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Precise control of polarization behavior is neces-
sary to obtain optimal performance from your optical
components and systems. Characteristics such as reflec-
tivity, insertion loss, and beam splitter ratios will be dif-
ferent for different polarizations. Such dependencies
need to be carefully accounted for in any optical design. 

Polarization is also important because it can be
used to transmit signals and make sensitive measure-
ments. Even though the light intensity may be con-
stant, valuable information can be conveyed in the
polarization state of an optical beam. Deciphering its
polarization will tell you how the beam has been modi-
fied by any of numerous material interactions (mag-
netic, chemical, mechanical, etc.). Sensors and mea-
surement equipment can be designed to operate on
such polarization changes. 

The goal of this application note is to explain
how wave plates and compensators work to convert
light of one polarization state to another. The first step
towards understanding polarization is to think of light
as an electromagnetic wave, composed of an electric 
E-field and a magnetic H-field that travel together at
the same velocity and in the same direction, k. E and
H are vector quantities, meaning they can be represent-
ed by arrows that have both a magnitude (length) and
a direction of orientation. Maxwell’s wave equations tell
us that E and H are connected; they are always 90° out
of phase and mutually perpendicular to each other and
to k. Once we know E we can easily determine H. Thus,
we usually deal only with E and define a wave’s polar-
ization as the orientation of its E-field. 

Types of Polarization

There are basically three polarization states: lin-
ear, circular, and elliptical. These terms describe the
path traced out by the tip of the electric-field vector as it
propagates in space. The output light from a laser is
typically highly polarized, that is, it consists almost
entirely of one linear polarization. On the other hand,
unpolarized light, such as light from a light bulb, an
LED, or the sun, is a random superposition of all possi-
ble polarization states. 

Fig. 1: A linearly polarized wave.

A snapshot in time of a linearly polarized wave is
shown in Fig. 1. Notice that the spacing at which the 
E-field repeats itself is one wavelength, . Although the
E-field alternates direction (sign), it stays confined to a
single plane. If you could see the wave at a fixed point
in z as it went by, you would observe the arrow tip oscil-
lating up and down along a line. The angle of this
line with respect to some reference set of axes complete-
ly specifies this linear polarization state. Furthermore,
we can decompose this wave into two linear wave com-
ponents in the axis directions:

where =2πc/ , is the angular frequency of the wave,
and k is its propagation constant, and c is the speed of
light. The two cosine terms represent a traveling mono-
chromatic wave. Ex and Ey are orthogonal components
of E. Their magnitudes are given by 

For a linearly polarized wave, Ex and Ey are in phase
with each other.
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Fig. 2a: A circularly polarized wave.

Fig. 2b: Using thumb and fingers to determine handedness.

Fig. 2a sketches the evolution of a circularly
polarized wave in time. You can see that the E-field
vector tip forms a helix or corkscrew shape. If you stood
at a fixed location, say z=0, you would observe the 
E vector rotating in time, like the second hand on a
watch. A circularly polarized wave can be either left-
handed or right-handed, depending on the clockwise or
counterclockwise nature of the rotation. By convention,
the wave in Fig. 2a is right-handed. An easy method for
remembering the convention involves using your
thumb and fingers. For a right-handed circular wave,
when you use your right hand and point your right
thumb in the direction of propagation k, the fingers
will curl in the same direction as the E-field rotation.
(See Fig. 2b.) A left-handed circular wave will match
with your left hand. 

One way to create a circular wave is to combine
two equal, orthogonal, linear waves that are 90° apart
in phase. One linear wave reaches a maximum when
the other goes to zero. You can see this in Fig. 2a where
dashed and solid lines are used represent the two
orthogonally polarized waves, and in the following
expression:

.

For a circular wave, the two linear components must be

Fig. 3: Various elliptical waves for different phase delays Γ.

of the same magnitude, |Ex|=|Ey|. 

If Ex and Ey are not equal in magnitude, the
result is an elliptically polarized wave. Elliptical waves
have the same property of handedness used for circular
waves. However, in order to completely characterize an
elliptical wave, not only do you need to measure the
ratio of major axis to minor axis (ellipticity), but you
also need to relate the beam axes to some frame of ref-
erence, such as a lab feature, device mount, or package
marking. 

Elliptical polarization is the most general case of
polarization. For instance, you can think of a circle as
being a special ellipse with equal major and minor
axes. In general, an elliptically polarized wave will be
of the form:

.

Γ is a phase delay difference between the two linear
wave components. Several representative elliptical waves
for a range of Γ values are shown in Fig. 3. Notice that
the major and minor axes are not necessarily in the x
and y directions. Also notice that the ellipse degenerates
into a linear wave when 

Γ=…-2π, -π, 0, π, 2π…(0 and 180 degrees).

The polarization is circular when

Γ=…-3π/2, -π/2, π/2, 3π/2…(90 degrees)

and |Ex|=|Ey|.

E E Ex y= ( ) + +( )cos cosω ωt t Γ

y

x
Γ=0 0<Γ<π/2 Γ=π/2 π/2<Γ<π

Γ=π π<Γ<3π/2 Γ=3π/2 3π/2<Γ<2π

E E Ex y= ( ) + ( )cos sinω ωt t

K

Right-handed
circular

y

x

z

y

x

Time



4

Birefringent Crystals 

Since the goal of this application note is to
explain how wave plates and compensators work to
convert light from one polarization state to another, we
must first review the properties of uniaxial crystals. 

When light travels through a transparent materi-
al such as a crystal, it interacts with the atoms in the
lattice. Consequently, the speed of light inside the crys-
tal is slower than that in a vacuum or air, typically by a
factor between 1 and 3. The speed v varies inversely
with the crystal’s refractive index n. That is, v=c/n.
The larger the refractive index, the more the light is
retarded. The amount of phase retardation (or delay) Γ
that a monochromatic wave acquires from traveling
through the crystal is related to its speed (refractive
index), wavelength, and the path length L inside the
crystal. 

The simplest class of crystals are those with cubic
symmetry. In a cubic crystal, all 3 crystallographic
directions or axes are equivalent. nx=ny=nz, and the
crystal is optically isotropic. Regardless of how the light
is polarized with respect to the crystal, it will experience
the same refractive index and phase delay. Therefore,
any polarized light, aside from accumulating a con-
stant phase delay, remains unchanged after traveling
through a defect-free, isotropic crystal. (This is also
true for amorphous substances like glass.)

However, there exists another, more interesting,
class of crystals that exhibit asymmetric (or anisotrop-
ic) optical properties. They are known as birefringent
crystals. One birefringent type is uniaxial, meaning
that one crystal axis is different from the other two:
nz≠nx=ny. Common uniaxial crystals of optical quali-
ty are quartz, calcite and MgF2. The single crystal axis
that is unique is often called the “extraordinary” axis
(or sometimes, the optic axis), and its associated refrac-
tive index is labeled ne, while the other two axes are
“ordinary” axes with index no. 

Fig. 4: Rotating a uniaxial crystal changes the phase delay (retarda-

tion) for a linearly polarized wave.

For a concrete example, refer to Fig. 4. Input
light that is linearly polarized along the crystal’s y axis
acts as an ordinary wave and will experience refractive
index no. Rotating the crystal so that the light is linear-
ly polarized along the crystal’s z axis causes the light to
act as an extraordinary wave which sees a refractive
index ne. In these two cases, the phase delays, or opti-
cal path length, will be different even though the light
travels the same physical path length. 

A confusing point in the terminology of uniaxial
crystals is the labels: fast axis and slow axis. Whichever
axis has the smallest refractive index is the fast axis. If
ne<no, as is the case with quartz, then the extraordi-
nary axis is fast and the ordinary axes are slow.
Conversely, if ne>no, as with calcite and MgF2, then the
extraordinary axis is slow, and the ordinary axes are
fast. By definition, quartz is said to be a positive uniaxi-
al crystal, whereas calcite is a negative uniaxial crystal. 

ne

no

ne

k

y

z

z

x

x

y

k

L

Γ=2πnoL/

no

λ

Γ=2πneL/λ

Γ Γ= ( )2p

λ
nL       in radians .



5

Wave Plates and Applications

Birefringent wave plates, or retardation plates, are
extremely useful for applications where you want to
synthesize and analyze light of different polarization
states. For example, using a quarter-wave plate, you
can convert an input beam from linear polarization to
circular (or elliptical) polarization and vice versa.
Using a half-wave plate, you can continuously adjust
the polarization angle of a linearly-polarized beam.
With just these two types of wave plates, you can build
an optical isolator, a variable attenuator, or a variable-
ratio beam splitter. 

A wave plate is simply a cut and polished slice of
uniaxial crystal, like that shown in Fig. 4. The plane of
the slice contains the extraordinary (or optic) axis. An
input beam that is normally incident on the wave plate
will be resolved into ordinary and extraordinary axis

components, each with a different refractive index. The
beam that emerges has a phase-delay difference or
retardation between the axes of

If you choose the wave plate thickness L so that the retar-
dation corresponds to π/2 radians (or 90°), then it is
called a quarter-wave plate. A phase shift of Γ=π/2 will
convert linearly polarized light to circular and vice versa
as we saw in Fig 3. Half-wave plates have π radians (or
180°) of retardation. As shown in Figure 3, a retardation
of Γ=πwill flip linearly polarized light. If the incoming
beam is at an angle with respect to the fast axis, the
light will be flipped by 2 around the fast axis. This is
especially convenient since your laser or apparatus is
often too large to rotate. Quarter wave and half wave
are not measures of physical thickness, rather they are
in reference to a specific wavelength. Therefore, all
fixed-thickness wave plates should be properly labeled
with the wavelength of light they were designed for
(e.g., 1/4 wave at 632.8 nm). Furthermore, since the
refractive indices of all materials are strongly wave-
length dependent (dispersive), it is wrong to assume a
wave plate that is quarter-wave for 1060-nm light, for
example, will be a half-wave plate for 530-nm light. 

In Table 1, we summarize the most common appli-
cations of wave plates. In order to follow the prescriptions
in Table 1, you need to find the fast and slow axes of
your wave plate and then rotate the wave plate so that
the input or output polarization is at the correct angle. 

In practice, it is difficult to polish a wave plate for
a retardation of less than one wavelength. The crystal
would be very thin, fragile and imprecise. An alterna-
tive exists. Since waves repeat themselves every 2πradi-
ans, any phase difference that is an integral multiple of
2π can be subtracted out. Therefore, most fixed-thick-
ness wave plates are really multiple-order wave plates.
Instead of just π/2 retardation, a practical quarter-wave
plate yields 2Nπ+π/2 retardation, where N is the order
of the wave plate. Multiple-order wave plates do not act
exactly like zero-order wave plates, however. If you
change the wavelength of your laser or light source,

θ
θ
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Input Output

Quarter-wave

Linear, =45° Right circular
Linear, =-45° Left circular
Right circular Linear, =-45°
Left circular Linear, =45°

Linear, any ≠45° Elliptical
Half-wave

Linear, angle Linear, angle -
Left circular Right circular

Right circular Left circular
Any wave plate

Linear, =0° or 90° Unchangedθ

θθ

θ
θ
θ

θ
θ

Slow

Fast

Input Output

=0° is the fast axis
=90° is the slow axisθ

θ

θ

Table 1: Common polarization conversions using wave plates.
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you will find that the retardation will change much
more rapidly for multiple-order wave plates than for
zero-order plates. Also, multiple-order retardation is
2N+1 times more sensitive to angle-tilting about nor-
mal incidence. This means that a very small amount of
tilt can be used to fine tune a multiple-order wave
plate. But, it also means that larger errors will occur if
non-parallel light rays of converging or diverging
beams are used. For more precise measurements, zero-
order wave plates are available. They are made by com-
bining two wave plates that have retardations that differ
by exactly the desired retardation. Zero-order wave
plates are much less sensitive to angular, wavelength,
and temperature deviations.

Soleil–Babinet and Berek’s Compensators

Fortunately, there are techniques available for
making true zero-order wave plates whose retardation
can be continuously adjustable. Such a variable wave
plate is called a polarization compensator, and it can be
used to achieve any retardation, including quarter- and
half-wave, for a broad range of wavelengths. We will talk
about two types of compensators: the Soleil–Babinet
compensator and the Berek’s compensator.

The principle behind the Soleil–Babinet is easy to
understand. It effectively consists of two uniaxial plates
stacked together. The extraordinary axes of the two
plates are perpendicular to each other so the roles of
the ordinary and extraordinary axes are reversed as the
light travels through one plate and then the other. A
phase difference or retardation that is accumulated in
the first plate may be partially or completely canceled
out by the second plate. A variable compensator is
made by replacing the first plate with two complemen-
tary wedges. In this manner, the total effective thickness
of the first plate can be adjusted by sliding one wedge
with respect to the other. (See Fig. 5.) When the first
plate thickness is exactly equal to the second plate
thickness, there is zero net retardation. 

Although its operation is easily understood, a
Soleil–Babinet compensator can be relatively expensive
because it requires three pieces of carefully crafted and
mounted uniaxial crystal. Another drawback of the

Soleil–Babinet is that it may be quite lossy due to
reflections from the six interfaces present in the design. 

Fig. 5: Soleil–Babinet compensator. Retardation is adjusted by
changing the effective thickness of plate 1.

A second type of compensator, the Berek’s com-
pensator, is attractive because it consists of only one
plate of uniaxial crystal, thereby cutting down on the
cost and optical loss while still maintaining the versa-
tility of the Soleil–Babinet. The Berek’s polarization
compensator, pictured in Fig. 6, consists of a single
plate cut with the extraordinary axis perpendicular to
the plate. When light is at normal incidence to the
plate, it propagates with a velocity independent of
polarization. There is no retardation because the light
only experiences a refractive index no. The light is
“ignorant” of the extraordinary axis. But, when the
plate is tilted toward or away from the light beam, one
of the axes in the plane of incidence becomes slightly
extraordinary. The axis now has an effective refractive
index ne′ given by the formula:

Even though the amount of retardation in the Berek’s
compensator depends on the degree of tilt, it has angu-
lar sensitivity equal to a Soleil–Babinet compensator. 
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Fig. 6: Berek’s compensator. The extraordinary axis is perpendicular
to the plate. Tilt causes birefringence and phase retardation. 

Verifying Polarization States

You can obtain and verify any polarization state
using a polarizer and a wave plate such as the New
Focus Model 5540 Berek’s variable wave plate.

Examples

Linear-to-Linear Polarization: (Fig. 7) 
A half-wave plate changes the orientation of linearly
polarized light by an angle of 2 , where is the angle
between the input polarization and the wave plate’s fast
axis. To verify that you have the correct linear polariza-
tion direction, orient a polarizer so that it blocks the
desired polarization. 

Fig. 7: A half-wave plate produces a relative phase difference of 
πradians between the fast- and slow-axis waves. If the incoming light
is polarized at an angle α with respect to the fast axis, the outgoing
light will be rotated by 2α about the fast axis. Half-wave plates can
also flip the handedness of circularly or elliptically polarized light. 

Linear-to-Circular Polarization: (Fig. 8) 
A quarter-wave plate converts linear polarization to cir-
cular polarization. To verify that you have circularly
polarized light, reflect the transmitted light back
through the quarter-wave plate. The reflected polariza-
tion should now be orthogonal to the incident polariza-
tion. A polarizing element that transmits the incident
wave will therefore block the reflected beam.

Fig. 8: A quarter-wave plate introduces a relative phase shift of π/2
between the fast- and slow-axis waves. It converts linearly polarized
light into elliptically polarized light. For the special case where the
incident light is oriented at 45˚ with respect to either principal axis, the
resulting light is circularly polarized. 

Left-Hand Circular (LHC) vs. Right-Hand
Circular (RHC): (Fig. 9, pg. 8) Determining hand-
edness is difficult if you don’t know the orientation of
the fast and slow axes of your wave plate.

With the New Focus Model 5540 Berek’s polariza-
tion compensator, however, identifying the fast and
slow axes is simple. The compensator works by tilting a
uniaxial piece of material, whose face is perpendicular
to the optic axis. The slow axis is always in the plane of
incidence, perpendicular to the tilt rotation axis. 

Once the orientation of the fast and slow axes is
known, left- and right-hand circular polarization can
be determined by using a polarizer and the compen-
sator as a quarter-wave plate. 

For LHC input, if the slow axis of the quarter-
wave plate is along y, the output of the wave plate will
be linear at -45° to x and transmitted through the
polarizer as shown on pg. 8. RHC will be blocked.
Rotating the wave plate or polarizer by 90° reverses this
result.
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Fig. 9: For LHC, if the fast axis of the quarter wave plate is aligned so
that the polarization component along y is retarded by π/2 with
respect to x, all the light will be transmitted through the polarizer. If x
is retarded by π/2 with respect to y, the polarizer will block the light. 

Summary

For optimal performance in your experiment,
precise control of the polarization of your optical beam
is necessary. Wave plates can be used to convert the
polarization from one state to another. When choosing
a wave plate, keep in mind that single-order wave
plates are less sensitive to temperature and wavelength
variations and beam divergence.

References

A good reference is:

Hecht, E. 1987. Optics, 2nd ed. Reading, MA:
Addison-Wesley Publishing Co.

More rigorous references are:

Born, M.; Wolf, E. 1980. Principles of Optics.
Oxford: Pergammon Press.

Yariv, A.; Yeh, P. 1984. Optical Waves in Crystals.
New York: John Wiley and Sons.

Circular Polarization

Glan–Thompson
Polarizer Quarter-Wave Plate

y

x

y

x

Linear Polarization

5215 Hellyer Ave. • San Jose, CA 95138–1001 • USA
phone: (408) 284–6808 • fax: (408) 284–4824

e-mail: contact@newfocus.com • www.newfocus.com


