

Polyimide Coated SM Fiber

Fibercore's range of Polyimide coated, bend-insensitive Single-Mode (SM) fibers are specifically designed for use in harsh environments. The fibers target micro-seismic "fracking" sensors, distributed temperature and pressure sensors used in Oil & Gas exploration and process optimization. These fibers are also an excellent choice for embedded Fiber Bragg Grating (FBG) strain and temperature sensor applications.

Polyimide is a high performance polymer, which can withstand short-term temperatures as high as 400°C and continuous temperatures of 300°C, allowing the fiber to survive in high temperature wells and thermally cured embedding processes.

The fibers are available in a range of Numerical Apertures (NAs) from 0.13NA up to 0.31NA. Low NA fibers are designed for low attenuation applications where long lengths of fiber are used in a straight deployment state, for example in Distributed Temperature Sensing (DTS) systems. High NA fibers allow dramatically reduced bend losses for coiled deployment states, for example in coiled seismic/acoustic sensors.

Advantages:

- · Engineered for high temperature applications up to +300°C
- · High NA variants for extremely low macro and micro bend losses
- · Reduced cladding options for high reliability coils and reduced package volume
- · Photosensitive core designs for FBG inscription

Typical applications:

- · Downhole sensors
- Geophones
- DTS, Distributed Acoustic Sensing (DAS), Distributed Strain Sensing (DSS) and Distributed Pressure Sensing (DPS)
- · Embedded sensors
- FBGs
- Biomedical in vivo sensors
- High temperature sensors

Related Products:

- SM Fiber for Visible Through to Near IR (SM)
- High Temperature Acrylate Coated Fiber (SM-HT)
- Pure Silica Core SM Fiber (SM-SC)
- · Photosensitive Fiber (PS)

Product Variants:

- SM1500(4.2/125)P Bend
- Bend insensitive and highly photosensitive high temperature fiber for coiled and FBG sensors in high temperatures
- SM1500(6.4/125)P
- Highly Germanium doped fiber for sensor applications up to +300°C
- SM1500SC(7/125)P
- Pure silica core, bend insensitive, Polyimide coated fiber for high temperature applications
- · SM1500(7.8/125)P
- High temperature bridging fiber for use up to +300 $^{\circ}\text{C}$
- SM1500(9/125)P
- Polyimide coated transmission and distributed sensing fiber
- SM1500SC(9/125)P
- Polyimide coated, hydrogen darkening resistant pure silica core fiber for high temperature and hydrogen rich environments
- · SM1500(4.2/50)P
- Bend insensitive Polyimide coated fiber for high reliability miniature coils
- · SM1500(4.2/80)P
- High temperature bend insensitive and photosensitive fiber for embedded and coiled sensors
- SM1500(5.1/80)P
- Bend insensitive coiled sensor fiber for micro-acoustic "fracking sensors"
- SM1500(6.4/80)P
- Reduced cladding diameter coiled sensor fiber for micro-acoustic "fracking sensors"
- SM1500SC(7/80)P
- Polyimide coated, hydrogen darkening resistant pure silica core fiber for high temperature and hydrogen rich environments
- · SM1500(7.8/80)P
- "Bridging fiber" for reduced splice losses between sensor fibers and telecoms fibers

Specifications

	SM1500(4.2/125)P	SM1500(6.4/125)P	SM1500SC(7/125)P	SM1500(7.8/125)P	SM1500(9/125)P	SM1500SC(9/125)P		
Operating Wavelength (nm)	1550							
Cut-off Wavelength (nm)	1350 - 1520		1400 - 1500	1350 - 1520		1190 - 1290		
Numerical Aperture	0.29 - 0.31	0.19 - 0.21	0.17 - 0.19	0.15 - 0.17	0.13 - 0.15			
Mode Field Diameter (µm)	4.0 – 4.5 @1550nm	6.0 – 6.8 @1550nm	6.7 - 7.6 @ 1550nm	7.4 – 8.6 @1550nm	8.5 – 9.9 @1550nm	8.3 – 9.6 @1550nm		
Attenuation (dB/km)	≤2.5	≤0.75	≤0	.7	≤0.6	≤0.8		
Proof Test (%)	1 or 2 (100 or 200 kpsi)							
Cladding Diameter (µm)	125 ± 2							
Core Cladding Concentricity (µm)	≤0.75							
Coating Diameter (µm)	145 ± 5							
Maximum Temperature (°C)	300 Long Term / 400 Short Term							
Coating Type	Polyimide							

	SM1500(4.2/50)P	SM1500(4.2/80)P	SM1500(5.1/80)P	SM1500(6.4/80)P	SM1500SC(7/80)P	SM1500(7.8/80)P		
Operating Wavelength (nm)	1550							
Cut-Off Wavelength (nm)		1350	1400 - 1500	1350 - 1520				
Numerical Aperture	0.29 - 0.31		0.24 - 0.26	0.19 - 0.21	0.17 - 0.19	0.15 - 0.17		
Mode Field Diameter (μm)	4.0 – 4.5 @1550nm		4.8 – 5.4 @1550nm	6.0 – 6.8 @1550nm	6.7 - 7.6 @ 1550nm	7.4 – 8.6 @1550nm		
Attenuation (dB/km)	≤3.0	≤2.5	≤2	≤0.75	≤1.0	≤0.7		
Proof Test (%)	1 or 2 (100 or 200 kpsi)							
Cladding Diameter (µm)	50 ± 2	80 ± 2						
Core Cladding Concentricity (µm)	≤1.0	≤0.75						
Coating Diameter (µm)	71 ± 5	102 ± 5						
Maximum Temperature (°C)	300 Long Term / 400 Short Term							
Coating Type	Polyimide							

Visit fibercore.com/fiberpaedia for our encyclopedia of industry terms/knowledge base.

