters to this servo loop to improve system response and
reliability.
The profiler (Trajectory Generator) within the controller calculates in real time, the
position, velocity, and acceleration/deceleration that the positioner must follow to reach
its commanded position (Setpoint Position). This profile is updated at the
ProfileGenerator rate. The ProfileGenerator rate is defined in relation to the servo rate
given by the expression:

Profile Generator Period = CorrectorISRPeriod * ProfileGenatorISRRatio
The ProfileGenatorISRRatio and the CorrectorISRPeriod values are found in the
system.ref file.

Example system.ref file

[GENERAL]
OptionalModuleNames =
CorrectorISRPeriod = 125e-6 ; seconds
ProfileGeneratorISRRatio = 4
ServitudesISRRatio = 10
GatheringBufferSize = 1000000 ; data count
DelayBeforeStartup = 0 ; seconds
DebugTraceCommunicationBufferSize = 0 ; characters, if 0 =>
no trace

XPS-D Controller Features Manual

 113 EDH0407En1052 – 08/22

The PID corrector then compares the SetpointPosition, as defined by the profiler, and
the current position, as reported by the positioner's encoder, to determine the current
following error. The PID corrector then outputs a value that the controller uses to
maintain, increase or decrease the output voltage, which is applied to the driver. This
loop is updated at servo rate. The adjustment of the PID parameters allows users to
optimize the performance of their positioner or system by increasing or decreasing the
responsiveness of the output to increasing or decreasing following errors. Refer to the
section 10.3 for more information and tips on PID tuning. The PID corrector loop and
trajectory generation loop default rates have been optimized to provide the highest level
of precision. In most applications the critical control loop is the PID corrector since it
has the most significant impact on positioning performance. Because of this with default
values, the PID loop is updated 4 times (8/2) during each profiler cycle to improve
profile execution and minimize following errors.
The Feed-Forward gain generates a voltage output to the driver that is directly
proportional to the input. The purpose of this gain is to generate a movement of the
positioner as close as possible to the desired move that is independent of the encoder
feedback loop. Adding this Feed-Forward gain can help reduce any encountered
following errors and thus requires less compensation by the PID gain corrector. For
example, if a driver and positioner respond to a constant voltage by moving at a
constant speed, then feed forward input would be dictated by the SetpointSpeed.
The XPS stores standard Newport stage configuration files that can be used to quickly
and easily develop the stage and system initialization (.ini) files. Below is an example of
a typical stage and the type of DriverName, MotorDriverInterface and CorrectorType
each is assigned. These standard Newport settings will be optimal for virtually every
application and users would only need to modify their corrector loop parameters (Kp,
Kd, Ki) to optimize positioner performance. Similar configurations can be adopted for
non-Newport stages that are of similar motor driver types.
 Stages with high current (> 3 A) DC motor (RV, IMS) (with tachometer or back-emf

estimation):
DriverName: XPS-DRV01, 03
 ±10 V Input gives ±ScalingVelocity (stage velocity).
 Speed loop & Current loop configured by hardware.
MotorDriverInterface: AnalogVelocity
CorrectorType: PIDFFVelocity for Speed loop and PIDFFAcceleration for current
loop.

 Stages with DC motor driven through a current loop (RGV) (no tachometer):
DriverName: XPS-DRV02
 ±10 V Input gives ±ScalingAcceleration (stage acceleration).
 Current loop configured by hardware.
MotorDriverInterface: AnalogAcceleration
CorrectorType: PIDFFAcceleration

 Stages with low current (< 3 A) DC motor & tachometer (VP):
DriverName: XPS-DRV01 in velocity mode.
 Input 1: ±10 V results in ±ScalingVelocity (theoretical stage velocity).
 Input 2: ±10 V results in ±ScalingCurrent (3 A).
 Speed loop programmable.
MotorDriverInterface: AnalogVelocity
CorrectorType: PIDFFVelocity

 Stages with low current (<3 A) DC motor, without tachometer (ILSCC type):
DriverName: XPS-DRV01 in voltage mode.
 Input 1: ±10 V results in ±ScalingVoltage (48 V).

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 114

 Input 2: ±10 V results in ±ScalingCurrent (3 A).
MotorDriverInterface: AnalogVoltage
CorrectorType: PIDDualFFVoltage

 Stages with Stepper motor & Encoder (UTSPP, RVPE, ILSPP…):
DriverName: XPS-DRV01 in stepper mode.
 Input 1: ±10 V results in ±ScalingCurrent in motor winding 1.
 Input 2: ±10 V results in ±ScalingCurrent in motor winding 2.
MotorDriverInterface: AnalogStepperPosition
CorrectorType: PIPosition

 Stages with Stepper motor & no encoder (TRA, SR50PP, PR50PP, MFAPP):
DriverName: XPS-DRV01 in stepper mode.
 Input 1: ±10 V results in ±ScalingCurrent in motor winding 1.
 Input 2: ±10 V results in ±ScalingCurrent in motor winding 2.
MotorDriverInterface: AnalogStepperPosition
CorrectorType: NoEncoderPosition

These are just examples of available positioner associations in the XPS. The flexibility
of positioner associations allows many other configurations to be developed to drive
non-Newport positioners or other products. Before developing other configurations, the
user must be aware that the main goal of creating these associations is to match the
servo loop output to the appropriate driver input as stated by the manufacturer. For
instance:

• The Corrector PIPosition is used when a constant voltage applied to a driver results
in a constant position of the positioner (stepper motor, piezo, electrostrictive, etc.).

• Corrector PIDFFVelocity is used when a constant voltage applied to a driver results
in a constant speed of the positioner (DC motor and driver board in speed loop
mode).

• Corrector PIDFFAcceleration is used when a constant voltage applied to a driver
results in a constant acceleration of the positioner (DC motor and driver board in
current loop mode).

• Corrector PIDDualFFVoltage is used when a constant voltage applied to a driver
results in a constant voltage applied to the motor (DC motor and driver board with
direct PWM command).

10.1.2 XPS PIDFF Architecture
Corrector loops PIDFFVelocity, PIDFFAcceleration and PIDFFDualVoltage all use the
same architecture as the PID corrector that is detailed below. PIPosition is a simplified
version of this loop that is used to provide closed loop positioning via encoder feedback
to stepper motor positioners.

XPS-D Controller Features Manual

 115 EDH0407En1052 – 08/22

10.1.3 PID Corrector Architecture
The PID corrector uses the following error (SetpointPosition – EncoderPosition) as its
input and applies the sum of three correction terms (Kp, Kd and Ki) to determine the
output.

Figure 32: PID corrector architecture.

10.1.4 Proportional Term
The Kp, or proportional gain, multiplies the current following error of that servo cycle
by the proportional gain value (Kp). The effect is to react immediately to the following
error and attempt to correct it. Changes in position generally occur during commanded
acceleration, deceleration, and in moves where velocity changes occur in the system
dynamics during motion. As Kp is increased, the PID corrector will respond with a
increased output and the error is more quickly corrected. For instance, if a positioner or
group of positioners is expected to have small following errors, as is the case for small
moves where overcoming static friction of the system is predominant, then the Kp may
need to be increased to produce sufficient output to the driver. For larger moves, the
following errors are generally larger and require lower Kp values to produce the desired
output. Also note that for larger moves the kinetic friction of the system is generally

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 116

much lower than static friction and would generally require less correction gain than
smaller moves. However, if Kp becomes too large, the mechanical system may begin to
overshoot (encoder position > SetpointPosition), and at some point, it may begin to
oscillate, becoming unstable if it does not have sufficient damping.
Kp cannot completely eliminate errors. However, since as the following error e,
approaches zero, the proportional correction element, Kp x e, also approaches zero and
results in some amount of steady-state error. For this reason, other gain factors like Kd
and Ki are required.

10.1.5 Derivative Term
The Kd, or derivative gain, multiplies the differential between the previous and current
following error by the derivative gain value (Kd). The result of this gain is to stabilize
the transient response of a system and can also be thought of as electronic damping of
the Kp. The derivative acts as a gain that increases with the frequency of the variations
of the following error:

The result is that the derived term becomes dominant at high frequencies, compared to
the proportional and integral terms. For the same reason, the value of Kd is in most
cases limited by high frequency resonance of the mechanics. This is why a low pass
filter (cut off frequency = DerivativeFilterCutOffFrequency) is implemented in the
derivative branch to limit excitation at high frequencies. Increasing the value of Kd
increases the stability of the system. The steady-state error, however, is unaffected since
the derivative of the steady-state error is zero.
These two gains alone can provide stable positioning and motion for the system.
However to eliminate the steady state errors, an additional gain value must be used.

10.1.6 Integral Term
The Integral term Ki acts as a gain that increases when the frequency of the variations
of the following error decrease:

The result is that the integral term becomes dominant at low frequencies, compared to
the proportional and derivative terms. The gain becomes infinite when frequency = 0.
Even a very small following error will generate an infinite value of the integral term.
The advantage of the integral term is that it will eliminate any steady-state following
error. However, the disadvantage is that the integral term can reach values where the
corrector is saturated causing the system to become unstable at the end of a move and
cause the positioner to hunt or dither. To reduce this effect, two additional parameters
are included in the PID corrector to help prevent these instabilities, Ks and Integration
Time.

Ks
The saturation limit factor Ks permits users to limit the maximum value of Ki that is
applied to the total PID corrector output. The Ks saturation limit can be set between 0
and 1, a typical setting is 0.5. As an example, at a setting of 0.5, the maximum output
generated by the Ki term applied to the PID output would be 0.5 x the maximum set
output. However, if the Ki gain factor output is less than 0.5 x the maximum set output,
then the entire gain will be applied to the PID corrector. This maximum output is set
within the section MotorDriverInterface in the stages.ini using the parameters
AccelerationLimit, VelocityLimit or VoltageLimit.

XPS-D Controller Features Manual

 117 EDH0407En1052 – 08/22

Integration Time
The IntegrationTime is used to adjust the duration for integration of the residual errors.
This can help in applications where large following errors can occur during motion. The
use of a small Integration Time value will limit the integration range to the latter parts
of the move, avoiding the need of a large overshoot at the end of the move to clear the
integrated following error value. The drawback is that the static error will be less
compensated.

10.1.7 Variable Gains
In addition to the classical Kp, Ki, and Kd gain parameters, the XPS PID Corrector
Loop also includes variable gain factors GKp, GKd, and GKi. These can be used to
reduce settling time on systems that have nonlinear behavior or to tighten the control
loop during the final segment of a move. For example, a positioner or stage with a high
level of friction will have a response which is dependent on the size of the move:
friction is negligible for a large move but becomes a predominant factor for small
moves. For this reason, the required response of the system to reach the commanded
position is not the same for small and large moves. The optimum value of PID
parameters for small moves is very often higher than the optimum value for large
moves. It is advantageous to modify PID settings depending on the move size. For users
that do not need to make PID corrector adjustments (or prefer not to) benefit from the
compensations provided by the variable gain correctors. This compensation is made
automatically by the XPS variable gain corrector by applying a gain that is driven by the
distance between the Target Position (position that must be reached at the end of the
motion) and the Encoder Position. As shown in the figure below, when the distance to
move completion is large, the total output gain from these parameters is fractional (the
“Kform term” is fractional), but as the move size or distance to final position is small
the Kform term approaches 1 and full GKx output is provided.

Figure 33: Variable gains.

The parameter GKx is used to adjust the amplitude of the total output and the parameter
Kform is used set how soon this Gkx is applied. As seen in the figure below, if a Kform
of 1 is implemented, the GKx is not applied until the positioner is very close to its target
position, in this case 0. But a Kform of 10 will implement the GKx much sooner and
tighten the control of the loop further from the target position. This can be very
effective when positioning high inertial loads or when very short settling times are
critical. The default setting for the Kform parameter is 0 for all standard Newport
stages.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 118

10.2 Filtering and Limitation
In addition to the various PID correctors and calculations, filtering and limitation
parameters also have the same structure for all the correctors (PIDFFVelocity,
PIDFFAcceleration and PIDFFDualVoltage, etc).

Figure 34: Filtering and limitation.

The first section of the above diagram shows the succession of two digital notch filters.
Each filter is defined by its central frequency (NotchFrequency), its bandwidth
(NotchBandwidth) and its gain (NotchGain).
The gain, usually in the range of 0.01 to 0.1, is the value of the amplification of a signal
at a frequency equal to the central frequency and the bandwidth is the range about the
central frequency for which this gain is equal to a -3 db reduction.
Notch filters are typically used to avoid the instability of the servo loop due to the
mechanic’s natural frequencies, by lowering the gain at these frequencies. When they
are implemented, these filters add some phase shift to the signal. This phase shift
increases with the filter bandwidth and must remain small in the frequency range where
the servo loop is active to maintain stability. The result is that notch filters are only
effective at avoiding instabilities due to excessive and constant natural frequencies.
The last section of the diagram shows the limitation and scaling features. Scaling is used
to transform units of position, speed or acceleration to a corresponding voltage. The
Limitation factor is a safety that is used to limit the maximum voltage that can be
applied to the driver to protect against any runaway or saturation situations that may
occur.

10.2.1 Current velocity and current acceleration
In XPS controller, the current velocity and current acceleration are calculated from the
current position by successive derivative calculations. Because of derivative
calculations these values are noisy and must be filtered by a low-pass filter to become
exploitable.
Current velocity and acceleration filter parameters (stages.ini):

• Current velocity cut-off frequency: CurrentVelocityCutOffFrequency
• Current acceleration cut-off frequency: CurrentAccelerationCutOffFrequency
The CurrentVelocityCutOffFrequency (Hz) and CurrentAccelerationCutOffFrequency
(Hz), set the cut-off frequencies for the low-pass filters that are applied to the
CurrentVelocity and CurrentAcceleration. This filter reduces the derivative noises. They
must be greater than zero (filter disabled) and less than half of the servo loop frequency
(1/CorrectorISRPeriod (see system.ref)). The default value is 100 Hz which is about
five times greater than the bandwidth of the position servo loop of a typical screw
driven stage.

XPS-D Controller Features Manual

 119 EDH0407En1052 – 08/22

10.3 Feed Forward Loops and Servo Tuning

10.3.1 Corrector = PIDFFVelocity
The PIDFFVelocity corrector should be implemented into applications where the
positioner driver requires a “speed” input (constant voltage to the driver provides
constant speed output to the positioner), using MotorDriverInterface = AnalogVelocity.

Figure 35: Corrector = PIDFFVelocity.

10.3.2 Parameters
FeedForward Method:

• Velocity
• KFeedForwardVelocity is a gain that can be applied to this feed forward.
• When the system is used in open loop, the PID output is not applied and the feed

forward gain is set to 1 (the entire output of the controller is FF gain).
PID corrector:

• Total output of the PID is a speed (units/s), so:
Kp is given in 1/s.
Ki is given in 1/s2.
Kd has no unit.

Filtering and Limitation:

• ScalingVelocity (units/s) is the theoretical speed resulting from a 10 V input to the
driver.

• VelocityLimit (units/s) is the maximum speed that can be commanded to the driver.

10.3.3 Basics
For a “perfect system” (no friction, all performance factors known, no following errors),
a KFeedForwardVelocity value of 1 will generate the exact amount of output required
to reach the TargetPosition.
The Kd parameter is generally redundant when using the speed loop of the driver and is
usually set to zero, but a higher value can be used to improve the “tightness” of the
speed loop.
The proportional gain Kp drives the cut-off frequency of the closed loop.
Due to the integration of the speed command in a position by the encoder, the overall
gain of the proportional path at a given frequency Frq is equal to Kp/2πFrq. This gain is
equal to 1 at Frq P = Kp/2π (close to the cut-off frequency).

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 120

This frequency must remain lower than the cut-off frequency of the speed loop of the
driver and lower than the mechanic’s natural frequencies to maintain stability.
The integral gain Ki drives the capability of the closed loop to overcome perturbations
and to limit static error.
Due to the integration of the speed command in a position by the stage encoder, the
overall gain of the integral path at a given frequency Frq is:

This gain is equal to one at FrqI:

This frequency FrqI must typically remain lower than the frequency FrqP of the
proportional path to keep the stability of the servo loop.

10.3.4 Methodology of Tuning PID's for PIDFFVelocity Corrector (DC motors with or
without tachometer)
1. Verify the speed in open loop (adjustment done using ScalingVelocity).
2. Close the loop, set Kp, increase it to minimize following errors to the level until

oscillations/vibrations start during motion, then decrease Kp slightly to cancel these
oscillations.

3. Set Ki, increase it to limit static errors and improve settling time until the
appearance of overshoot or oscillation conditions. Then reduce Ki slightly to
eliminate these oscillations.

4. Kd is generally not needed but it can help in certain cases to improve the response
when the speed loop of the driver board is not efficient enough.

NOTE
To set the corrector parameters (loop type, Ki, Kp, Kd,…), use the following
functions:

CorrectorType = PIDFFVelocity : PositionerCorrectorPIDFFVelocitySet(…)
CorrectorType = PIDFFAcceleration:

PositionerCorrectorPIDFFAccelerationSet(…)
CorrectorType = PIDDualFFVoltage:

PositionerCorrectorPIDDualFFVoltageSet(…)
CorrectorType = PIPosition: PositionerCorrectorPIPositionSet(…)"

XPS-D Controller Features Manual

 121 EDH0407En1052 – 08/22

10.3.5 Corrector = PIDFFAcceleration
The PIDFFAcceleration must be used in association with a driver having a torque input
(constant voltage gives constant acceleration), using MotorDriverInterface =
AnalogAcceleration. (AnalogSin60Acceleration, AnalogSin90Acceleration,
AnalogSin120Acceleration, AnalogDualSin60Acceleration,
AnalogDualSin90Acceleration or AnalogDualSin120Acceleration).

Figure 36: Corrector = PIDFFAcceleration.

10.3.6 Parameters
FeedForward method:

• A feed forward in acceleration is used.
• KFeedForwardAcceleration is a gain that can be applied to this feed forward.
• When the system is used in open loop, the PID output is cut and the feed forward

gain is set to 1.
PID corrector:

• Output of the PID is an acceleration value in units/s2.
Kp is given in 1/s2.
Ki is given in 1/s3.
Kd is given in 1/s.

Filtering and Limitation:

• ScalingAcceleration (units/s2) is the theoretical acceleration of the stage resulting
from a 10 V input to the driver (depends on the stage payload).

• AccelerationLimit (units/s2) is the maximum acceleration allowed to be commanded
to the driver.

10.3.7 Basics
The derivative term Kd drives the cut-off frequency of the closed loop and must be
adjusted first (the loop will not be stable with only Kp).
Due to the double integration of the acceleration command in a position by the stage
encoder, the overall gain of the derivative path at a given frequency Frq is equal to
Kd/2πFrq. This gain is equal to one at FrqD = Kd/2π (close to servo loop cut-off
frequency). This frequency must remain lower than the cut-off frequency of the current
loop of the driver and lower to mechanical natural frequencies to keep the stability.
The proportional gain Kp drives mainly the capability of the closed loop to overcome
perturbations at medium frequencies and to limit following errors. Due to the double
integration of the acceleration command in a position by the stage encoder, the overall
gain of the proportional part at a given frequency Frq is:

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 122

This gain is equal to one at FrqP:

This frequency FrqP must remain lower than the frequency FrqD of the derivative part
to keep the stability.
The integral gain Ki drives the capability of the closed loop to overcome perturbations
at low frequencies and to limit static error.
Due to the double integration of the acceleration command in a position by the stage
encoder, the overall gain of the integral part at a given frequency Frq is:

This gain is equal to one at FrqI:

This frequency FrqI must remain lower than the frequency FrqP of the proportional part
to keep the stability.

10.3.8 Methodology of Tuning PID's for PIDFFAcceleration Corrector (direct drive DC
motors)
1. Verify the AccelerationFeedForward in open loop (adjustment done using

ScalingAcceleration).
2. Close the loop, set Kd, increase it to minimize following errors until vibrations

appear during motion.
3. Decrease Kd to eliminate oscillations.
4. Set Kp, increase it to minimize following errors until the appearance of oscillations,

decrease it to eliminate oscillations.
5. Set Ki, increase it to limit static errors and settling time until the appearance of

overshoot/oscillations.

NOTE
To set the corrector parameters (loop type, Ki, Kp, Kd,…), use the following
functions:

CorrectorType = PIDFFVelocity : PositionerCorrectorPIDFFVelocitySet(…)
CorrectorType = PIDFFAcceleration:

PositionerCorrectorPIDFFAccelerationSet(…)
CorrectorType = PIDDualFFVoltage:

PositionerCorrectorPIDDualFFVoltageSet(…)
CorrectorType = PIPosition: PositionerCorrectorPIPositionSet(…)"

XPS-D Controller Features Manual

 123 EDH0407En1052 – 08/22

10.3.9 Corrector = PIDDual FFVoltage
The PIDDualFFVoltage must be used in association with a driver having a voltage input
(constant voltage gives constant motor voltage), using MotorDriverInterface =
AnalogVoltage.
Can also be used in velocity or acceleration command.

Figure 37: Corrector = PIDDual FFVoltage.

10.3.10 Parameters
FeedForward method:

• 3 feed forwards are used: Speed, Acceleration and Friction.

• KFeedForwardAcceleration is a gain that can be applied to the feed forward in
acceleration.

• KFeedForwardVelocity is a gain that can be applied to the feed forward in velocity.
• Friction is a value which is applied with the sign of the velocity.
• When the system is used in open loop, the PID output is cut and only one feed

forward in velocity is applied with the gain defined by
KFeedForwardVelocityOpenLoop.

PID corrector:

• Output of the PID is a voltage.
Kp is given in V/unit.
Ki is given in V/unit/s.
Kd is given in V/s/unit.

Filtering and Limitation:

• ScalingVoltage is the theoretical motor voltage resulting from a 10 V input on the
driver (48 V).

• VoltageLimit (volts) is the maximum motor voltage allowed to be commanded to
the driver.

Refer to Configuration Manual for a detailed explanation.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 124

10.3.11 Basics
The PIDDualFFVoltage corrector can be seen as a mix between the PIDFFVelocity and
PIDFFAcceleration correctors. It is difficult to give a precise picture of this behavior
which depends a lot on the response of the stage (speed and acceleration versus motor
voltage).

10.3.12 Methodology of Tuning PID's for PIDDualFF Corrector (DC motors with
tachometers)
1. Adjust KFeedForwardVelocityOpenLoop to optimize the fidelity of the speed at

high speed.
2. Close the loop using the same value for KFeedForwardVelocity, set Kp, increase it

to minimize following errors until oscillations/vibrations appears during motion,
decrease Kp to eliminate oscillations.

3. Set Kd, increase until oscillations/vibrations appear during motion, and decrease it
to eliminate oscillations.

4. Increase Ki to cancel static error and minimize settling time until appearance of
overshoot/oscillations.

10.3.13 Corrector = PIPosition
PIPosition corrector can be used with AnalogStepperPosition or AnalogPosition
interface.
The AnalogPosition interface is to be used with a driver having a position input
(example = piezo driver).
The AnalogStepperPosition interface is to be used with a driver having two sine and
cosine current inputs (constant voltage gives constant currents in motor windings so
position is constant).

Figure 38: Corrector = PIPosition.

10.3.14 Parameters
FeedForward:

• One feed forward in position. No adjustable gain.
• When the system is used in open loop, the PI output is cut and the feed forward in

position is applied.
PI corrector:

• Output of the PI is a position.
Kp has no units.
Ki is given in 1/s.

XPS-D Controller Features Manual

 125 EDH0407En1052 – 08/22

10.3.15 Basics & Tuning
In most cases, only Ki is needed to correct static errors.
The overall gain of the integral part of the servo loop at a given frequency Frq is:

This gain is equal to one at:

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 126

11.0 Analog Encoder Calibration

This section refers only to analog sine encoder inputs. The purpose of the analog
encoder interpolation feature is to improve the stage accuracy by detecting and
correcting analog encoder errors such as offsets and sine to cosine amplitude
differences.
Other kinds of errors can exist in the encoder such as impure sine or cosine signals. This
feature will not compensate for them and will disturb the results of the calibration
process.
Also, this calibration process assumes that the errors are small, i.e., less than a few
percent.
Below are figures and numbers to illustrate the type of errors and their impact on
accuracy.

11.1 Analog Encoder Errors

Offset Error

Figure 39: Offset error.

The offset error generates 0.32% interpolation error per percent offset on the sine or
cosine signals. With a 20 µm scale pitch, 1% sine offset generates 63.5 nm peak to peak
interpolation error.

NOTE
The real signal is not always symmetrical to 0. The offset error is defined as the
difference between the signal's horizontal axis where it is symmetrical and 0.

XPS-D Controller Features Manual

 127 EDH0407En1052 – 08/22

Amplitude Mismatch

Figure 40: Amplitude mismatch.

The amplitude mismatch between sine and cosine signals generates 0.17% interpolation
error per percent amplitude mismatch. With a 20 µm scale pitch, 1% amplitude
mismatch generates 33 nm peak to peak interpolation error.

NOTE
Positive amplitude is the distance between the signal's maximum value and the
signal axis. Negative amplitude is the distance between the signal's minimum value
and the signal axis. If the positive amplitude and negative amplitude are not equal,
there is amplitude mismatch.

Combined Errors

Figure 41: Combined errors.

The combination of these errors is not a simple sum but is more likely a root mean
square relationship. With a 20 µm scale pitch, 1% sine offset, 1% cosine offset, 1%
amplitude mismatch between sine and cosine generates 93.37 nm peak to peak error.

Note that the calculated value, 96.27 nm is different than the measured 93.37 nm.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 128

11.2 Analog Encoder Compensation Feature
The compensation for repeatable distortions of the analog encoder input signals is
always active. It uses the following parameters read from the stages.ini file. The default
values are 0 for all stages:

EncoderSinusOffset = 0 Volts
EncoderCosinusOffset = 0 Volts
EncoderDifferentialGain = 0
EncoderPhaseCompensation = 0 deg

The function GroupInitializeWithEncoderCalibration() initializes the positioner and
runs the encoder calibration process. During calibration, the stage moves for 25
EncoderScalePitch and the controller determines the appropriate calibration values. The
controller though, will not automatically apply these values.
The function PositionerEncoderCalibrationParametersGet() returns the results of the
last encoder calibration. To apply these values, add them manually to the appropriate
section in the stages.ini file, and reboot the controller.
The XPS webpage Stages -> Lissajous shows the current analog encoder values. The
display zone matches the maximum possible amplitude of the analog signals. When
they are larger than this, the AD converter will clip, and the interpolation error will
increase dramatically. The green circle represents the “ideal” encoder (generally 1 Volt
peak to peak if “Optimum reference” value is set to 0.5). The blue and orange circles
can be used to represent limit values (“Minimum reference” and “Maximum
reference”). The red dot circle plots the different encoder values when moving the stage.

XPS-D Controller Features Manual

 129 EDH0407En1052 – 08/22

Example of the use of the functions
GroupInitializeWithEncoderCalibration(MyGroup)
PositionerEncoderCalibrationParametersGet(MyGroup.MyStage)
This function returns the encoder calibration parameter values: encoder sine
signal offset, encoder cosine signal offset, encoder differential gain, and
encoder phase compensation. These values need to be entered in the
appropriate section of the stages.ini.
PositionerEncoderAmplitudeValuesGet(MyGroup.MyStage)
This function returns the encoder amplitude values: encoder sine signal
maximum amplitude value, encoder sine signal current amplitude value,
encoder cosine signal maximum amplitude value and encoder cosine signal
current amplitude value.

Following is the complete process for calibrating a stage with an analog encoder
interface:

11.3 Calibration Procedure

Step 1
Initialize the positioner, run the calibration routine and read the encoder calibration
parameters.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 130

Step 2
Open XPS webpage Stages -> Lissajous. Move the positioner at very low speed.

Notice the variations between the actual (red) values and the ideal (green) values. In this
case, it makes sense to apply new compensation values.

Step 3
Apply the compensation values gathered in step 1 into the stages.ini; reboot the
controller.
Initialize the positioner, open Lissajous page and move the positioner at a very low
speed.

Notice the difference to the previous results. It might be necessary to run the
compensation at several positions and several times to optimize the results.

XPS-D Controller Features Manual

 131 EDH0407En1052 – 08/22

12.0 Excitation Signal

12.1 Introduction
The excitation-signal function generates a typical signal (a sine, a blank noise or an
echelon signal) that the controller sends to motors to excite the system. In measuring the
output signal of the excited system, we can determine some system characteristics, such
as the system transfer function.

12.2 How to Use the Excitation-Signal Function
The PID excitation-signal function is only available with the stages controlled in
acceleration (acceleration control, ex: brushless/linear motors), velocity (velocity
control) or in voltage (voltage control). It is not used with the stages controlled in
position (ex: stepper motors).
The excitation-signal function PositionerExcitationSignalSet can be executed only
when the positioner is in the “READY” state. When the excitation-signal function is in
process, the positioner is in the “ExcitationSignal” state. At the end of the process, the
positioner returns to the “READY” state (see 2.2 State Diagrams).
This function sends an excitation command to the motor over a time period. This
function is allowed for “PIDFFAcceleration”, “PIDFFVelocity” or
“PIDDualFFVoltage” control loop. The parameters to configure are signal type (0:sine,
1:echelon,2:random-amplitude,3:random-pulse-width binary-amplitude, integer),
frequency (Hz, double), amplitude (acceleration, velocity or voltage unit, double) and
during time (seconds, double).
The effective functional parameters for each mode are: (Limit means AccelerationLimit,
VelocityLimit or VoltageLimit)---:
– Sine signal mode: Frequency (>=1 and <= 5000), Amplitude (>0 and <= Limit), Time

(>0)
– Echelon signal mode: Amplitude (>0 and <= Limit, or <0 and >= -Limit), Time (>0).

+ During Time: Signal = Amplitude
+ End of Time: Signal = 0

– Random-amplitude signal mode: Amplitude (>0 and <= Limit), Time(>0), Frequency
(>= 1 and <= 5000).
The signal is generated with a random value at every controller base time (Tbase =
0.1 ms), then is filtered with a second order low-pass filter at the cut-off Frequency
value.

– Random-pulse-width binary-amplitude signal mode:
Amplitude (>0 and ≤ Limit), Time (>0), Frequency (≥1 and ≤5000).
The signal is a sequence of pulses (Signal = Amplitude or = 0) with the pulse
randomly varied in width (multiple of Tbase).
Frequency is the controlled system band-width (cut-off frequency), necessary for the
PRBS (Pseudo Random Binary Sequence) function configuration.

The non-effective functional parameters can accept any value, the value 0 is
recommended for simplicity.
The PositionerExcitationSignalGet() function is used to get the parameters previously
used with the PositionerExcitationSignalSet() function.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 132

12.3 Group State Diagram

(a) GroupInitialize
(b) GroupHomeSearch or (c) GroupReferencingStart and (d) GroupReferencingStop
(e) PositionerExcitationSignalSet

12.4 Function Description
• PositionerCorrectorExcitationSignalGainGet()
• PositionerCorrectorExcitationSignalGainSet()
(see Programmer’s Manual)

Notes :
The numbers in the
boxes represent the
values of the group
status.
Bold transitions are
driven by function,
the others are internal
transitions.

XPS-D Controller Features Manual

 133 EDH0407En1052 – 08/22

13.0 Introduction to XPS Programming

For advanced applications and repeating tasks, it is usually better to sequence different
functions in a program rather than executing them manually via the web site interface.
Motion programs can be written in different ways, but essentially are distinguished
between host-PC-managed and XPS-managed processes. A host-PC-managed program
uses the Ethernet TCP/IP interface from a PC to control the XPS. The XPS-managed
process is controlled internally by the XPS controller via a TCL script.
The chapter provides a brief introduction of the different ways of programming the
XPS. This section, however, cannot address all details. For further information, refer to
the Programmer’s Manual of the XPS controller which is accessible via the XPS web
site.

Host-managed processes
Host-managed processes are recommended for applications that require a lot of data
management or a lot of digital communication with devices other than the XPS
controller. In this case, it is more efficient to control the process from a dedicated
program that runs on a PC and which sends (and receives) information to (and from) the
XPS controller via the Ethernet TCP/IP communication interface. For more details,
please refer to the Software .NET Manual.

XPS-managed processes (TCL)
The XPS controller is also capable of controlling processes directly using TCL scripts.
TCL stands for Tool Command Language and is an open-sourced, object oriented,
command language. With only a few fundamental constructs, it is very easy to learn and
it is almost as powerful as C. Users of the XPS can use TCL to write complete
application code with any function. The TCL script can be executed in real time but in
the background, thus utilizing time that the controller does not need for servo or
communication. Multiple TCL programs can run in a time sharing mode. To learn more
about implementing TCL, refer to the TCL website www.tcl.tk.
The advantages of XPS-managed processes compared to host-managed processes are
faster execution and better synchronization in many cases without any processing time
taken by the communication link. XPS-managed processes or sub-processes are
particularly valuable for repeating tasks, tasks that run in a continuous loop, and tasks
that require a lot of data from the XPS controller. Examples include: anti-collision
processes (processes that utilize security switches to stop motion when stages are in
danger of collision); tracking, auto-focusing or alignment processes (processes that use
external data inputs to control the motion); or custom initialization routines (processes
that must constantly be executed during a system's use).
The XPS controller has real-time multi-tasking functionality, and with most applications
there is not only a choice between a host-managed or an XPS-managed process, but also
a recognition of splitting the application into the right number of sub-tasks and defining
the most efficient process for each sub-task. An efficient process design is one of the
main challenges with complex and critical applications in terms of time and precision. It
is recommended to spend time thinking about the proper process definition and the best
approach to control the XPS using a program.
However, not all details can be addressed in this chapter.

NOTE
The controller's time and date should be used only as reference. It is not intended
to be used as an absolute reference.

http://www.tcl.tk/

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 134

13.1 TCL Generator
The TCL generator provides a convenient way of generating simple executable TCL
scripts. These scripts are also a good place to start for the development of more complex
scripts. Note that applications that are memory intensive or require links other XPS may
require a script that is external to the XPS.
The TCL generator is accessible from the terminal page of the XPS web site. Clicking
the GENERATE TCL button generates a TCL script that includes the commands
previously executed and listed in the Command history list. Note that the command
order in the generated TCL script is chronological hence the order is the inverse of the
Command history list order. The name of the generated TCL script can be specified
after clicking GENERATE TCL otherwise a default name is given, New history yyyy-
mm-dd.tcl. The generated TCL script is stored in the controller and can be downloaded,
edited or deleted under the webpage Files → TCL script.

Example
This is an example using three stages, two in an XY group (named XY) and one in a
SingleAxis group (named S).
The following functions were executed in the Terminal web page.

KillAll()
GroupInitialize(S)
GroupInitialize(XY)
GroupHomeSearch(S)
GroupHomeSearch(XY)
GroupMoveAbsolute(S, 25)
GroupMoveAbsolute(S, 0)
GPIODigitalSet(GPIO3.DO, 63, 0)
EventExtendedConfigurationTriggerSet(XY.XYLineArcTrajectory.Start,
0, 0, 0, 0)
EventExtendedConfigurationActionSet(GPIO3.DO.DOSet, 42, 42, 0, 0)
EventExtendedStart()
XYLineArcVerification(XY, Linearc2.trj)
XYLineArcExecution(XY, Linearc2.trj, 10, 70, 1)

Then, the “GENERATE TCL” button is pressed to create a TCL script file. The default
file name is "New history yyyy-mm-dd.tcl". When executed, that TCL file will execute
all of the functions used individually in the terminal.

XPS-D Controller Features Manual

 135 EDH0407En1052 – 08/22

To execute the script, use the API function, TCLScriptExecute() and designate task
name and parameter. Example with the default TCL script name:
TCLScriptExecute(New history yyyy-mm-dd.tcl, task1, 0).
Alternatively, the user has the option to execute the TCL script and either block the
socket or designate a priority level to the task.
To execute the TCL script with the given task name (in this example task1) and block
the socket until the script terminates, use the API:
TCLScriptExecureAndWait(New history yyyy-mm-dd.tcl, task1, 0, char*).
To execute the TCL script with the given task name (in this example task1) at a user
defined priority level: HIGH, MEDIUM or LOW, use the API:
TCLScriptExecuteWithPriority(New history yyyy-mm-dd.tcl, task1, HIGH, 0).
In this example, after initializing and homing both groups, the TCL script moves the
single axis stage to the position of 70 units, then to the position of –70 units. It then sets
all pins 1 - 6 on the digital output GPIO1 to 0.
Once checked, the line arc trajectory defined in the Linearc2.trj file gets executed with a
velocity of 10 units/s and an acceleration of 70 units/s2. When this trajectory starts,
more precisely when the positioner of the X axis starts moving, the bits #2, #4 and #6 of
the output GPIO1 are set to 1 (42 = 101010).

NOTE
GPIO1.DO is only available for the Basic GPIO configuration.

NOTE
Selecting the function TCLScriptExecute() from the terminal menu opens a drop-
down list for the available TCLFileNames. However, this list is limited to 100
entries.

To kill a running script, use the API function TCLScriptKill() and input the user defined
task name; example TCLScriptKill(task1). Alternatively the user can kill all running
scripts by using the API function TCLScriptKillAll(). To get a list of task names, of all
running TCL scripts, use the API function TCLScriptRunningListGet().

To learn more about TCL programming, refer to the TCL website.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 136

13.2 Running Processes in Parallel
TCP provides a reliable, point-to-point communication channel that client-server
applications on the Internet use to communicate with each other. To communicate over
TCP, a client program and a server program establish a connection to one another. Each
program binds a socket to its end of the connection. To communicate, the client and the
server both read from and write to the socket that binds the connection.
Sockets are interfaces that can “plug into” each other over a network. Once “plugged
in”, the connected programs can communicate.

Figure 42: Running processes in parallel.

XPS uses blocking sockets. In other words, the programs/commands are “blocked” until
the request for data has been satisfied. When the remote system writes data on the
socket, the read operation will complete it and write the data in the received message
window of the Terminal menu (‘0’ if command has been executed without error, or the
error number in case of an error). That way, commands are executed sequentially since
each command always waits for a response before finishing and then allowing
execution of the next function. The main benefit of using this type of socket is that an
execution acknowledgement is sent to the host computer with each function. In case of
any error, it allows an exact diagnostic, which function has caused the error. It also
allows a precise sequential process execution. On the other hand, more functions could
be sent in parallel using non-blocking sockets. However, the drawback is that it is
almost impossible to diagnose which function caused an error.
To execute several processes in parallel, for instance to request the current position
during a motion and other data simultaneously, it is possible to communicate to the XPS
controller via different sockets. The XPS controller supports a high number of parallel
opened sockets (see exact value in Start-Up Manual). The total number of open
communication channels to the XPS controller, be it via the website, TCL scripts, a
LabVIEW program, or any other program can not be larger than this value.
Users who prefer not to use blocking sockets, or whose programming languages don’t
support multiple sockets, such as Visual Basic versions prior to version .Net, can
disable the blocking feature by setting a low TCPTimeOut value, 20 ms for instance. In
this case, the XPS will unblock the last socket after the TCPTimeOut time. However,
this method loses the ability to pinpoint which commands were not properly executed.

XPS-D Controller Features Manual

 137 EDH0407En1052 – 08/22

14.0 HXP-ELEC-D controller features

14.1 HXP-ELEC-D architecture

14.1.1 Hexapod Group
Within the HXP controller, a “HEXAPOD” group is defined in factory. This motion
group features 6 positioners which are the 6 struts or actuators of the Hexapod. The 2
additional axes can be arranged in two Single Axis groups, two Spindle groups, an XY
group or a MultipleAxes group. Only an XYZ group can not be used.
The “GroupNames” and the “PositionerNames” are set in the system.ini configuration
file of the HXP that is stored in the “..admin\config” folder of the HXP controller. Here
is an example of a system.ini file with one Hexapod group and one linear stage:

[GENERAL]
BootScriptFileName =
BootScriptArguments =

[GROUPS]
HexapodInUse = HEXAPOD
SingleAxisInUse= SINGLE1

;---

[HEXAPOD]
GeometryFileName = GeometrySTQ_RRPS.ini

PositionerInUse = 1,2,3,4,5,6
InitializationAndHomeSearchSequence = Together

WorkCoordinates = 0, 0, 209, 0, 0, 0
BaseCoordinates = 0, 0, 25, 0, 0, 0
ToolCoordinates = 0, 0, 25, 0, 0, 0

[HEXAPOD.1]
PlugNumber = 1
StageName = HXP100P-1

[HEXAPOD.2]
PlugNumber = 2
StageName = HXP100P-2

[HEXAPOD.3]
PlugNumber = 3
StageName = HXP100P-3

[HEXAPOD.4]
PlugNumber = 4
StageName = HXP100P-4

[HEXAPOD.5]
PlugNumber = 5
StageName = HXP100P-5

[HEXAPOD.6]
PlugNumber = 6
StageName = HXP100P-6

;--

 [SINGLE1]
PositionerInUse = POS

[SINGLE1.POS]
PlugNumber = 7
StageName = ILS200LM@XPS-DRV02

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 138

In this example, the GroupName of the Hexapod group is HEXAPOD and the group
name for the linear stage is SINGLE1. The 6 positioners of HEXAPOD are
HEXAPOD.1, HEXAPOD.2, HEXAPOD.3, HEXAPOD.4, HEXAPOD.5, and
HEXAPOD.6 and the positioner name for the linear stage is SINGLE1.POS.
HXP manages all safeties and trajectories on a group level. For instance, the function
GroupHomeSearch (HEXAPOD) homes the whole HEXAPOD group. In this case all
six struts of the Hexapod are moved to their reference position in a well-defined
sequence that is also defined in the systerm.ini file (“Together” in the example above).
In case of any error during this homing process, for instance if the home position of one
strut is not found, the whole home process is stopped, and the motion group goes to an
error state (see next section).

14.1.2 Hexapod Coordinate Systems
A Hexapod is a motion device with 6 degrees of freedom. The Hexapod platform can
translate in three perpendicular axes, referred to as X, Y and Z, and rotate around these
axes, referred to as U, V, and W. U, also referred to as roll, is a rotation around X. V,
also referred to as pitch, is a rotation around Y. And W, also referred to as yaw, is a
rotation around Z. Any position of the Hexapod platform is described by these six
coordinates: (X Y Z U V W).
For translations, HXP uses Cartesian coordinates designated as X, Y, and Z. X usually
refers to the main propagation axis, in optics for instance to the direction of the optical
rays. Z refers to the vertical axis. X, Y and Z form a right-handed coordinate system.
For rotations, HXP uses Bryant angles in definition ZYX. This definition is frequently
used in Hexapod motion, robotics and aviation.
So how is the position (X Y Z U V W) of a HXP Hexapod group defined? Consider a
xyz coordinate system, where the moving carriage of the Hexapod platform is attached
to, meaning, the carriage of the Hexapod moves with the coordinate system. This is
called the Tool coordinate system. Consider a second coordinate system XYZ that is
fixed, means it does not move with the carriage. This is called the Work coordinate
system. The six coordinates (X Y Z U V W) describe the position of the Tool coordinate
system in the Work coordinate system. At position (0 0 0 0 0 0) the two coordinate
systems, Tool and Work, are coincident. The position (X Y Z U V W) is reached as
follow:
1. Starting from position (0 0 0 0 0 0), move the Tool coordinate system to the

position XYZ in the Work coordinate system
2. Make a clockwise rotation about the z axis of the Tool coordinates system by the

yaw angle (W).
3. Make a clockwise rotation about the new (once rotated) y axis of the Tool

coordinate system by the pitch angle (V)
4. Make a clockwise rotation about the new (twice rotated) x axis of the Tool

coordinate system by the roll angle (U)
Figure 43 illustrates the angular motion. Figure 44 is a simpler graphic with the example
of an airplane as object.

XPS-D Controller Features Manual

 139 EDH0407En1052 – 08/22

Figure 43: Bryant angle defintion.

Figure 44: Bryant angle definition (simple representation).

So, the important thing to remember is:

The position of the Hexapod moving carriage is always understood as the
position of the Tool coordinate system in the Work coordinate system.

The tool coordinate system is attached to the carriage and moves with the carriage and
vice versa. The Work coordinate system is stationary and is defined in the “World
coordinate system”. By changing the length of the six Hexapod struts, the position of
the Tool coordinate system in the work coordinate system is changed.
However, this information is not sufficient to fully define the position of the Hexapod
carriage in the World coordinate system. This is because it is also possible to move the
Hexapod at its base plate to a new location. In this case, the position of the Hexapod
carriage changes as well, yet the length of the struts hasn’t changed. Hence, we need
another, a third coordinate system that defines the position of the Hexapod base in the
World coordinate system. This is called the Base coordinate system.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 140

Base coordinate System
The Hexapod is physically located in the Base coordinate system so that all lower joints
of the Hexapod struts are in the XY plane of the Base coordinate system (Z=0), the
center line of the Hexapod matches with the Z-axis, and the motor cables face in the X-
direction (see also technical drawing provided with the Hexapod mechanics).
The position of Base coordinate system in the World coordinate system is defined in the
system.ini configuration file. The system.ini file is located in the “..admin\config”
folder of the HXP controller. On page 137 you can see an example of such a
configuration file. In the default configuration of the HXP controller, the Hexapod is
located as follows in the World coordinate system:
• The Hexapod base plate is orthogonal to the Z-axis of the World coordinate system
• The center of the lower surface of the Hexapod base plate has the World coordinates

X=0, Y=0, Z=0
• The motors cables point in the X-direction of the World coordinate system.
That means, the only coordinate of the Base coordinate system in the World coordinate
system that is different from zero is the Z-coordinate, and this Z-coordinate is equal to
the distance between the plane of the lower joints and the lower surface of the Hexapod.
For those to whom this sounds too complicated, don’t change with the Base coordinate
system in the system.ini file, but keep in mind the following:

In the default configuration of the HXP, the center of the World coordinate
system is at the center of the lower surface of the Hexapod base plate, Z is
orthogonal to the base plate, and X is in the direction of the motor cables.

So why is it necessary to change the position of the Base system at all? The primary
need is if the position of the Base has changed, for instance after service or if the
Hexapod has been exchanged with another one with a slightly different geometry. In
this case it is possible to change the position of the Base coordinate system in the
system.ini file without having to make other changes. Any application can run exactly
the same with the exact same physical positions being reached, yet the length of the
Hexapod struts could be different to reach the same position in space. All this will be
managed by the HXP.

Tool coordinate system
The Tool coordinate system is attached to the carriage and moves with the carriage, and
vice versa. So, we need to define the position of the Tool coordinate system relative to
the physical properties of the Hexapod carriage. This is done by another coordinate
system, that we call “Carriage”. This Carriage system is physically located so that all
upper joints of the Hexapod struts are in the XY plane of the Carriage coordinate system
(Z=0), the center line of the Hexapod carriage matches with the Z-axis, and the
directions of X and Y are the same as the ones of the world coordinate system when the
Hexapod is at its origin position (X=0, Y=0, Z=0, U=0, V=0, W=0).
The position of Tool coordinate system is set in the system.ini configuration file, but its
position can also be changed by function call, see 14.2.9 for details. In the default
configuration of the HXP controller, the Tool coordinate system is set as follow:
• The center of the Tool coordinate system matches with the center of the upper

surface of the Hexapod carriage. In other words, the center of the upper surface of
the Hexapod carriage has the Tool coordinates X=0, Y=0, and Z=0.

• The Z-axis of the Tool coordinate system is orthogonal to the carriage
• The orientation of the X- and Y-axis of the Tool system are the same as the ones of

the Base coordinate system (and hence also of the World coordinate system), when
the Hexapod is at its origin position.

That means the only coordinate of the Tool coordinate system (in the Carriage
coordinate system) that is different from zero is the Z-coordinate and this Z-coordinate
is equal to the distance between the plane of the upper joints and the upper surface of
the Hexapod carriage.
For those to whom this sounds too complicated, just bear in mind the following:

XPS-D Controller Features Manual

 141 EDH0407En1052 – 08/22

In the default configuration of the HXP, the center of the Tool coordinate
system is at the center of the upper surface of the Hexapod carriage, Z is
orthogonal to the carriage, and X is in the direction of the motor cables, when
the Hexapod is at its origin position.

Work coordinate system
The Work coordinate system is defined in the World coordinate system (remember, by
default, the center of the World system is at the center of the lower surface of the
Hexapod base, Z is orthogonal to the base, an X is in direction of the motor cables).

In the default configuration of the HXP, the Work coordinate system is located
as such that the Tool coordinate system is coincident with the Work coordinate
system when the Hexapod is at its origin position.

In other words, the Hexapod has the position (0 0 0 0 0 0) at the origin position
(remember: position of a Hexapod is always position of the Tool system in the Work
system).
The position of the Work coordinate system (in the World system) is set in the
system.ini configuration file, but its position can also be changed by function call, see
chapter 14.2.9 for details.
Figure below provides simple 2D sketches of the locations of the different coordinate
systems in the default configuration of the HXP.

Figure 45: HXP default coordinate systems at origin position (left) and any other
position (right). Note that the tool coordinate system always moves with the carriage.

So before moving forward we want to summarize the most important things:
1. The position of the Hexapod (moving carriage) is understood as the position of

the Tool coordinate system in the Work coordinate system.
2. The tool coordinate system is attached to the carriage and moves with the

carriage, and vice versa. In the default configuration of the HXP, the center of
the Tool system is at the center of the upper surface of the Hexapod carriage, Z
is orthogonal to the carriage, and X is in the direction of the motor cables, when
the Hexapod is at its origin position.

3. The work coordinate system is stationary. In the default configuration of the
HXP, the Work coordinate system is coincident with the Tool coordinate
system when the Hexapod is at its origin position. This means, when the
Hexapod is moved to the position (0 0 0 0 0 0), after Homing.

4. All positions are defined in Cartesian coordinates with Bryant angles. A
position (X Y Z U V W) is reached as follow:
a) Starting from position (0 0 0 0 0 0), move the Tool coordinate system to the

position XYZ in the Work coordinate system.
b) Make a clockwise rotation about the Z-axis of the Tool coordinates system

by the yaw angle (W).
c) Make a clockwise rotation about the new (once rotated) Y-axis of the Tool

coordinate system by the pitch angle (V).
d) Make a clockwise rotation about the new (twice rotated) X-axis of the Tool

coordinate system by the roll angle (U).

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 142

14.2 Motion

14.2.1 Measurement Units
The HXP controller is preconfigured so that all length units are in millimeters and all
angular units are in degrees. This is true for the positions of the Hexapod group, the
positions of the coordinate systems and all motion positioner related length units (such
as a positioner is one of the struts of a Hexapod). This means all specifications like
travels, speeds, accelerations, etc. have units of mm, mm/s, mm/s², etc.
These hexapod units should not be modified.

14.2.2 Position Information
The HXP uses 4 types of position information: TargetPosition, SetpointPosition,
FollowingError and CurrentPosition. The meaning of these is as follow:
• The CurrentPosition is the current physical position of the positioner. It is equal to

the encoder position after all compensations (backlash, linear error, hysteresis and
mapping) have been taken into account.

• The SetpointPosition is the theoretical position commanded to the servo loop. It is
the position where the positioner should be at this moment in time. The
SetpointPositions are calculated by the profiler of the HXP controller in relation to
the motion command and the motion parameters (speed, acceleration, jerk, etc.).

• The FollowingError is the difference between the CurrentPosition and the
SetpointPosition.

• The TargetPosition is the position where the positioner must be after the completion
of a move.

The CurrentPosition, SetpointPosition, and TargetPosition can be queried from the
controller using the appropriate function calls. The behavior of all three functions is
similar:
The function GroupPositionCurrentGet (HEXAPOD.X) returns only the X
coordinate of the Hexapod platform (the position of the Tool coordinate system in the
Work coordinate system). The same behavior for HEXPAPOD.Y for the Y coordinate,
HEXAPOD.Z for the Z coordinate, HEXAPOD.U for the U coordinate, etc. The
coordinate names HEXAPOD.X, etc. can be also used for data gathering, see § 8.0.
The function GroupPositionCurrentGet (HEXAPOD.1) returns the position of the
Hexapod strut 1. The same behavior for HEXPAPOD.2 for the second strut,
HEXAPOD.3 for the third strut, etc. The position of the Hexapod struts is primarily of
interest for maintenance, only.
The function GroupPositionCurrentGet (HEXAPOD) returns the (HEXAPOD.1,
HEXAPOD.2, HEXAPOD.3, HEXAPOD.4, HEXAPOD.5, HEXAPOD.6) positions of
the Hexapod struts at once (and not X,Y,Z,U,V,W coordinates like it used to do on
former HXP-ELEC controllers. Gathering X,Y,Z,U,V,W at once is not possible).

14.2.3 Home Search
Upon power-up of the HXP controller, any group must be first initialized and homed.
The default GroupName for a Hexapod group is HEXAPOD (case sensitive). The name
is defined in the system.ini configuration file of the HXP controller, see chapter 14.1.1
for details.
The function GroupInitialize (HEXAPOD) initializes the group. When initialized, the
motors are powered.
The function GroupHomeSearch (HEXAPOD) launches a Home search process on
the group. Homing refers to a predefined motion process that moves a stage to a unique
reference position and defines this as Home. During the Hexapod home search process,
all positioners move to a unique reference position, which, depending on the hardware,
in most cases is close to the negative travel limit of the Hexapod struts.

XPS-D Controller Features Manual

 143 EDH0407En1052 – 08/22

The type of Home Search process used for each positioner is defined in the stages.ini
configuration file of the HXP, that is stored in the “..admin\config” folder of the HXP
controller. For more details about HomeSearch entries in the stages.ini in general, refer
to section 3.2. Typically, these settings are not to be modified by users.
In the default configuration of the HXP controller, the position of the Hexapod after
homing is different from (0 0 0 0 0 0) and all 6 strut counters are set to specific home
preset values. Once the hexapod is moved to (0 0 0 0 0 0), the Tool coordinate system is
coincident with the Work coordinate system and the hexapod is close to middle
position.

NOTE
When the home position of a Hexapod is close to the minimum travel limit of the
Hexapod struts, the only possible motion after homing is in positive Z direction.

A Hexapod has the maximum available travel range in X, Y, Z, U, V, and W when the
Hexapod struts are approximately half way extended. This is the case when the
Hexapod is approximately in the middle of its available Z travel range. So, depending
on the application, it may be recommended to move to this position after homing and to
use this position as the “optimum working position”. See also further note in chapter
14.2.9 about changing the positions of the Tool and Work coordinate systems.

Example
After homing all Hexapod struts are close to their minimum travel position.
The position at home is approx. (0 0 -14 0 0 0). The Hexapod has a Z travel
range of 28 mm (+/-14 mm). The function HexapodMoveAbsolute
(HEXAPOD, Work, 0, 0, 0, 0, 0, 0) moves the Hexapod to the absolute
position (0 0 0 0 0 0). From this position, the Hexapod has a maximum
possible travel range in X, Y, Z, U, V, and W.

14.2.4 Hexapod Referencing State: GroupReadyAtPosition
A standard Hexapod home search process might not be desirable in the following
situations.
• There is a risk of collision by moving a Hexapod to the default home position after

re-initializing the motors.
• The system is in ‘NOT INITIALIZED’ state due to a non-permanent fault condition

but encoders are still working.
• The position of a Hexapod must be maintained after the scheduled power shutdown.
The HXP controller’s GroupReadyAtPosition (GroupName) is an alternative to the
predefined Hexapod home search processes. It allows the Hexapod to be at READY
state at the user-defined coordinates without performing a home search. The group must
be initialized and must be in “NOT REFERENCED” state before executing the
GroupReadyAtPosition function.

Example
Obtain and record the current position for each Hexapod strut.
GroupPositionCurrentGet(HEXAPOD.1, double *)
GroupPositionCurrentGet(HEXAPOD.2, double *)
GroupPositionCurrentGet(HEXAPOD.3, double *)
GroupPositionCurrentGet(HEXAPOD.4, double *)
GroupPositionCurrentGet(HEXAPOD.5, double *)
GroupPositionCurrentGet(HEXAPOD.6, double *)

Example of actuator (strut) positions: (0.588,0.291,0.813,0.001,-0.140,0.970)

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 144

NOTE
User to document these actuator positions for later reference. Also
document the last known hexapod absolute position (X,Y,Z,Tx,Ty, Tz)
prior to shutdown. Example: (1,1,1,0,0,0)

After a power shutdown or when motors are turned off; the group is in NOT
INITIALIZED state.
Execute GroupInitialize(HEXAPOD).
During initialization, the hexapod should not move.
Use the GroupReadyAtPosition to avoid the home search routine and to set
the Hexapod struts encoders to previously recorded positions.
These actuator positions must be the same as the positions prior to shutdown.
Execute GroupReadyAtPosition(HEXAPOD,0.588,0.291,0.813,0.001,-
0.140,0.970)

The example above allows the Hexapod to be at READY state at the previous hexapod
position (X, Y, Z, Tx, Ty, Tz) (1,1,1,0,0,0) after power shutdown.

NOTE
All other settings will remain the same, Work and Tool Coordinate Systems, for
example.

 WARNING
In order to avoid the possible loss of position accuracy, actual positions of the
actuators must be carefully entered in the GroupReadyAtPosition() function. A
standard homing process is recommended, whenever possible, after moving to a
safe position.

14.2.5 Absolute Moves (HexapodMoveAbsolute)
The function HexapodMoveAbsolute (GroupName, Work, X, Y, Z, U, V, W) moves
the Hexapod to the position (X Y Z U V W).
To be more precise, it moves the Tool coordinate system, and hence the carriage of the
Hexapod that moves with the Tool coordinate system, to the position (X Y Z U V W) in
the work coordinate system. This context is discussed in detail in chapter 14.1.2 and
important for a correct understanding of the Hexapod motion. For illustration, Figure 46
shows some simple examples of different absolute positions.
In the default configuration of the Hexapod, the center of tool coordinate system is in
the center of the top plate of the Hexapod carriage. This is the pivot point for all
rotations.
The position of the Tool coordinate system with respect to the carriage of the Hexapod,
can be relocated, see chapter 14.2.9 for details.

XPS-D Controller Features Manual

 145 EDH0407En1052 – 08/22

Figure 46: Default HXP configuration:
Left: Hexapod at position (0 0 0 0 0 0), Tool coincident with work

Middle: Hexapod at position (X 0 Z 0 0 0)
Right: Hexapod at position (X 0 Z 0 V 0)

All move commands are synchronized on the Hexapod positioners (the Hexapod struts).
This means all positioners start and stop at the same time and have always completed
the same portion of their travel distance. The “slowest” positioner defines the speed and
acceleration of the other positioners. If all positioners have the same speed, the
“slowest” positioner is the one that has the longest distance to travel.

NOTE
As the motion is synchronized on the Hexapod struts, the motion does not follow
an ideal “straight” trajectory in the work coordinate system. For a 1 mm long
trajectory, for example, this may result in a deviation of ~2 µm from the ideal
trajectory in the work coordinate system.

NOTE
Since it moves with the carriage, absolute moves are not available in Tool
coordinate system.

14.2.6 Incremental Moves Along and Around Tool (HexapodMoveIncremental)
The function HexapodMoveIncremental (GroupName, Tool, X, Y, Z, U, V, W)
performs an incremental move along and around the axis of the Tool coordinate system.
Different than the absolute move, that uses the work coordinate system for reference,
the incremental Tool move uses the Tool coordinate system before the motion for
reference, let’s call it ToolFix, and moves the Tool coordinate system to the position (X
Y Z U V W) in the ToolFix coordinate system.
Figure 47 shows a simple example for a linear incremental tool motion.

Figure 47: Left: Hexapod at position (X 0 Z 0 V 0)
Right: Hexapod after HexapodMoveIncremental (HEXAPOD, Tool, 0, 0, Z, 0, 0, 0)

Incremental rotations around tool rotate the Tool Coordinate System around the ToolFix
system. The lateral positions X, Y, Z of Tool in Work don’t change. This is the same as
for absolute rotations. But the axes for rotations are those of the ToolFix system and not
those of the Work system, see Figure 48 for illustrations.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 146

Figure 48: Left: Hexapod at position (X 0 Z 0 V 0)
Right: Hexapod after HexapodMoveIncremental (HEXAPOD, Tool, 0, 0, 0, 0, V, 0)

Although this function is very well defined and can be used to increment all 6
coordinates at the same time, it is recommended to increment either only linear
coordinates (XYZ), or only one angular coordinate (U, V, or W) at a time.

14.2.7 Incremental Moves Along and Around Work (HexapodMoveIncremental)
The function HexapodMoveIncremental (GroupName, Work, X, Y, Z, U, V, W)
performs an incremental move along and around the axis of the work coordinate system.
Different than the incremental move along and around tool, the incremental move along
and around work uses the work coordinate system as reference.
When used for linear incremental motion with no incremental rotation, the final XYZ
position is equal to the XYZ position before the motion, plus the increment:

Example
GroupPositionCurrentGet (HEXAPOD.X)
GroupPositionCurrentGet (HEXAPOD.Y)…etc
Returns the current positions of HEXAPOD. Returns: X, Y, Z, U, V, W
HexapodMoveIncremental (HEXAPOD, Work, x, y, z, 0, 0, 0)
Performs an incremental move along and around work. When done,
GroupPositionCurrentGet (HEXAPOD.X)…etc
Returns: X+x, Y+y, Z+z, U, V, W

Incremental rotations around Work rotate the Tool Coordinate System around the
Work coordinate system. So, different than absolute moves or incremental moves
around Tool, an incremental rotation around Work changes the XYZ position of the
Hexapod, unless the Hexapod is at X=Y=Z=0. Figure 49 shows an example of an
incremental Work rotation for illustration.

Figure 49: Left: Hexapod at position (X Y Z U V W)
Right: Hexapod after HexapodMoveIncremental (HEXAPOD, Work, 0, 0, 0, 0, V, 0

Although this function is very well defined and can be used to increment all 6
coordinates at a time, it is recommended to increment either only linear coordinates
(XYZ), or only one angular coordinate (U, V, or W) at a time.

14.2.8 Moves of the Hexapod Struts (GroupMoveAbsolute and GroupMoveRelative)
The functions GroupMoveAbsolute (GroupName or PositionerName) and
GroupMoveRelative (GroupName or PositionerName) move an individual Hexapod
strut (PositionerName) or all Hexapod struts (GroupName) to a desired position
(absolute move) or by a defined increment (relative move).
Moving an individual Hexapod strut may result in a surprising motion of the Hexapod
platform. Hence, these functions should be used carefully. The primarily use of these
functions is for maintenance, only.

XPS-D Controller Features Manual

 147 EDH0407En1052 – 08/22

14.2.9 Changing the Position of the Tool and Work Coordinate Systems
The default positions of the Work coordinate system (in World) and the Tool coordinate
system (in Carriage) are set in the system.ini configuration file of the HXP controller,
see chapter 14.1.2 for details. Both systems positions can be changed with the function
HexapodCoordinateSystemSet (GroupName, Tool or Work, X, Y, Z, U, V, W). The
function HexapodCoordinateSystemGet (GroupName, Tool or Work, X, Y, Z., U,
V, W) returns the current position of the Tool or Work system.
The function HexapodCoordinateSystemSet () does not change the settings in the
system.ini file. It only changes the current positions of Tool and Work. After booting
the HXP controller, always the default values from the system.ini are used.
In the default configuration of the HXP, the center of the Tool coordinate system is at
the center of the upper surface of the Hexapod carriage, Z is orthogonal to the carriage,
and X is in the direction of the motor cables, when the Hexapod is at its origin position.
This means the default pivot point for all absolute moves (HexapodMoveAbsolute ())
and for all incremental rotations around Tool (HexapodMoveIncremental (GroupName,
Tool)) is the center of the top surface of the carriage. To change this pivot point, one
must change the position of the Tool coordinate system.

Example
The HXP is in the default configuration. After homing (state 11), the function
GroupPositionCurrentGet (HEXAPOD.X)…etc
returns: 0, 0, -14, 0, 0, 0. The function
HexapodCoordinateSystemGet (HEXAPOD, Tool)
returns the current position of the Tool coordinate system (in carriage).
The return is: 0, 0, 25, 0, 0, 0. The function
HexapodCoordinateSystemSet (HEXAPOD, Tool, 0, 0, 75, 0, 0, 0)
sets the pivot point for rotations 50 mm above the center of top surface of the
Hexapod carriage. The function
GroupPositionCurrentGet (HEXAPOD.X)…etc
now returns: 0, 0, 36, 0, 0, 0. This is because changing the position of the
Tool coordinate system in the Carriage system also changes the position of
the Tool coordinate system in the Work system.

Let’s assume the Home position of HEXAPOD is when all Hexapod struts are close to
their lower travel limit. This is true for some of Newport’s Hexapods. In this case, the
position 0, 0, 36, 0, 0, 0 is the “lowest” position that the Hexapod can reach (see
example in chapter 14.2.3 for further explanations). To move the Hexapod to its
“optimum working position” one would need to move the Hexapod to its mid-point z-
travel position.

Example
Starting from the example above, the function
HexapodMoveAbsolute (HEXAPOD, Work, 0, 0, 50, 0, 0, 0),
Moves the Hexapod to its “optimum working position”, assuming that the
Hexapod has a Z travel range of 28 mm, see documentation of the Hexapod
mechanics for details.

So, the position (0, 0, 50, 0, 0, 0) is the “optimum working position” with a Tool
coordinate system that is 50 mm above the center of the carriage. This position may be
uncomfortable, particular if the application can benefit also from incremental rotations
around Work. Please remember, incremental rotations around Work perform a rotation
around the axis of the Work system and in this case an X and Y axis that is 50 mm
“underneath” the Tool system. The result is a concave motion with a radius of 50 mm to

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 148

the center of Tool (that is 50 mm above the carriage). This may or may not be wanted.
To change this behaviour one can change the position of the Work system.

Example
Starting from the example above, the function
HexapodCoordinateSystemGet (HEXAPOD, Work)
returns the current position of the Work coordinate system (in world).
The return is: 0, 0, 209, 0, 0, 0. The function
HexapodCoordinateSystemSet (HEXAPOD, Work, 0, 0, 259, 0, 0, 0)
changes the position of the Work coordinate system. The function
GroupPositionCurrentGet (HEXAPOD.X)…etc
now returns: 0, 0, 0, 0, 0, 0. This is because changing the position of the
Work coordinate system also changes the position of the Tool coordinate
system in the Work system. Now Tool equals Work at the “optimum working
position” of the Hexapod.

If these changes shall be done permanent, it is recommended to change the positions of
the Tool and the Work coordinate systems in the HXP system.ini file and to launch the
function HexapodMoveAbsolute (HEXAPOD, Work, 0, 0, 0, 0, 0, 0) after every
GroupHomeSearch (HEXAPOD).

14.2.10 RightPath™ Trajectories
The HXP controller RightPathTM features 3 different types of trajectories along and
around the Work or the Tool coordinate system strictly for the hexapod:
The Line trajectory is a trajectory defined by a straight line segment.
A line element is defined by specifying the (X, Y, Z) ending point in the Work or Tool
coordinate system.
All line element positions are defined relative to the trajectory’s starting point.

The Arc trajectory is a trajectory defined by a curve segment.
An arc is defined by specifying the radius R, the sweep angle A and the rotation Axis.

The rotation trajectory is a trajectory defined by a rotation around X, Y or Z axis.

XPS-D Controller Features Manual

 149 EDH0407En1052 – 08/22

These trajectories are available only for HEXAPOD group. The major benefit of these
trajectories is the ability to maintain constant speed (speed being the scalar of the
trajectory velocity) throughout the entire path, excluding the acceleration and
deceleration periods. The trajectory is user defined by API’s described in this section.
Once the user executes the API function to begin the trajectory, the HXP automatically
calculates the needed moves for all Hexapod struts and executes the motion in the Work
or the Tool coordinate system. A dedicated function performs a precheck of the
trajectory which returns the maximum and minimum travel requirement per each
Hexapod strut as well as maximum possible trajectory speed and trajectory acceleration
that is compatible with the different positioner parameters.
The function HexapodMoveIncrementalControl executes Line, Arc or Rotation
trajectory with the maximum velocity.
The function HexapodMoveIncrementalControlWithTargetVelocity executes Line,
Arc or Rotation trajectory with the specified velocity.

14.2.10.1 Trajectory Terminology
Trajectory: defined as a continuous multidimensional motion path. Hexapod line, arc or
rotation trajectories are defined in a three-dimensional workspace within the Tool or
Work Coordinate systems. These are used with only Hexapod groups. The main
requirement of a line, arc or rotation is to maintain a constant speed (speed being the
scalar of the vector velocity) throughout the entire path (except during the acceleration
and deceleration periods).
Trajectory velocity: the tangential linear velocity (speed) along the trajectory during its
execution
Trajectory acceleration: the tangential linear acceleration used to start and end a
trajectory. Trajectory acceleration and trajectory deceleration are equal by default.
Lag time: Prior to executing the trajectory with HexapodMoveIncrementalControl(),
the HXP controller calculates the needed move for all Hexapod struts, and the time it
takes to process this calculation is called Lag time. The lag time depends on the number
of points in trajectory, which is determined by the ProfileGeneratorISRRatio
parameter in “system.ref” file.
The Profile Generator loop calculates the setpoints in a trajectory at a rate relative to the
Servo Rate. The ratio is called ProfileGeneratorISRRatio.

ProfileGeneratorISRRatio = Servo Rate / Profile Generator Rate
With: Servo Rate = 1/CorrectorISRPeriod

The number of points on the trajectory is limited to 50,000.
The time interval between two points (Profiler Period) is equal to CorrectorISRperiod *
ProfileGeneratorISRRatio

Example
CorrectorISRperiod = 175 μs
ProfileGeneratorISRRatio = 14
The time interval (Profiler Period) is 175 μs * 14 = 2450 μs.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 150

The maximum duration of a trajectory in this case is 50,000 * 175 μs * 14 = 122.5 s.

14.2.10.2 Trajectory Conventions
When defining and executing a line, arc or rotation trajectory, a number of rules must be
followed:
• The motion group must be a HEXAPOD group.
• A Line trajectory is available in the Tool or Work coordinate systems. The

displacement value for a Line trajectory is not limited. During a Line trajectory, the
carriage of the hexapod does not rotate and remains parallel to its start orientation.

• An Arc trajectory is available in the Work coordinate system only. The distance
between Tool and Work defines the radius of the Arc. When the arc is defined with
2 or 3 axes, the displacement value is between - 90⁰ and + 90⁰ (the limitation is due
to the Bryant angle representation). When the arc is defined with only one axis, a
value greater than 90⁰ can be used. During an arc trajectory, the carriage of the
hexapod does not rotate and remains parallel to its start orientation.

• A Rotation trajectory is available in the Tool or Work coordinate system. It is
defined by 3 angle values, primarily limited by hexapod travel ranges. During a
rotation trajectory, the carriage of the hexapod does rotate, but may also move in
XYZ if not located at the origin of the rotation coordinate system.

Figure 50: RightPathTM Trajectory Conventions in HXP default coordinate systems —
Line or Rotation Trajectory is defined in Tool or Work coordinate system; Arc
trajectory is defined in Work coordinate system only.

14.2.10.3 Geometric Conventions
The coordinate system of a Line or Rotation trajectory is the Tool or Work coordinate
system. The coordinate system of an Arc trajectory is the Work coordinate system.
For the details of Hexapod Tool and Work coordinate systems and Bryant angle
definition, refer to chapter 14.1.2.

14.2.10.4 Trajectory Verification and Execution
There are 5 functions to verify or execute a trajectory:
• HexapodMoveIncrementalControl(GroupName, CoordinateSystem,

HexapodTrajectoryType, dX, dY, dZ): Executes line, arc or rotation trajectory
with the maximum velocity

• HexapodMoveIncrementalControlwithTargetVelocity (GroupName,
CoordinateSystem, HexapodTrajectoryType, dX, dY, dZ, Velocity): Executes
line, arc or rotation trajectory with the specified velocity

• HexapodMoveIncrementalControlLimitGet (GroupName, CoordinateSystem,
HexapodTrajectoryType, dX, dY, dZ): Returns the maximum velocity and the
percent of trajectory executable versus the target distance entered

• HexapodMoveIncrementalPulseAndGatheringSet (GroupName, Divisor):
Configures gathering data and generates pulses on a GPIO connector during only a
constant velocity (see Start-Up Manual for details on GPIO connectors)

• HexapodSGammaParametersDistanceGet (PositionerName, Displacement,
Velocity, Acceleration, MinimumJerkTime, MaximumJerkTime): Returns the
distance during acceleration phase and distance during constant velocity phase in the
virtual SGamma profiler used to define a Hexapod trajectory

XPS-D Controller Features Manual

 151 EDH0407En1052 – 08/22

14.2.10.5 Line Trajectory
The function HexapodMoveIncrementalControl (GroupName, CoordinateSystem,
Line, X, Y, Z) performs a line trajectory move along the XYZ axis of the work ot tool
coordinate system with maximum velocity allowed by the actuators.
The function HexapodMoveIncrementalControlWithTargetVelocity(GroupName,
CoordinateSystem, Line, X, Y, Z, A) performs a line trajectory move along the XYZ
axis of the work or tool coordinate system with target velocity of A mm/s.

Example 1
Work: Line from [0, 0, 0] to [17, 0, 0]
HexapodMoveAbsolute(HEXAPOD, Work, 0, 0, 0, 0, 0, 0)
Moves the carriage to zero position
HexapodMoveIncrementalControlLimitGet(HEXAPOD, Work, Line,
100, 0, 0, double*, double*)
The return is: 0, 5.921847271479, 0.17222222222222
HexapodMoveIncrementalControlLimitGet(Hexapod, Work, Line, 17, 0,
0, double*, double*)
The return is: 0, 10.08298747472,1
HexapodMoveIncrementalControl(Hexapod, Work, Line, 17, 0, 0)
Performs a line trajectory of 17 mm move along X axis

In this example, displacement of 100 units is not an allowed motion as it exceeds the
maximum travel range available in the X axis. The
HexapodMoveIncrementalControlLimitGet function does the verification before
performing the line trajectory move. When 100 units in X are entered, the
HexapodMoveIncrementalControlLimitGet returns 0.1722222. This indicates that
the maximum travel range in X axis is 100 * 0.1722222 = 17.22222. When the 17 units
in X are entered, the HexapodMoveIncrementalControlLimitGet returns the
maximum velocity of 10.08 unit/s. This indicates that the maximum Hexapod velocity
in X direction is 10.08 mm/s.

NOTE
HexapodMoveIncrementalControlLimitGet returns the correct maximum velocity
value only when the percent of trajectory executable is equal to 1.

Example 2
Work: Line from [0, 0, 0] to [17, 0, 0] with 10 mm/s
HexapodMoveAbsolute(HEXAPOD, Work, 0, 0, 0, 0, 0, 0)
Moves the carriage to zero position
HexapodMoveIncrementalControlWithTargetVelocity(Hexapod, Work,
Line, 17, 0, 0, 10)
Performs a line trajectory of 17 mm move along X axis with 10 mm/s
velocity

14.2.10.6 Arc Trajectory
The function HexapodMoveIncrementalControl(GroupName, Work, Arc, U, V, W)
performs an arc trajectory move in the work coordinate system with maximum velocity
allowed by the actuators.
The function HexapodMoveIncrementalControlWith TargetVelocity(GroupName,
Work, Arc, U, V, W, A) performs an arc trajectory move in the work coordinate
system with target velocity of A °/s.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 152

The arc trajectory move is available in the work coordinate system only. The distance
between Tool and Work defines the radius of the arc.

Figure 51: RightPathTM Arc Trajectory — The distance between Tool and Work
coordinates defines the radius of the arc.

Example 1
Arc movement from [0, 0, 4] with 4 mm radius from 0 to 100 degree
HexapodMoveAbsolute(HEXAPOD, Work, 0, 0, 4, 0, 0, 0)
Moves the carriage to 0, 0, 4, 0, 0 0 position
HexapodMoveIncrementalControlLimitGet(Hexapod, Work, Arc, 100,
0, 0, double*,double*)
The return is: 0, 54.42877230317, 1
HexapodMoveIncrementalControl (Hexapod, Work, Arc, 100, 0, 0)
Performs an arc trajectory around X axis with 4 mm radius from 0 to 100
degrees angle.

Example 2
Arc movement from [0, 0, 4] with 4 mm radius from 0 to 100 degree with
10 deg/s
HexapodMoveAbsolute(HEXAPOD, Work, 0, 0, 4, 0, 0, 0)
Moves the carriage to 0, 0, 4, 0, 0 0 position
HexapodMoveIncrementalControlWithTargetVelocity (Hexapod, Work,
Arc, 100, 0, 0, 10)
Performs an arc trajectory around X axis with 4 mm radius from 0 to 100
degrees with 10 deg/s velocity.

14.2.10.7 Rotation Trajectory
The function HexapodMoveIncrementalControl(GroupName, CoordinateSystem,
Rotation, U, V, W) performs a rotation trajectory move in the work or tool coordinate
system with maximum velocity allowed by the actuators.
The function HexapodMoveIncremental ControlWithTargetVelocity(GroupName,
CoordinateSystem, Rotation, U, V, W, A) performs a rotation trajectory move in the
work or tool coordinate system with target velocity of A °/s.

Example
Work: Rotation movement from [0, 0, 0] with 8.8 degree around X axis
HexapodMoveAbsolute(HEXAPOD, Work, 0, 0, 0, 0, 0, 0)
Moves the carriage to 0, 0, 0, 0, 0 0 position
HexapodMoveIncrementalControlLimitGet(HEXAPOD, Work,
Rotation, 100, 0, 0, double*,double*)
The return is: 0, 5.334928580185, 0.0888888888889
HexapodMoveIncrementalControlLimitGet (HEXAPOD, Work,
Rotation, 8.88, 0, 0, double*,double*)

XPS-D Controller Features Manual

 153 EDH0407En1052 – 08/22

The return is: 0, 5.737548049716, 1
HexapodMoveIncrementalControlWithTargetVelocity (HEXAPOD,
Work, Rotation, 8.88, 0, 0, 5.73)
Performs a rotation trajectory movement around X axis from 0 to 8.88 degree
with 5.73 deg/s velocity

14.2.10.8 Pulse and Gathering
HexapodMoveIncrementalControlPulseAndGatheringSet(GroupName,Divisor)
configures a gathering and generates pulse on a GPIO connector. Gathered data are X,
Y, Z U, V, W. Pulses will be generated at the same time the data is gathered, during the
constant velocity phase only.
The time interval between 2 pulses is calculated by: Divisor * CorrectorISRPeriod
At the end of the displacement, StopAndSaveGathering() can be executed and the
gathered data can be verified to show at which position a pulse has been generated.

Example
HexapodMoveAbsolute(HEXAPOD,Work,0,0,0,0,0,0)
Moves the carriage to zero position
HexapodMoveIncrementalControlPulseAndGatheringSet(HEXAPOD,
10000)
Configures gathering with divisor 10000
HexapodMoveIncrementalControlWithTargetVelocity(HEXAPOD,Wor
k,Line,17,0,0,10)
Performs a line trajectory of 17 mm move along X axis with 10 mm/s
velocity
EventExtendedConfigurationActionGet(Char*)
The return is: 0, GatheringOneData;;;;
EventExtendedConfigurationTriggerGet(Char*)
The return is: 0, Always;;;;;Hexapod.PVT.TrajectoryPulse;;;;
GatheringConfigurationGet(Char*)
The return is:
0,HEXAPOD.X.CurrentPosition;Hexapod.Y.CurrentPosition;HEXAPOD.Z.
CurrentPosition;HEXAPOD.U.CurrentPosition;Hexapod.V.CurrentPosition;
Hexapod.W.CurrentPosition
GatheringStopAndSave()

In the default setting of HXP, the gathering is done at every CorrectorISRPeriod. The
divisor of HexapodMoveIncrementalControlPulseAndGatheringSet in above
example is set to 10000. This results in a time interval of 10000*CorrectorISRPeriods.

14.3 Error Compensation
The HXP controller features the compensation methods of the XPS-D controller (see
section 6.0) with the following comments, and additionaly offers hysteresis
compensation. All these compensations are only applicable on the positioners (hexapod
legs) and not at the hexapod axes level.

14.3.1 Backlash Compensation
This standard XPS feature is also applicable to the 6 actuators (struts) of the hexapod.
Backlash compensation improves the bi-directional repeatability and bi-directional
accuracy of a motion device that has mechanical play. When the backlash compensation

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 154

is activated, the HXP controller adds a user-defined BacklashValue to the internally
used TargetPosition of the struts whenever reversing their direction of motion. This only
internally used new target position is then the basis for the calculations of the motion
profiler. This compensation is fully transparent for the user. This means the
CurrentPosition, SetpointPosition and TargetPosition that can be queried from the HXP
don’t include this backlash value. The backlash compensation is activated at power up.
Additional functions to disable / enable the backlash are provided, for further
information please refer to the programmer’s manual.
The hysteresis and backlash compensations are exclusive, only one at a time can be
different from zero in the “stages.ini” file.

NOTE
With Newport Hexapods that have backlash in the Hexapod actuators, the
backlash is individually measured and specified in the stages.ini configuration file.
For most applications, Newport recommends using these backlash values and
enabling the backlash compensation.

Example
In the stages.ini file are individual values provided for the backlash of all 6 Hexapod
actuators. Example:

;--- Backlash parameters
Backlash = 0.006453 ; units

14.3.2 Hysteresis Compensation
This feature is specific to the HXP controller and only applicable to the 6 actuators
(struts) of the hexapod group. When hysteresis compensation is set to a value different
than zero, the HXP will issue for each strut move in the positive direction a move of the
commanded distance plus the hysteresis compensation value, and then at the end of this
first move a second move of the hysteresis compensation value in the negative
direction. This motion ensures that a final position gets always approached from the
same direction and helps compensating for mechanical defects. This compensation is
fully automated once it is set up.
The hysteresis and backlash compensations are exclusive, only one at a time can be
different from zero in the “stages.ini” file.

NOTE
In case of “Abort” or “following error” during a move, a positive move is
recommended to apply the hysteresis correction.

NOTE
The positive software travel limit (MaximumTargetPosition) must allow the
hysteresis extra move before reaching the electrical or mechanical end of run to
avoid errors.

XPS-D Controller Features Manual

 155 EDH0407En1052 – 08/22

Example
In the stages.ini file are individual values provided for the hysteresis of all 6 Hexapod
actuators. Example:

;--- Backlash parameters
Backlash = 0 ; units
Hysteresis = 0.005284 ; units (HXP)

14.3.3 Linear Error Correction
This common XPS compensation feature is of course applicable to the hexapod group
positioners.

NOTE
With Newport Hexapods the values for the EncoderResolution and for the
LinearErrorCorrection are factory set to provide optimum results. It is not
recommended changing these values from their default settings without consulting
to a Newport applications specialist.
The function of the Linear Error Correction is fully transparent for the user.
Average users should not be concerned by the Linear Error Correction.

14.3.4 Positioner Mapping
For hexapods, mapping compensation is only used at the level of the legs actuators and
on some high accuracy versions only. Mapping is not compatible with backlash or
hysteresis compensation. There is no mapping function available at the hexapod axes
level.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 156

15.0 Photonic Device Search Algorithms (PDSA)

Functions dedicated to automated alignment of optical fibers or silicon photonics are
implemented in the XPS controller.
To attach a fiber in front of a laser source for instance, the positioning tolerances to
properly couple the light can be extremely low. Moving a single mode fiber by some
microns from the optimum position can lead to 50% injected power loss. Thereby, the
correct positioning cannot be achieved by construction and requires a "dynamic"
alignment. Typically, the process is to supply the laser source and micro-manipulate the
fiber in front while measuring the optical power at the other end until the best coupling
position is found. Then, the fiber can be secured to the laser source by different means
(welding, gluing…).
Manually doing this alignment takes a lot of time. First, it is necessary to move
erratically the fiber a bit far away from the laser until getting a significant signal. After
that, the maximum power position must be found on X (lateral) and Y (vertical) axes.
Then the fiber is approached in Z direction (theoretically but never exactly parallel to
optical axis), X and Y alignment must be repeated and so on until reaching the best
position. Sometimes, angular optimization must be additionally performed…
The present XPS search functions are using the power meter voltage signal wired to the
specified GPIO analog input to move the involved axes to their optimum combination
without the drive of any operator.
Different API functions are available for 2D, 3D or more, first light or peak power
search.

API Axes nb First light Peak power
AxisByAxis Up to 6 - X

SpiralStep 2 X X
SpiralContinuous 2 X X

Raster 2 X X
Dichotomy Up to 6 - X

EscaladeStep 3 X X
EscaladeContinuous 3 X X

Note that the PDSA is currently only usable with the first configured
MultipleAxesGroup.

Configuration files

15.1.1 System.ini:
Axes used for PDSA shall be arranged in a group and PDSA common parameters must
be set.
If PDSASensorInputBit parameter is not present in the first multiple axes
 group, then PDSA functionality is disabled.

Example:
; ###
; # Multiple axes group 'M' and its positioners: X

[M]
PositionerNumber = 4
PositionerInUse = X, Y, Z, U;

XPS-D Controller Features Manual

 157 EDH0407En1052 – 08/22

InitializationAndHomeSearchSequence = Together

PDSASensorInputBit = GPIO4.ADC1
;--- Note: PowerUnit can be µW or mW or W
PDSACoefPower = 1; PowerUnit/V
PDSAThresholdMin = -10; PowerUnit
PDSAThresholdMax = 10; PowerUnit
PDSASensitivity = 0; PowerUnit
DelayBeforMeas = 10; ms

[M.X]
PlugNumber = 1
StageName = VP@VP-25XL@XPS-DRV03
SecondaryPositionerGantry = Disabled

[M.Y]
PlugNumber = 2
StageName = VP@VP-25XL@XPS-DRV03
SecondaryPositionerGantry = Disabled

[M.Z]
PlugNumber = 3
StageName = VP@VP-25XL@XPS-DRV03
SecondaryPositionerGantry = Disabled

[M.U]
PlugNumber = 4
StageName = DUMMY@DUMMY_STAGE@NO_DRIVER
SecondaryPositionerGantry = Disabled

PDSA common parameters:

Parameter Value example Unit Description
PDSASensorInputBit GPIO4.ADC2 - Power meter signal analog input port
PDSACoefPower 5 (mW/V) PU*/V Power meter voltage signal scaling

PDSAThresholdMin 0.001 (mW) PU* Search cancels under this signal level (1)
PDSAThresholdMax 0.1 (mW) PU* Flag turns on at this power level and

search stops for "first light" APIs

PDSASensitivity 0 PU* Min. light power increase considered for
peak power selection

DelayBeforMeas 10 ms Delay between stop and measure for step
by step searches

* PU (Power Unit) can be W, mW, µW, etc… but must be uniform beween parameters.
(1) To launch a first light search without initial signal, PDSAThresholdMin must be
equal to zero or even slightly negative to avoid cancellation.

XPS-D Controller Features Manual

EDH0407En1052 – 08/22 158

15.2 Search API descriptions
The functions require input arguments like positioner names, search ranges and
sometime step, reduction factor or speed.
They generally return if PDSAThresholdMax is reached, highest power found, positions
of peak location and execution time.
Refer to Programmer's Manual for API detailed descriptions.
Their modes of operation are presented below.

15.2.1 MultipleAxesPDSAAxisByAxisExecution
From the current position, stages execute axis by axis (up to 6 axes) a relative move in
both directions, and then return to the location of the highest power found.

15.2.2 MultipleAxesPDSASpiralStepExecution
From the current position, stages (2 axes) execute an outward step by step square spiral
and stops as soon as the power threshold is reached, otherwise complete the scan and
then return to the location of the highest power found.

15.2.3 MultipleAxesPDSASpiralContinuousExecution
From the current position, stages (2 axes) execute an outward constant speed smooth
spiral and stops as soon as the power threshold is reached, otherwise complete the scan
and then return to the location of the highest power found.

XPS-D Controller Features Manual

 159 EDH0407En1052 – 08/22

15.2.4 MultipleAxesPDSARasterExecution
From the current position, stages (2 axes) execute a raster scan and stops as soon as the
power threshold is reached, otherwise complete the scan and then return to the location
of the highest power found.

15.2.5 MultipleAxesPDSADichotomyExecution
From the current position, stages execute axis by axis (up to 6 axes) a scan of one large
step in both directions and return to the location of the highest power found among the 3
points (0, -step, +step). Then, the principle is repeated with smaller steps (reduction
factor). This is repeated again until max reduction factor is reached.

15.2.6 MultipleAxesPDSAEscaladeStepExecution
This is a 3-axis search. After completing a first square spiral search, a half size second
spiral is executed at a different Z position, then stages move step by step (by a quarter
of Z initial motion) on the axis defined by the two spiral power peaks until the power
threshold is reached, otherwise complete the scan and then return to the location of the
highest power found.

15.2.7 MultipleAxesPDSAEscaladeContinuousExecution
Same as previous but using continuous spiral. After completing a first continuous spiral
search, a half size second spiral is executed at a different Z position, then stages move
step by step (by a quarter of Z motion) on the axis defined by the two spiral power
peaks until the power threshold is reached, otherwise complete the scan and then return
to the location of the highest power found.

XPS-D Controller Features Manual

 161 EDH0407En1052 – 08/22

Service Form

Your Local Representative

Tel.: __________________

Fax: ___________________

Name: ___ Return authorization #: ____________________________________

Company:___
(Please obtain prior to return of item)

Address: __ Date: __

Country: __ Phone Number: __

P.O. Number: __ Fax Number: __

Item(s) Being Returned: ____________________________________

Model#: __ Serial #: __

Description: __

Reasons of return of goods (please list any specific problems): __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

North America & Asia
Newport Corporation
1791 Deere Ave.
Irvine, CA 92606, USA
Sales
Tel.: (800) 222-6440
e-mail: sales@newport.com
Technical Support
Tel.: (800) 222-6440
e-mail: tech@newport.com
Service, RMAs & Returns
Tel.: (800) 222-6440
e-mail: service@newport.com

Europe
MICRO-CONTROLE Spectra-Physics S.A.S
9, rue du Bois Sauvage
91055 Évry CEDEX
France

Sales
Tel.: +33 (0)1.60.91.68.68
e-mail: france@newport.com

Technical Support
e-mail: tech_europe@newport.com

Service & Returns
Tel.: +33 (0)2.38.40.51.55

Visit Newport Online at:

www.newport.com

	Table of Contents
	1.0 Introduction
	1.1 Scope of the Manual
	1.2 Prerequisite
	1.3 Special case of HXP-ELEC-D controller

	2.0 XPS Architecture
	2.1 Introduction
	2.2 State Diagrams
	2.3 Motion Groups
	2.3.1 Specific SingleAxis Group Features
	2.3.2 Specific Spindle Group Features
	2.3.3 Specific XY Group Features
	2.3.4 Specific XYZ Group Features
	2.3.5 Specific MultipleAxes Features

	2.4 Native Units

	3.0 Motion
	3.1 Motion Profiles
	3.2 Home Search
	3.3 Referencing State
	3.3.1 Move on Sensor Eevents
	3.3.2 Moves of Certain Displacements
	3.3.3 Position Counter Resets
	3.3.4 State Diagram
	3.3.5 Example: MechanicalZeroAndIndexHomeSearch

	3.4 Move
	3.5 Motion Done
	3.6 JOG
	3.7 Master Slave
	3.8 Analog Tracking
	3.8.1 Analog Position Tracking
	3.8.2 Analog Velocity Tracking

	4.0 Trajectories
	4.1 Line-Arc Trajectories
	4.1.1 Trajectory Terminology
	4.1.2 Trajectory Conventions
	4.1.3 Geometric Conventions
	4.1.4 Defining Line-Arc Trajectory Elements
	4.1.5 Define Lines
	4.1.6 Define Arcs
	4.1.7 Trajectory File Description
	4.1.8 Trajectory File Examples
	4.1.9 Trajectory Verification and Execution
	4.1.10 Examples of the Use of the Functions

	4.2 Splines
	4.2.1 Trajectory Terminology
	4.2.2 Trajectory Conventions
	4.2.3 Geometric Conventions
	4.2.4 Catmull-Rom Interpolating Splines
	4.2.5 Trajectory Elements Arc Length Calculation
	4.2.6 Trajectory File Description
	4.2.7 Trajectory File Example
	4.2.8 Spline Trajectory Verification and Execution
	4.2.9 Examples

	4.3 PVT Trajectories
	4.3.1 Trajectory Terminology
	4.3.2 Trajectory Conventions
	4.3.3 Geometric Conventions
	4.3.4 PVT Interpolation
	4.3.5 Influence of the Element Output Velocity to the Trajectory
	4.3.6 Trajectory File Description
	4.3.7 Trajectory File Example
	4.3.8 PVT Trajectory Verification and Execution
	4.3.9 Example with a MultpleAxes Group

	4.4 PT Trajectories
	4.4.1 Trajectory Terminology
	4.4.2 Trajectory Conventions
	4.4.3 Geometric Conventions
	4.4.4 PT Interpolation
	4.4.5 Trajectory File Description
	4.4.6 Trajectory File Example
	4.4.7 PT Trajectory Verification and Execution
	4.4.8 Example of how to use PT functions
	4.4.9 XY LineArc to PT trajectory convertion

	5.0 Emergency Brake and Emergency Stop Cases
	5.1 Principle
	5.2 Emergency Brake Cases
	5.3 Emergency Stop Cases

	6.0 Compensation
	6.1 Definitions
	6.2 Backlash Compensation
	6.3 Linear Error Correction
	6.4 Positioner Mapping
	6.5 XY Mapping
	6.5.1 Multiple XY Mappings in Series

	6.6 XYZ Mapping

	7.0 Event Triggers
	7.1 Events
	7.2 Actions
	7.3 Functions
	7.4 Examples

	8.0 Data Gathering
	8.1 Time-Based (Internal) Data Gathering
	8.2 Event-Based (Internal) Data Gathering
	8.3 Function-Based (Internal) Data Gathering
	8.4 Trigger-Based (External) Data Gathering

	9.0 Output Triggers
	9.1 Position Compare Output Triggers on positioners
	9.1.1 Even Distance Spaced Pulses Position Compare
	9.1.2 Compensated Position Compare
	9.1.2.1 XPS System of Coordinates
	9.1.2.2 Compensated Position compare signals definition
	9.1.2.3 Compensated Position compare scanning process description
	9.1.2.4 Compensated Position Compare Related Functions

	9.1.3 Time Spaced Pulses (Time Flasher)
	9.1.4 AquadB Signals on PCO Connector

	9.2 Output Triggers on trajectories
	9.2.1 Triggers on Line-Arc Trajectories
	9.2.2 Triggers on PVT Trajectories
	9.2.3 Triggers on PT Trajectories

	10.0 Control Loops
	10.1 XPS Servo Loops
	10.1.1 Servo structure and Basics
	10.1.2 XPS PIDFF Architecture
	10.1.3 PID Corrector Architecture
	10.1.4 Proportional Term
	10.1.5 Derivative Term
	10.1.6 Integral Term
	10.1.7 Variable Gains

	10.2 Filtering and Limitation
	10.2.1 Current velocity and current acceleration

	10.3 Feed Forward Loops and Servo Tuning
	10.3.1 Corrector = PIDFFVelocity
	10.3.2 Parameters
	10.3.3 Basics
	10.3.4 Methodology of Tuning PID's for PIDFFVelocity Corrector (DC motors with or without tachometer)
	10.3.5 Corrector = PIDFFAcceleration
	10.3.6 Parameters
	10.3.7 Basics
	10.3.8 Methodology of Tuning PID's for PIDFFAcceleration Corrector (direct drive DC motors)
	10.3.9 Corrector = PIDDual FFVoltage
	10.3.10 Parameters
	10.3.11 Basics
	10.3.12 Methodology of Tuning PID's for PIDDualFF Corrector (DC motors with tachometers)
	10.3.13 Corrector = PIPosition
	10.3.14 Parameters
	10.3.15 Basics & Tuning

	11.0 Analog Encoder Calibration
	11.1 Analog Encoder Errors
	11.2 Analog Encoder Compensation Feature
	11.3 Calibration Procedure

	12.0 Excitation Signal
	12.1 Introduction
	12.2 How to Use the Excitation-Signal Function
	12.3 Group State Diagram
	12.4 Function Description

	13.0 Introduction to XPS Programming
	13.1 TCL Generator
	13.2 Running Processes in Parallel

	14.0 HXP-ELEC-D controller features
	14.1 HXP-ELEC-D architecture
	14.1.1 Hexapod Group
	14.1.2 Hexapod Coordinate Systems

	14.2 Motion
	14.2.1 Measurement Units
	14.2.2 Position Information
	14.2.3 Home Search
	14.2.4 Hexapod Referencing State: GroupReadyAtPosition
	14.2.5 Absolute Moves (HexapodMoveAbsolute)
	14.2.6 Incremental Moves Along and Around Tool (HexapodMoveIncremental)
	14.2.7 Incremental Moves Along and Around Work (HexapodMoveIncremental)
	14.2.8 Moves of the Hexapod Struts (GroupMoveAbsolute and GroupMoveRelative)
	14.2.9 Changing the Position of the Tool and Work Coordinate Systems
	14.2.10 RightPath™ Trajectories
	14.2.10.1 Trajectory Terminology
	14.2.10.2 Trajectory Conventions
	14.2.10.3 Geometric Conventions
	14.2.10.4 Trajectory Verification and Execution
	14.2.10.5 Line Trajectory
	14.2.10.6 Arc Trajectory
	14.2.10.7 Rotation Trajectory
	14.2.10.8 Pulse and Gathering

	14.3 Error Compensation
	14.3.1 Backlash Compensation
	14.3.2 Hysteresis Compensation
	14.3.3 Linear Error Correction
	14.3.4 Positioner Mapping

	15.0 Photonic Device Search Algorithms (PDSA)
	Configuration files
	15.1.1 System.ini:

	15.2 Search API descriptions
	15.2.1 MultipleAxesPDSAAxisByAxisExecution
	15.2.2 MultipleAxesPDSASpiralStepExecution
	15.2.3 MultipleAxesPDSASpiralContinuousExecution
	15.2.4 MultipleAxesPDSARasterExecution
	15.2.5 MultipleAxesPDSADichotomyExecution
	15.2.6 MultipleAxesPDSAEscaladeStepExecution
	15.2.7 MultipleAxesPDSAEscaladeContinuousExecution

	Service Form

