
Socket Communication on the XPS using TCL

TECHNICAL NOTE

B A C K G R O U N D

Applications development on the XPS with TCL is simple, convenient and
powerful. The XPS web interface terminal utility provides a full list of
commands that can be selected for execution. The XPS command set is not
abbreviated and the full power of applications development is in the hands
of the user when developing with TCL. These commands include functions
related to Digital and Analog I/O and consequently interfacing to external
devices as well.

Commands Executed in the web interface terminal are appended to a list
that can be used to automatically generate a TCL script. TCL scripts are
stored locally on the controller hard drive and can be executed directly on the
controller or transferred to the control PC via FTP. Scripts executed on a
control PC will require a TCL interpreter. TCL interpreters are widely
available for many Operating Systems and Newport provides a TCL
interpreter with the XPS for Windows.

TCL scripts can be edited easily on the control computer with any text editor.
A popular and convenient text editor for TCL scripts is Notepad++.
Notepad++ will format the text with color coding. In the text editor
additional structures or comments can be added beyond executed
commands. There are many excellent resources online to learn TCL as well.

While TCL is an excellent resource for efficient applications development
with the XPS, it is not without limitations. It is important to understand
these limitations and operation when starting development with TCL.

O P E N I N G A S O C K E T

The XPS communicates with TCP/IP sockets. Each socket connection is
established with an IP address, port number, timeout and unique identifier. A
command to open a socket is as follows:

TCP_ConnectToServer 192.168.254.254 5001 120 SocketID

Here:

1. The IP address of the XPS is: 192.168.254.254

2. The Port # of the XPS is: 5001

3. The timeout is 120 ms

4. SocketID is the unique identifier

When opening a second socket, the only change to this command would be
the socket identifier to preserve the unique naming. Each socket would then
be addressed with the respective naming established with the connection.
For example, we issue the firmware version get command and we format as
follows (to make this request over socketID):

FirmwareVersionGet $socketID version

B L O C K I N G S O C K E T S

The XPS uses blocking sockets for communication. The practical impact of
blocking sockets is that an executed command will prevent other sequential
commands from executing until the controller has sent a response indicating
completion of the command. The XPS provides a numeric response to
command execution to indicate successful completion (zero) or an error
whether an error has occurred (nonzero response). The type of error will have
a specific numeric code that can be queried.

Blocking sockets are quite useful for sequential command execution when
preserving ordering. Blocking sockets also make it easier to identify the
cause of errors, since each command will have a numeric response.
However, blocking sockets can be inconvenient for execution that requires
rapid timing. For example, we issue a command such as:

GroupHomeSearch $SocketID X

This command may require seconds to complete as a stage searches for
home position. This means any commands issued sequentially after this
command will be delayed by seconds until the controller has sent a response.
As such we often want to use multiple sockets for communication.

M U L T I P L E S O C K E T S

The XPS supports up to 80 sockets open at any given time with 30 actively
communicating. When using multiple sockets it is important to understand
the impact of execution order along with timing. Let’s consider multiple
sockets communicating with two different stages (Group1, Group2).

We can reference the below diagram to explain command execution over two
sockets.

1. We send sequential commands from multiple sockets in the
following order:

TCL1 (socket 1), TCL2 (socket2)…TCLN (socketN)

TECHNICAL NOTE

2

Socket Communication on the XPS using TCL

2. TCL1 is blocked because execution of Cmd15 has not completed

3. TCL2 is blocked because execution of Cmd57 has not completed

4. TCLN is sent to the TCP Server Task Manager for queuing and
decoded and sent to Group2 for execution. This command is
executed first on Group2

5. Cmd15 has completed execution and the socket is released

6. TCL1 is the next command to execute on Group1 and the socket
is blocked again

7. Cmd57 has completed execution and the socket is released

8. TCL2 is the next command to execute on Group1 and the socket
blocked again

In summary, the command sequence will depend not only on execution order
but when sockets are released. Commands sent to sockets that are not being
blocked are executed first in order (FIFO) and as sockets become released so
do additional commands execute in order of release. Now we have set forth
the basics of ordering we considering the timing related to execution

S O C K E T S A N D C O M M A N D
E X E C U T I O N T I M I N G

TCL command execution is assigned as a low priority task by the XPS; this
means that other motion related tasks are given priority (Corrector, Profiler,
etc…). Thus, TCL commands are put in a message queue and executed
progressively depending the CPU loading. This means that TCL command
execution can have variable timing depending on the current CPU load and
pace at which multiple commands are executed.

To illustrate this point, we consider multiple TCL commands sent for execution
to the XPS. Below is a graphic illustrating TCL timing on a relative scale with
servo and communication timing. In this scenario the servo loop rate is 20
kHz (default for XPS is 8 KhZ) and communication requires 5-20 microseconds.
Here we execute TCL 1 command first, which is a relatively short command
that completes quickly. We then execute TCL 2 after a brief delay. The
command execution for TCL 2 however requires substantially more time and is
interrupted by a higher priority task.

Consider repeated execution of TCL 2 with minimal delay; when controller
CPU loading is light, the command executes without interruption. When the
CPU loading is greater, the command will be interrupted and execution
delayed. This is a by-product of the task priority assigned to TCL and will
result in variable timing for rapid sequential commands. If commands are
sent in very rapid succession this puts additional load on the CPU and
likewise timing delays associated with resource management.

If regular TCL command execution timing is important, it is best to introduce
delays (after command) in the TCL script to slow the frequency at which
commands are sent. If best TCL timing is critical, try to reduce CPU loading by
minimizing other tasks running.

