FC Series

Intelligent Stepper Motor Stages

Command Interface Manual
Version 1.0.x

For Motion, Think Newport™
Table of Contents

1.0 Introduction ... 1
 1.1 Purpose .. 1
 1.2 Overview ... 1

2.0 Command Interface... 2
 2.1 Constructor ... 2
 2.2 Functions ... 2
 2.2.1 General .. 2
 2.2.1.1 OpenInstrument .. 2
 2.2.1.2 CloseInstrument ... 2
 2.2.1.3 GetDevices ... 2
 2.2.1.4 WriteToInstrument ... 3
 2.2.2 Commands .. 3
 2.2.2.1 AC_Get .. 3
 2.2.2.2 AC_Set ... 3
 2.2.2.3 BA_Get .. 4
 2.2.2.4 BA_Set ... 4
 2.2.2.5 BH_Get .. 4
 2.2.2.6 BH_Set ... 5
 2.2.2.7 FRM_Get .. 5
 2.2.2.8 FRM_Set .. 5
 2.2.2.9 FRS_Get ... 6
 2.2.2.10 FRS_Set .. 6
 2.2.2.11 HT_Get ... 6
 2.2.2.12 HT_Set ... 7
 2.2.2.13 ID_Get .. 7
 2.2.2.14 ID_Set .. 7
 2.2.2.15 JR_Get .. 8
 2.2.2.16 JR_Set .. 8
 2.2.2.17 MM_Set .. 8
 2.2.2.18 OH_Get ... 9
 2.2.2.19 OH_Set ... 9
 2.2.2.20 OR .. 9
 2.2.2.21 OT_Get ..10
 2.2.2.22 OT_Set ..10
 2.2.2.23 PA_Get ..11
 2.2.2.24 PA_Set ..11
 2.2.2.25 PR_Get ..11
2.2.2.20 PR_Set ... 11
2.2.2.21 PT_Get .. 12
2.2.2.22 PT_Set .. 12
2.2.2.23 PW_Get ... 12
2.2.2.24 PW_Set .. 13
2.2.2.25 RS .. 13
2.2.2.26 SA_Get .. 13
2.2.2.27 SA_Set .. 14
2.2.2.28 SE .. 14
2.2.2.29 SL_Get .. 14
2.2.2.30 SL_Set .. 15
2.2.2.31 SR_Get .. 15
2.2.2.32 SR_Set .. 15
2.2.2.33 ST .. 16
2.2.2.34 TB .. 16
2.2.2.35 TE .. 16
2.2.2.36 TH ... 17
2.2.2.37 TP .. 17
2.2.2.38 TS .. 17
2.2.2.39 VA_Get ... 18
2.2.2.40 VA_Set .. 18
2.2.2.41 VE ... 18
2.2.2.42 ZT .. 19

3.0 Python Example ... 20

Service Form ... 23
FC Series
Intelligent Stepper Motor Stages

1.0 Introduction

1.1 Purpose
The purpose of this document is to provide the method syntax of each command to communicate with the FC series device.

1.2 Overview
The Command Interface is the wrapper class that maintains a list of FC series stages. It exposes methods to communicate with any FC series device.

NOTE
Each function name is defined with the command code “AA”.
For each command function, refer to the FC Series programmer’s manual.
2.0 Command Interface

2.1 Constructor

FCStepper

The constructor is used to create an instance of the FCStepper device.

2.2 Functions

2.2.1 General

2.2.1.1 OpenInstrument

Syntax

```c
int OpenInstrument(string strDeviceKey)
```

string strDeviceKey: device key

return: 0 = successful or -1 = failure

Description

This function allows opening communication with the selected device. If the opening failed, the returned code is -1.

2.2.1.2 CloseInstrument

Syntax

```c
int CloseInstrument()
```

return: 0 = successful or -1 = failure

Description

This function allows closing communication with the selected device. If the closing failed, the returned code is -1.

2.2.1.3 GetDevices

Syntax

```c
string[] GetDevices()
```

return: list of connected devices available to communicate

Description

This function returns the list of connected devices available to communicate.
2.2.1.4 WriteToInstrument

Syntax
int WriteToInstrument(string command, ref string response, int stage)
command: Instrument command
response: Response of the command
stage: Instrument Stage
return:

Description
This Overridden function Queries or writes the command given by the user to the instrument.

2.2.2 Commands

2.2.2.1 AC_Get

Syntax
int AC_Get(int controllerAddress, out double outAcceleration, out string errString)
controllerAddress: Address of Controller
outAcceleration: outAcceleration
errString: The failure reason
return: 0 in success and -1 on failure

Description
This function is used to process synchronous AC Get command which is used to Get acceleration.

2.2.2.2 AC_Set

Syntax
int AC_Set(int controllerAddress, double inAcceleration, out string errString)
controllerAddress: Address of Controller
inAcceleration: inAcceleration.
errString: The failure reason
return: 0 in success and -1 on failure

Description
This function is used to process synchronous AC Set command which is used to Set acceleration.
2.2.2.3 **BA_Get**

Syntax

```c
int BA_Get(int controllerAddress, out double outBacklash, out string errString)
```

- controllerAddress: Address of Controller
- outBacklash: outBacklash
- errString: The failure reason
- return: 0 in success and -1 on failure

Description

This function is used to process synchronous BA Get command which is used to Get backlash compensation.

2.2.2.4 **BA_Set**

Syntax

```c
int BA_Set(int controllerAddress, double inBacklash, out string errString)
```

- controllerAddress: Address of Controller
- inBacklash: inBacklash
- errString: The failure reason
- return: 0 in success and -1 on failure

Description

This function is used to process synchronous BA Set command which is used to Set backlash compensation.

2.2.2.5 **BH_Get**

Syntax

```c
int BH_Get(int controllerAddress, out double outHysteresis, out string errString)
```

- controllerAddress: Address of Controller
- outHysteresis: outHysteresis
- errString: The failure reason
- return: 0 in success and -1 on failure

Description

This function is used to process synchronous BH Get command which is used to Get hysteresis compensation.
2.2.2.6 **BH_Set**

Syntax

```c
int BH_Set(int controllerAddress, double inHysteresis, out string errString)
controllerAddress: Address of Controller
inHysteresis: inHysteresis.
errString: The failure reason
```

Description

This function is used to process synchronous BH Set command which is used to Set hysteresis compensation.

2.2.2.1 **FRM_Get**

Syntax

```c
int FRM_Get( int controllerAddress, out int MicroStepPerFullStepFactor, out string errString)
controllerAddress : controller address
MicroStepPerFullStepFactor: Micro Step per Full Step Factor
errString: The failure reason
```

Description

This function is used to process synchronous FRM Get command which is used to get Micro Step per Full Step Factor. Refer to the Controller's manual to get the command description.

2.2.2.2 **FRM_Set**

Syntax

```c
int FRM_Set( int controllerAddress, int MicroStepPerFullStepFactor, out string errString)
controllerAddress : controller address
MicroStepPerFullStepFactor: Micro Step per Full Step Factor
errString: The failure reason
```

Description

This function is used to process synchronous FRM Set command which is used to set Micro Step per Full Step Factor. Refer to the Controller's manual to get the command description.
2.2.2.3 FRS_Get

Syntax
int FRS_Get(int controllerAddress, out double DistancePerMotorFullStep, out string errstring)
controllerAddress : controller address
DistancePerMotorFullStep: Distance per Motor Full Step
errString: The failure reason
return: 0 in success and -1 on failure

Description
This function is used to process synchrounous FRS Get command which is used to get the distance per Motor Full Step. Refer to the Controller's manual to get the command description.

2.2.2.4 FRS_Set

Syntax
int FRS_Set(int controllerAddress, double DistancePerMotorFullStep, out string errstring)
controllerAddress : controller address
DistancePerMotorFullStep: Distance per Motor Full Step
errString: The failure reason
return: 0 in success and -1 on failure

Description
This function is used to process synchrounous FRS Set command which is used to set the distance per Motor Full Step. Refer to the Controller's manual to get the command description.

2.2.2.5 HT_Get

Syntax
int HT_Get(int controllerAddress, out int outHomeType, out string errString)
controllerAddress: Address of Controller
outHomeType: outHomeType
errString: The failure reason
return: 0 in success and -1 on failure

Description
This function is used to process synchrounous HT Get command which is used to Get HOME search type.
2.2.2.6 **HT_Set**

Syntax

```c
int HT_Set(int controllerAddress, int inHomeType, out string errString)
```

controllerAddress: Address of Controller
inHomeType: inHomeType.
errString: The failure reason

Description

This function is used to process synchronous HT Set command which is used to Set HOME search type.

2.2.2.7 **ID_Get**

Syntax

```c
int ID_Get(int controllerAddress, out string outStageIdentifier, out string errString)
```

controllerAddress: Address of Controller
outStageIdentifier: outStageIdentifier
errString: The failure reason

Description

This function is used to process synchronous ID Get command which is used to Get stage identifier.

2.2.2.8 **ID_Set**

Syntax

```c
int ID_Set(int controllerAddress, string inStageIdentifier, out string errString)
```

controllerAddress: Address of Controller
inStageIdentifier: inStageIdentifier.
errString: The failure reason

Description

This function is used to process synchronous ID Set command which is used to Set stage identifier.
2.2.2.9 JR_Get

Syntax

```c
int JR_Get(int controllerAddress, out double outJerkTime, out string errString)
```

- `controllerAddress`: Address of Controller
- `outJerkTime`: `out`JerkTime
- `errString`: The failure reason
- `return`: 0 in success and -1 on failure

Description

This function is used to process synchronous JR Get command which is used to Get jerk time.

2.2.2.10 JR_Set

Syntax

```c
int JR_Set(int controllerAddress, double inJerkTime, out string errString)
```

- `controllerAddress`: Address of Controller
- `errString`: The failure reason
- `return`: 0 in success and -1 on failure

Description

This function is used to process synchronous JR Set command which is used to Set jerk time.

2.2.2.11 MM_Set

Syntax

```c
int MM_Set(int controllerAddress, int inState, out string errString)
```

- `controllerAddress`: Address of Controller
- `inState`: `in`State.
- `errString`: The failure reason
- `return`: 0 in success and -1 on failure

Description

This function is used to process synchronous MM Set command which is used to Enter/Leave DISABLE state.
2.2.2.12 **OH_Get**

Syntax

```python
int OH_Get(int controllerAddress, out double outHomeVelocity, out string errString)
```

controllerAddress: Address of Controller
outHomeVelocity: outHomeVelocity
errString: The failure reason
return: 0 in success and -1 on failure

Description
This function is used to process synchronous OH Get command which is used to Get HOME search velocity.

2.2.2.13 **OH_Set**

Syntax

```python
int OH_Set(int controllerAddress, double inHomeVelocity, out string errString)
```

controllerAddress: Address of Controller
inHomeVelocity: inHomeVelocity.
errString: The failure reason
return: 0 in success and -1 on failure

Description
This function is used to process synchronous OH Set command which is used to Set HOME search velocity.

2.2.2.14 **OR**

Syntax

```python
int OR(int controllerAddress, out string errString)
```

clientID: Instrument ID
controllerAddress: controllerAddress identifying the Address of Controller
errString: The failure reason
return: 0 in success and -1 on failure

Description
This function is used to process synchronous OR Set command which is used to Execute HOME search.
2.2.2.15 **OT_Get**

Syntax

```c
int OT_Get(int controllerAddress, out double outHomeTimeOut, out string errString)
```

controllerAddress: Address of Controller

outHomeTimeOut: outHomeTimeOut

errString: The failure reason

return: 0 in success and -1 on failure

Description

This function is used to process synchronous OT Get command which is used to Get HOME search time-out.

2.2.2.16 **OT_Set**

Syntax

```c
int OT_Set(int controllerAddress, double inHomeTimeOut, out string errString)
```

controllerAddress: Address of Controller

inHomeTimeOut: inHomeTimeOut

errString: The failure reason

return: 0 in success and -1 on failure

Description

This function is used to process synchronous OT Set command which is used to Set HOME search time-out.

2.2.2.17 **PA_Get**

Syntax

```c
int PA_Get(int controllerAddress, out double outTargetPosition, out string errString)
```

controllerAddress: Address of Controller

outTargetPosition: outTargetPosition

errString: The failure reason

return: 0 in success and -1 on failure

Description

This function is used to process synchronous PA Get command which is used to Move absolute.
2.2.2.18 **PA_Set**

Syntax

```c
int PA_Set(int controllerAddress, double inTargetPosition, out string errString)
```

- **controllerAddress**: Address of Controller
- **inTargetPosition**: inTargetPosition.
- **errString**: The failure reason

Description

This function is used to process synchronous PA Set command which is used to Move absolute.

2.2.2.19 **PR_Get**

Syntax

```c
int PR_Get(int controllerAddress, out double outStep, out string errString)
```

- **controllerAddress**: Address of Controller
- **outStep**: outStep
- **errString**: The failure reason

Description

This function is used to process synchronous PR Get command which is used to Move relative.

2.2.2.20 **PR_Set**

Syntax

```c
int PR_Set(int controllerAddress, double inStep, out string errString)
```

- **controllerAddress**: Address of Controller
- **inStep**: inStep.
- **errString**: The failure reason

Description

This function is used to process synchronous PR Set command which is used to Move relative.
2.2.2.21 **PT_Get**

Syntax

```c
int PT_Get(int controllerAddress, out double outMotionTime, out string errString)
```

- `controllerAddress`: Address of Controller
- `outMotionTime`: outMotionTime
- `errString`: The failure reason
- `return`: 0 in success and -1 on failure

Description

This function is used to process synchronous PT Get command which is used to Get motion time for a relative move.

2.2.2.22 **PT_Set**

Syntax

```c
int PT_Set(int controllerAddress, double inMotionTime, out string errString)
```

- `controllerAddress`: Address of Controller
- `inMotionTime`: inMotionTime
- `errString`: The failure reason
- `return`: 0 in success and -1 on failure

Description

This function is used to process synchronous PT Set command which is used to Get motion time for a relative move.

2.2.2.23 **PW_Get**

Syntax

```c
int PW_Get(int controllerAddress, out int outState, out string errString)
```

- `controllerAddress`: Address of Controller
- `outState`: outState
- `errString`: The failure reason
- `return`: 0 in success and -1 on failure

Description

This function is used to process synchronous PW Get command which is used to Enter/Leave CONFIGURATION state.
2.2.2.24 PW_Set

Syntax

```c
int PW_Set(int controllerAddress, int inState, out string errString)
```

- **controllerAddress**: Address of Controller
- **inState**: inState.
- **errString**: The failure reason
- **return**: 0 in success and -1 on failure

Description

This function is used to process synchronous PW Set command which is used to Enter/Leave CONFIGURATION state.

NOTE

The PW command is limited to 100 writes. Unit failure due to excessive use of the PW command is not covered by warranty.

The PW command is used to change the configuration parameters that are stored in memory, and not parameters that are needed to be changed on the fly.

2.2.2.25 RS

Syntax

```c
int RS(int controllerAddress, out string errString)
```

- **clientID**: Instrument ID
- **controllerAddress**: Address of Controller
- **errString**: The failure reason
- **return**: 0 in success and -1 on failure

Description

This function is used to process synchronous RS Set command which is used to Reset controller.

2.2.2.26 SA_Get

Syntax

```c
int SA_Get(int controllerAddress, out int outRS485Address, out string errString)
```

- **controllerAddress**: Address of Controller
- **outRS485Address**: RS485 address
- **errString**: The failure reason
- **return**: 0 in success and -1 on failure

Description

This function is used to process synchronous SA Get command which is used to Get controller’s RS-485 address.
2.2.2.27 SA_Set

Syntax

```c
int SA_Set(int controllerAddress, int inRS485Address, out string errString)
```

- **controllerAddress**: Address of Controller
- **inRS485Address**: inRS485Address
- **errString**: The failure reason

Description

This function is used to process synchronous SA Set command which is used to Set controller’s RS-485 address.

2.2.2.28 SE

Syntax

```c
int SE(int controllerAddress, double inTargetPosition, out string errString)
```

- **controllerAddress**: Address of Controller
- **inTargetPosition**: inTargetPosition
- **errString**: The failure reason

Description

This function is used to process synchronous SE Set command which is used to Configure/Execute simultaneous started move.

2.2.2.29 SL_Get

Syntax

```c
int SL_Get(int controllerAddress, out double outNegativeLimit, out string errString)
```

- **controllerAddress**: Address of Controller
- **outNegativeLimit**: outNegativeLimit
- **errString**: The failure reason

Description

This function is used to process synchronous SL Get command which is used to Get negative software limit.
2.2.2.30 **SL_Set**

Syntax

```c
int SL_Set(int controllerAddress, double inNegativeLimit, out string errString)
```

controllerAddress: Address of Controller

inNegativeLimit: inNegativeLimit.

errString: The failure reason

return: 0 in success and -1 on failure

Description

This function is used to process synchronous SL Set command which is used to Set negative software limit.

2.2.2.31 **SR_Get**

Syntax

```c
int SR_Get(int controllerAddress, out double outPositiveLimit, out string errString)
```

controllerAddress: Address of Controller

outPositiveLimit: outPositiveLimit

errString: The failure reason

return: 0 in success and -1 on failure

Description

This function is used to process synchronous SR Get command which is used to Get positive software limit.

2.2.2.32 **SR_Set**

Syntax

```c
int SR_Set(int controllerAddress, double inPositiveLimit, out string errString)
```

controllerAddress: Address of Controller

errString: The failure reason

return: 0 in success and -1 on failure

Description

This function is used to process synchronous SR Set command which is used to Set positive software limit.
2.2.2.33 ST

 Syntax
 int ST(int controllerAddress, out string errString)
 clientID: Instrument ID
 controllerAddress: controllerAddress identifying the Address of Controller
 errString: The failure reason
 return: 0 in success and -1 on failure

 Description
 This function is used to process synchronous ST Set command which is used to Stop motion.

2.2.2.34 TB

 Syntax
 int TB(int controllerAddress, string inError, out string outError, out string errString)
 controllerAddress: Address of Controller
 inError: inError.
 outError: outError
 errString: The failure reason
 return: 0 in success and -1 on failure

 Description
 This function is used to process synchronous TB Get command which is used to Get command error string.

2.2.2.35 TE

 Syntax
 int TE(int controllerAddress, out string outError, out string errString)
 controllerAddress: Address of Controller
 outError: outError
 errString: The failure reason
 return: 0 in success and -1 on failure

 Description
 This function is used to process synchronous TE Get command which is used to Get last command error.
2.2.2.36 **TH**

Syntax
```
int TH(int controllerAddress, out double outSetPointPosition, out string errString)
```
controllerAddress: Address of Controller
outSetPointPosition: outSetPointPosition
errString: The failure reason
return: 0 in success and -1 on failure

Description
This function is used to process synchronous TH Get command which is used to Get set-point position.

2.2.2.37 **TP**

Syntax
```
int TP(int controllerAddress, out double outCurrentPosition, out string errString)
```
controllerAddress: Address of Controller
outCurrentPosition: outCurrentPosition
errString: The failure reason
return: 0 in success and -1 on failure

Description
This function is used to process synchronous TP Get command which is used to Get current position.

2.2.2.38 **TS**

Syntax
```
int TS(int controllerAddress, out string errorCode, out string controllerState, out string errString)
```
controllerAddress: Address of Controller
errorCode: errorCode
ccontrollerState: controllerState
errString: The failure reason
return: 0 in success and -1 on failure

Description
This function is used to process synchronous TS Get command which is used to Get positioner error and controller state.
2.2.2.39 **VA_Get**

Syntax

```c
int VA_Get(int controllerAddress, out double outVelocity, out string errString)
controllerAddress: Address of Controller
outVelocity: outVelocity
erString: The failure reason
return: 0 in success and -1 on failure
```

Description

This function is used to process synchronous VA Get command which is used to Get velocity.

2.2.2.40 **VA_Set**

Syntax

```c
int VA_Set(int controllerAddress, double inVelocity, out string errString)
controllerAddress: Address of Controller
inVelocity: inVelocity.
erString: The failure reason
return: 0 in success and -1 on failure
```

Description

This function is used to process synchronous VA Set command which is used to Set velocity.

2.2.2.41 **VE**

Syntax

```c
int VE(int controllerAddress, out string outControllerVersion, out string errString)
controllerAddress: Address of Controller
outControllerVersion: outControllerVersion
errString: The failure reason
return: 0 in success and -1 on failure
```

Description

This function is used to process synchronous VE Get command which is used to Get controller revision information.
2.2.2.42 ZT

Syntax

```c
int ZT(int controllerAddress, out List<string> AxisParameters, out string errString)
```

- `controllerAddress`: Address of Controller
- `AxisParameters`: AxisParameters
- `errString`: The failure reason

Description

This function is used to process synchronous ZT Get command which is used to Get all axis parameters.
3.0Python Example

#==
Newport Proprietary and Confidential Newport Corporation 2013
#
No part of this file in any format, with or without modification
shall be used, copied or distributed without the express written
consent of Newport Corporation.
#
Description: This is a Python Script to access FCStepper library
#==

#==
#Initialization Start
#The script within Initialization Start and Initialization End is needed for properly
#initializing Command Interface DLL for FCStepper instrument.
#The user should copy this code as is and specify correct paths here.
import sys

Command Interface DLL can be found here.
print "Adding location of Newport.FCStepper.CommandInterface.dll to sys.path"
sys.path.append(r'C:\Program Files\Newport\MotionControl\FCStepper\Bin')
sys.path.append(r'C:\Program Files (x86)\Newport\MotionControl\FCStepper\Bin')

The CLR module provide functions for interacting with the underlying
.NET runtime
import clr

Add reference to assembly and import names from namespace
clr.AddReferenceToFile("Newport.FCStepper.CommandInterface.dll")
from CommandInterfaceFCStepper import *

import System

#==

Instrument Initialization
The key should have double slashes since
(one of them is escape character)
instrument="COM25"
print 'Instrument Key=>', instrument

create a device instance and open communication with the instrument
myFCStepper = FCStepper()
ret = myFCStepper.OpenInstrument(instrumentKey)
print 'OpenInstrument => ', ret
Get positive software limit
result, response, errString = myFCStepper.SR_Get(1)
if result == 0 :
 print 'positive software limit=>', response
else:
 print 'Error=>',errString

Get negative software limit
result, response, errString = myFCStepper.SL_Get(1)
if result == 0 :
 print 'negative software limit=>', response
else:
 print 'Error=>',errString

Get controller revision information
result, response, errString = myFCStepper.VE(1)
if result == 0 :
 print 'controller revision=>', response
else:
 print 'Error=>',errString

Unregister device
myFCStepper.CloseInstrument();
Service Form

Name: __
Company: _______________________________________
Address: ___
Country: ___
P.O. Number: _____________________________________
Item(s) Being Returned: ____________________________
Model#: ___

Return authorization #: _____________________________
(Please obtain prior to return of item)

Date: __
Phone Number: _________________________________
Fax Number: _________________________________

Description: __

Reasons of return of goods (please list any specific problems):
__
__
__
__
__
__
__
__
__
__
__
__
__
Visit Newport Online at:
www.newport.com

North America & Asia
Newport Corporation
1791 Deere Ave.
Irvine, CA 92606, USA

Sales
Tel.: (800) 222-6440
e-mail: sales@newport.com

Technical Support
Tel.: (800) 222-6440
e-mail: tech@newport.com

Service, RMAs & Returns
Tel.: (800) 222-6440
e-mail: service@newport.com

Europe
MICRO-CONTROLE Spectra-Physics S.A.S
9, rue du Bois Sauvage
91055 Évry CEDEX
France

Sales
Tel.: +33 (0)1.60.91.68.68
e-mail: france@newport.com

Technical Support
e-mail: tech_europe@newport.com

Service & Returns
Tel.: +33 (0)2.38.40.51.55