

STRUCTURAL ENGINEERING REPORT

- Project: Seismic Restraint for Optical Table
- Location: Ss=2.484, S1=1.033
- Client: Newport Corporation
- **Code:** 2013 CBC, 2012 IBC
- **SGE Job No.** 515.052.369

July 2015

Date: July 31, 2015

- To: Mr. Warren Booth Vibration Control Product Line Manager Newport Corporation 1791 Deere Avenue Irvine, CA 92606 Tel (949) 253-1866
- **Re:** Structural Analysis and Design for Optical Table Earthquake Restraint
- SGE No.: 512.052.369

Dear Mr. Booth,

S. Gordin Structural Design & Engineering Services, Inc. (further referred to as "SGE") completed the engineering work on Structural Analysis and Design for the Earthquake Restraint.

This work was conducted based on Newport Corporation PO # 1421389 dated May 21, 2015.

Please refer to the aforementioned approved proposal for all additional information, including the caveat and limitations.

1. EXISTING DOCUMENTATION

This proposal was developed upon the following documentation (ERS97):

1.1 Drawings by Newport Corporation:

34773K	35712A	35718A
35703A	35715A	37192C
35704B	35716A	37194B
35711A	35717A	37195C
		37255B

1.2 2011 Structural Design by SGE for Earthquake Restraint.

3. STRUCTURAL ANALYSIS BY SGE

- 3.1 The structural analysis by SGE was based on the following:
 - 3.1.1. Governing design codes:2012 International Building Code (IBC)2013 California Building Code (CBC)

ASCE 7-10 (American Society of Civil Engineers) ACI 318-11 (American Concrete Institute) Steel Design Manual 14th Edition (American Institute of Steel Construction) AWS D1.3-2008 Structural Welding Code – Sheet Steel (American Welding Society).

3.1.2 Design assumptions:

Light-gage (13ga) steel Structural steel Concrete	ASTM A570 Grade 50 ASTM A36 Normal weight concrete, 3,000 PSI strength in 28 days (minimum for California), 6" minimum uniform thickness
Tributary seismic mass Seismic force	Per Item 3.2.1 below
Seismic lorce	Ss=2.484, S1=1.033 (Hayward, CA), ap=1.0;Rp=2.5, Ω=2.5 (Laboratory Equipment, ASCE 7-10 Tbl.13.5-1)
Table location	At the ground floor, mid-height floor, and top floor (roof)
Table configuration	4'x6' and 4'x20' (4 isolators, 3 restraints) 4'x20' (4 isolators, 4 restraints)
Restraint height	$29-\frac{1}{2}$ " maximum from the floor.

- 3.1.3 Per request from Newport Corporation, only sleeve-type anchors were considered for the design of anchorage to concrete.
- 3.2 Commentary on some structural design issues (refer to drawings SD1 and SD2, Appendix A).
 - 3.2.1. <u>Model.</u> The following was assumed for the purposes of this analysis/report:
 - a. The considered layouts are limited to the three cases presented on drawing SD1.
 - b. The combined center of gravity of the table and equipment is located within the height and plan limitations outlined by shaded diamondshaped areas on drawing SD1.
 - c. Any conditions differing from those reflected on drawing SD1 are subject to additional structural investigation.
 - d. All tables are supported by vibration isolators (further referred to as "isolators," 4 per table) and earthquake restraints (or "towers," 3 or 4 per table). The isolators are assumed to resist vertical downward forces (gravity and seismic) only, while the restrains are capable of resisting only lateral and upward seismic forces.

- e. Due to the deformability of the table and connections, the lateral forces on the table were assumed to be resisted by all available restraints.
- f. This analysis considered only the resistance of the towers to the seismic forces specified in this report.
- g. For the purposes of this analysis, the isolators were assumed as adequate for the resistance to all applicable (vertical/downward) forces at any possible location of the weight resultant force. The analysis of the isolators is beyond the scope of work by SGE.
- 3.2.2. <u>Codes.</u> The codes per Item 3.1.1 represent the basis for structural design as mandated by the IBC and CBC.

The subject site (Hayward, CA) was chosen by SGE and approved by Newport Corporation to provide seismic forces that are conservative for most of California as well as for most of the continental United States.

- 3.2.3. <u>Anchors.</u> The seismic restraints experience lateral and vertical (upward only) earthquake forces due to table shifting and overturning (refer to drawings SD1 and SD2). As a result, the concrete anchors in the SGE design are subjected to pullout and shear forces. The tension forces were assumed to be resisted only by anchors along one of the tower faces, while the shear forces were assumed to be resisted by the rest of the anchors.
- 3.2.4. <u>Light-Gage Steel.</u> The performance of the light-gage steel components under the compression loads (for example, the faces of the 13-gage tower) is addressed in AISC Steel Design Manual. According to that code, only a certain portion of the compressed light-gage component may be considered effective in compressive resistance.
- 3.2.5. <u>Welding.</u> (1) Similarly to Item 3.2.4, welding of the tower to much thicker structural steel plates is only effective within the aforementioned effective portions of the tower perimeter. For example, for the 13 gage Grade 50 steel, only 3.82" of the 4"-to-10.5" of the tower face width is effective in compression.

(2) The centerlines of the holes for concrete anchors in the bottom plate (baseplate) are located at a distance of 0.75° from the tower. The effective length of the weld at each anchor is limited to the distance equal to $2x0.75^{\circ}=1.5^{\circ}$ which less than the spacing of the anchors.

(3) Welders of the light-gage tower shall be specially certified per AWS D1.3.

- 3.2.6. <u>Constructability.</u> Due to different tolerances for steel and concrete construction, the baseplate holes for steel-to-concrete connections have diameters that are larger than those for steel-to-steel connections.
- 3.3 The structural analysis by SGE revealed the following (refer to Appendix A).
 - 3.3.1 The seismic restraint configured per Item 3.2.1 above and drawings SD1 and SD2 is generally adequate for the codes, loads, and assumptions per Item 3.1.2 above.
 - 3.3.2 The resistance of the earthquake assembly appears to be limited by the strength of the anchorage to concrete.

The restraints are anchored to the floor (3,000 PSI minimum 28-day strength, normal weight concrete, minimum uniform thickness 6") with HILTI HIT HY200 per ICC ESR 3187 (\emptyset 0.375" bolts, \emptyset 0.65" HIS-N inserts minimum embedment - 4.38 inches.

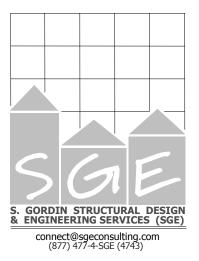
3.3.3 Based on the capacity of the assembly, the maximum combined weight of the table and equipment per table shall be evaluated by the following formula:

W0 = 2,710*NR*KX*KZ*KH*KF [LBS]

- **W0** total maximum combined weight, lbs, of the table **and** of the payload secured on the table;
- NR number of restraints per table (3 or 4);
- **KX** coefficient for eccentric location of the resultant of the total table and payload weight along 6' or 20' table dimension;
- **KZ** coefficient for eccentric location of the resultant of the total table and payload weight along 4' table dimension;
- KH coefficient for hazardous payload for installations involving quantities of toxic or explosive substances sufficient to be dangerous to the public or exceeding quantities per IBC Table 307.1.(2):
 - **1.0** for non-hazardous payload
 - **0.8** for hazardous payload;
- **KF** coefficient for table location:
 - **1.0** ground floor
 - 0.5 mid-height floor
 - **0.33** roof.

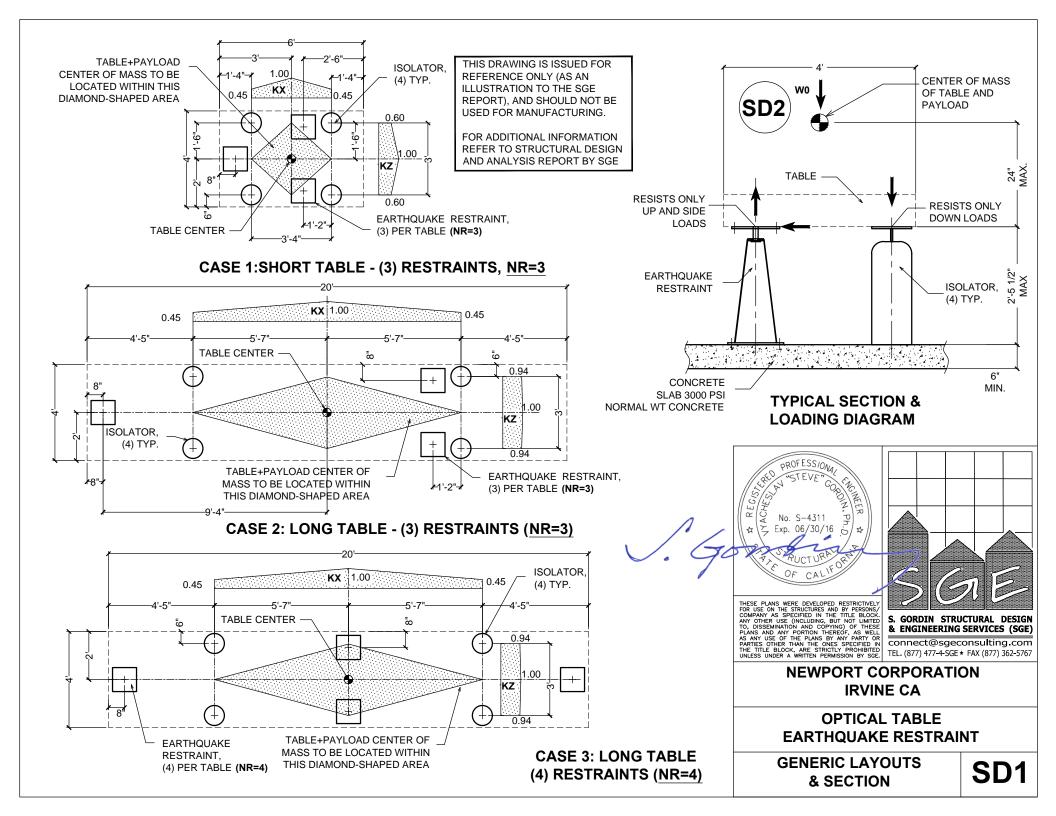
- 3.3.4 The findings of this report appear applicable for all tables measuring at least 4'x4' and up to 5'x20' with isolator/restraint height of 29 ½" maximum and configurations per Item 3.1.2 above.
- 3.3.5 Installation on floor slabs constructed over the corrugated decks and/or of the light-weight concrete may considerably limit the capacity of the anchors (to be considered on an individual basis).
- 3.3.6 The design earthquake was assumed as generated by a site with Ss=2.484 (Hayward CA). For some sites, this high value may be too conservative, meaning that the payload on tables at such sites may be increased (to be considered on an individual basis).
- 3.3.7 All individual-basis analyses per, and similar to, Items 3.3.5 and 3.3.6, shall be requested from, and conducted by, Newport Corporation and/or SGE.

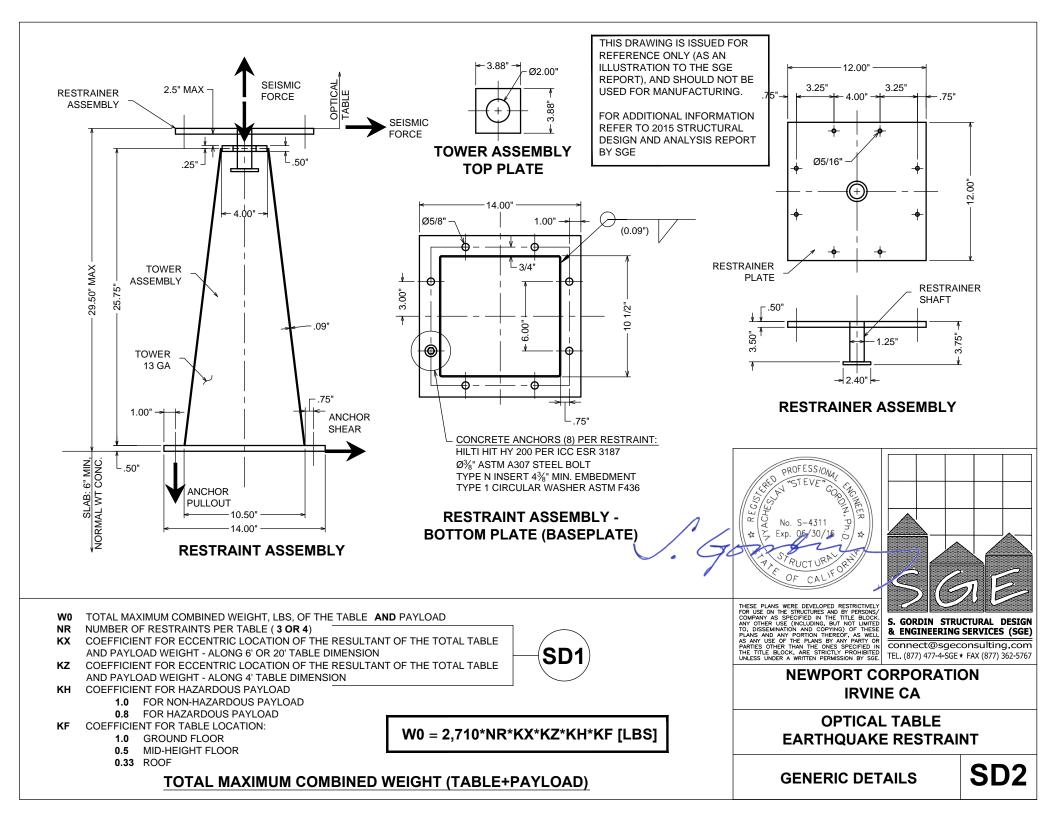
We appreciate this and any other opportunity to be of service to you. Should you have any questions or need other assistance, please call SGE.

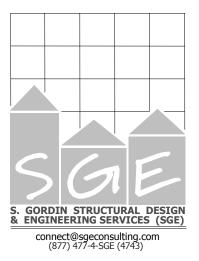

Respectfully submitted,

S. Gordin Structural Design & Engineering Services

Vyacheslav "Steve" Gordin, Ph.D., Principal Registered Structural Engineer CA License S4311


Appendix A: Schematic Drawings Appendix B: Structural Calculations




STRUCTURAL ENGINEERING REPORT APPENDIX A:

SCHEMATIC DRAWINGS

- Project: Seismic Restraint for Optical Table
- Location: Ss=2.484, S1=1.033
- Client: Newport Corporation
- Code: 2013 CBC, 2012 IBC
- **SGE Job No.** 515.052.369

STRUCTURAL ENGINEERING REPORT APPENDIX B:

STRUCTURAL CALCULATIONS

- Project: Seismic Restraint for Optical Table
- Location: Ss=2.484, S1=1.033
- Client: Newport Corporation
- Code: 2013 CBC, 2012 IBC
- **SGE Job No.** 515.052.369

Structural Calculations

Table of Contents

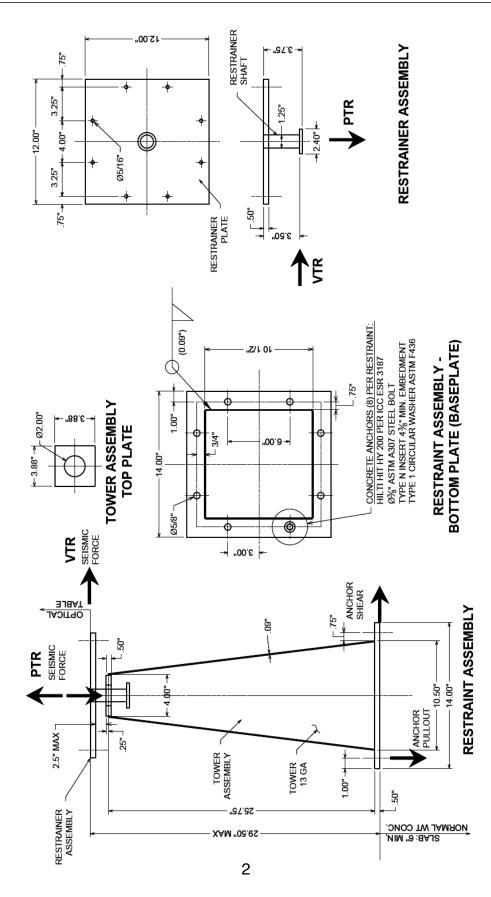
Project information	1
Design seismic forces	5
Uplift and overturning seismic forces	6
Restraint strength based on anchor capacity	7
Summary of overturning and shear forces	8
Anchorage to concrete design	9
Restraint strength based on tower capacity	13
Restraint strength based on weld capacity	15
Baseplate and restraining shaft analysis	16
Retaining plate analysis	17
Analysis of eccentrically placed seismic force	18

 $(\mathbf{x}\mathbf{x})$

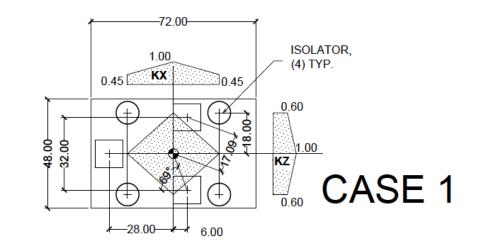
- Referenced page number of structural calculations

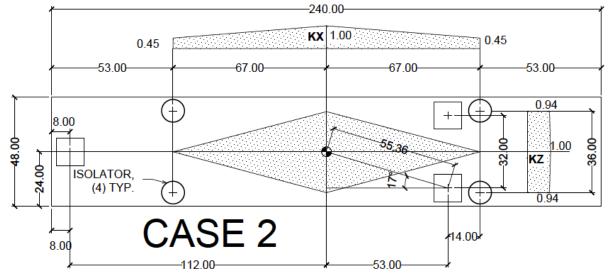
	Structural Calculations
Project:	Newport ERS
SGE No.:	515.052.369
Date:	7/31/2015
Engineer:	DT
Checked by	SG
	SGE No.: Date: Engineer:

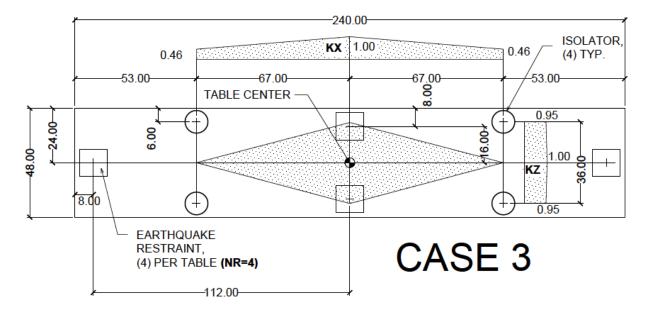
OPTICAL TABLE


Structural Calculations Newport ERS 515.052.369

Engineer: Checked by


Project: SGE No.:

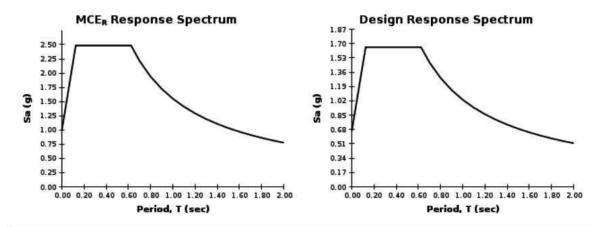

Date:


7/31/2015 DT SG

	Structural Calculations
Project:	Newport ERS
SGE No.:	515.052.369
Date:	8/3/2015
Engineer:	DT
Checked by	SG

USGS Design Maps Summary Report

User-Specified Input


Report Title	NEWPORT ERS Fri June 5, 2015 23:03:46 UTC
Building Code Reference Document	2012 International Building Code (which utilizes USGS hazard data available in 2008)
Site Coordinates	37.6699°N, 122.0799°W
Site Soil Classification	Site Class D – "Stiff Soil"
Risk Category	1/11/111

USGS-Provided Output

S _s =	2.484 g	S _{MS} =	2.484 g	S _{ps} =	1.656 g
S ₁ =	1.033 g	S _{M1} =	1.550 g	S _{D1} =	1.033 g

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

				Structural Calculations
			Project:	Newport ERS
			SGE No.:	515.052.369
			Date:	7/31/2015
			Engineer:	DT
2	g		Checked by	SG

APPLICABILITY OF THE CODE ASCE 7-10 WEIGHT OF THE OPTICAL TABLE (NON-BUILDING STRUCTURE) <25% OF THE COMBINED WEIGHT OF THE TABLE AND SUPPORTING STRUCTURE (I.E. BUILDING) ∴ DESIGN SHOULD BE CONDUCTED PER CHAPTER 13. AS FOR "LAB EQUIP"

ASCE 7-10

ASCE 7-10 12.14-6

13.3-1

SEISMIC LATERAL FORCE ON TRIBUTARY WEIGHT

 $VS = FP = \frac{0.4(ap)(SDS)W0*(1+\frac{2Z}{h})*\Omega}{Rp/Ip}$ AP = 1.0 RP=2 ½ Ω = 2 ½ SDS = 1.656G

VS=K1*(IP)*(W0)

GROUND FLOOR: Z/H = 0 \rightarrow	K1=0.6624
MID HEIGHT FLOOR: Z/H = ½ →	K1=1.3248
TOP FLOOR (ROOF): Z/H = 1 →	K1= 1.9872
FACTOR KF (INSTALLATION FLOOR)	

KF

F	=0.6624/0.6624 = 1.0
	=0.6624/1.3248 = 0.5
	=0.6624/1.9872 = 0.33

IP = 1.0 (NON HAZARDOUS)

IP = 1.25 (HAZARDOUS)

FACTOR KH (HAZARDOUS CONDITION)

KH =1/1.0 = 1.0 (NON-HAZARDOUS) =1/1.25 = 0.8 (HAZARDOUS)

ADDITIONAL V	ERTICAL FORCE DUE TO VERTICAL SEISMIC ACCELERATION
TOTAL:	
EV	$= \pm 0.2(SDS)(D)$

 $=\pm(0.2)(1.656)(IP)(W0) = \pm 0.331(IP)(W0)=K2(IP)(W0)$ TOTAL

PER RESTRAINT

TVS =EV/NR=K2(IP)(W0)/NR

K2 =0.331

_	4	<u></u>
4		
$\left \right\rangle$		

UPLIFT ON RESTRAINTS DUE TO OVERTURNING

WEIGHT/MASS TRIBUTARY TO EACH RESTRAINT: WTR= W0/NR (NR = # OF RESTRAINTS PER TABLE) NR =3 (CASE 1, 2) =4 (CASE 3)

LATERAL SEISMIC FORCE, TOTAL

 $V0 = K1^*KF^*(IP)^*(W0)$

LATERAL SEISMIC FORCE, TRIBUTARY TO, AND APPLIED ON TOP OF, EACH RESTRAINT:

VTR=K1*(IP)*(W0)/NR

ADDITIONAL UPLIFT ON ANCHORS DUE TO OVERALL OVERTURNING OF THE TABLE:

TOT=VTR*H/(R*NRT)

H =53.5" HEIGHT OF CENTER OF MASS ABOVE FLOOR, TYP

R = 34" DESIGN DISTANCE BETWEEN RESTRAINTS AND ISOLATOR

NRT = 1 #OF RESTRAINTS PARTICIPATING IN OVERTURNING RESISTANCE

TOT = K1*W0*H*IP/(NR*R*NRT) =

= K1*W0*(53.5")*IP/[NR*(34")*1] =1.574*K1(IP)*(W0)/NR

=0.35*K1*(IP)*(W0) CASE 1, 2 (NR=3)

=0.26*K1*(IP)*(W0) CASE 3 (NR=4)

TVS =K2*(IP)(W0)/NR

=0.110*(IP)*(W0) CASE 1, 2 (NR=3) =0.083*(IP)*(W0) CASE 3 (NR=4)

	3	

Date:

Engineer:

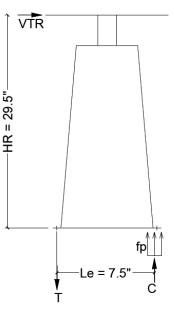
Checked by

RESTRAINT STRENGTH BASED ON ANCHOR CAPACITY:

 $PA = MTR/LE + PTR/N \le 8.0 \text{ KS}$

MTR	= VTR*HR, IN-K	MOMENT AT BOTTOM OF EACH RESTRAINT = V*HR
	=6.514*K1*(IP)*(W0)	CASE 1, 2 (NR=3)
	=4.885*K1*(IP)*(W0)	CASE 3 (NR=4)
PTR	=TOT+TVS	TOTAL UPLIFT ON RESTRAINT
	=0.46*K1*(IP)*(W0)	CASE 1, 2 (NR=3), GROUND FLOOR
HR	= 29.5"	HEIGHT OF RESTRAINT
LE	= 7.5"	EFFECTIVE MOMENT ARM FOR ANCHORS
Ν	= 4	# OF ANCHORS PER SIDE (ANCHOR GROUPS)
		(2) ANCHORS PER SIDE = (1) ANCHOR GROUP
8K		LRFD CAPACITY OF ANCHOR GROUP IN TENSION

ONLY (2) ANCHORS OUT OF (8) CONSIDERED


EFFECTIVE FOR MOMENT RESISTANCE


SHEAR IS RESISTED BY THE REST OF THE

ANCHORS (IN COMPRESSION ZONE)

- = 6.514*(IP)*(W0)/7.5" + 0.46*(IP)*(W0)/4 ≤ 8 K P_A
- IP = 1 (NON-HAZARDOUS),
- NR =3
- W0 ≤ 8.14 K, OR

WTRA = W0/NR = 2.71 K

SUMMARY													
		NA=number of anchors in group TA=Total number of anchors	er of anch umber of	iors in gro anchors	dno			. –	TOT=tension from overturning P=Tension from Vertical Seismic	i from ov om Verti	erturning cal Seismi	L.	
		WTRA= weight per restraint anchor prespective	eight per n	estraint a	anchor pr	espective			and Overturning consideration	ning con	sideratior) _	
ANALYSIS -		WTRS=wei	ght per re	estraint fr	om steel	WTRS=weight per restraint from steel perspective	Ð	-	V=Shear on restraint	restraint			
CENTERED FORCE		WTRW= w	eight per	restraint	from wel	WTRW= weight per restraint from weld perspective	ive	-	M=Moment on restraint	on restra	iint		
		W TBL = total max weight of table and load	ital max w	veight of t	table and	load		-	$vw=V(P^2+V^2)$		weld shear	L	
										PER	PER RESTRAINT	F	
	CASE	٩	¥	т	HR	NR	K1	K2	TOT/(W0*IP) P/(W0*IP) V/(W0*IP) M/(W0*IP)	(M0*IP)	v/(wo*IP) I	(41*0W)/N	Ŵ
			Z	Z	Z				¥	¥	¥	IN-K	¥
GROUND FLOOR		1.00	34.00	53.50	29.50	3.00	0.6624	0.331	0.35	0.46	0.221	6.514	0.508
MID-HEIGHT FLOOR		1.00	34.00	53.50	29.50	3.00	1.3248	0.331	0.69	0.81	0.442	13.027	0.918
TOP FLOOR		1.00	34.00	53.50	29.50	3.00	1.9872	0.331	1.04	1.15	0.662	19.541	1.329
									RETAIN SHAFT	HAFT			
	1, 2							•	TTR=P \	VTR=V			
		NA	TA	WTRA	WTRS	WTRW WTR (MIN)	/TR (MIN)	W TBL	TTR	VTR			
			×	¥	¥	¥	×	¥	¥	¥			
GROUND FLOOR		2.000	8.00	2.71	14.39	5.86	2.71	8.14	1.24	1.80	[
MID-HEIGHT FLOOR		2.000	8.00	1.38	7.20	2.98	1.38	4.13	1.11	1.82	1		
TOP FLOOR		2.000	8.00	0.92	4.80	2.00	0.92	2.76	1.06	1.83			
										PER	PER RESTRAINT	F	
	CASE	₫	¥	т	HR	NR	K1	K2	TOT/(W0*IP) P/(W0*IP) V/(W0*IP) M/(W0*IP)	(dl*0W)/q	v/(wo*IP) I	(41*0W)/N	Ŵ
			Z	Z	Z				¥	¥	¥	IN-K	¥
GROUND FLOOR		1.00	34.00	53.50	29.50	4.00	0.6624	0.331	0.26	0.34	0.166	4.885	0.381
MID-HEIGHT FLOOR		1.00	34.00	53.50	29.50	4.00	1.3248	0.331	0.52	0.60	0.331	9.770	0.689
TOP FLOOR		1.00	34.00	53.50	29.50	4.00	1.9872	0.331	0.78	0.86	0.497	14.656	0.997
	C								RETAIN SHAFT	HĂFT			
	0	NA	TA	WTRA	WTRS	WTRW \	WTR (MIN)	W TBL	TTR	VTR			
			¥	×	¥	¥	¥	¥	¥	¥			
GROUND FLOOR		2.000	8.00	2.71	14.39	5.86	2.71	10.85	0.93	1.80			
MID-HEIGHT FLOOR		2.000	8.00	1.38	7.20	2.98	1.38	5.50	0.83	1.82			
I UP FLUUK		7.000	Ø.UU	0.92	4.ðU	2.00	76.0	5.03	0.00	T.05			

7/31/2015

ANCHORAGE TO CONCRETE ~ EPOXY ANCHOR ~ HILTI HIT-HY 200

REFERENCES	C D E	IBC 2012 (2009 OK), CBC 2013 (2010 OK ACI 318-11 (08 OK), INCL APP D ICC ESR 3187)				
DESIGN PARAMETER	NAME	FORMULA OR SWITCH	VALUE	UNIT	?	COMMENT	REFERENCE
FORCES & CONDITIONS							\frown
FACTORED PULLOUT FORCE	Nn1		8.0	υк			(7)
FACTORED SHEAR FORCE	Vn1		0.0				
OPTIONAL FORCE FACTOR	KF		1.00)			\smile
TEMPERATURE (°F) AND TEMPERATURE RANGE	Т		13	C		HILTI LETTER 11/21/14	E TBL 14
DESIGN PULLOUT FORCE	Nan	Nn1*KF	8.00	νк			
DESIGN SHEAR FORCE	Vn	Vn1*KF	0.00				
SEISMIC COEFF (TENSION, CONCRETE ONLY)	ksdc		0.75			SDC C-F	D D.3.3.4.4
DUCTILE FAILURE IN THE STRUCTURE Y/N		Ν		_			D D.3.3.4.3(c
FACTOR DESIGN FORCES BY Ω Y/N	Ω	N	1.00		OK		
CONCRETE STRENGTH (NWC)	f'c		3,000	PSI			
INSTALLATION CONDITION		DRY = "D"; WET/SATURATED="W"	D	¥.	7		D D.6.1.3
GROUT PADS (SHEAR STEEL ONLY)	kg	Ν	1.00				
CRACKED CONCRETE Y/N	5	Ν					
GEOMETRY							_
# OF ANCHORS IN THE GROUP, EFFECTIVE							
STEEL & CONCRETE, TENSION	nt		2.00			<=4	$\langle \rangle$
CONCRETE, SHEAR	nv		2.00				()
STEEL, SHEAR	ns		2.00				\smile
ALONG LOADED EDGE	NALE		2.00)			
DIAMETER							
ANCHOR	da	<u>ل</u>	0.375				
INSERT	d		0.650) IN			
SPECIFIED STRENGTH OF STEEL	£.1						0.114
ANCHOR, TENSILE ANCHOR, YIELD	fut		75 55			CARBON GR 55 OR	511VI
fyt<=125,000 PSI; fyt<=1.9fy	fy	1.9fy		5 KSI			
.jt,000 i 0., ijt i.o.j	futa			5 KSI			
INSERT, TENSILE	fut			5 KSI			
ANCHOR, YIELD	fy		55	5 KSI			
INSERT/ANCHOR(S) EMBEDMENT, ASSUMED	hef		4.33		OK		
INSERT/ANCHOR EMBEDMENT, MINIMUM			2.3	3 IN			E TBL 14
PAD THICKNESS, MINIMUM	tp*		5.6		01/		E TBL 12
PAD THICKNESS, ASSUMED	tp		6.00) IN	OK		
ACTUAL SPACING							\frown
	s1		6.00				()
DIRECTION 2 (MAXIMUM) ALONG LOADED EDGE	s2 SL	-	12.00 6.00				
MIN. ANCHOR SPACING	smin		1.8		OK		E TBL 12
		3hef	12.9				
AVAIL. WIDTH OF HALF-PYRAMID BASE	wpa		12.00) FT			
ANCHOR EDGE DISTANCE				_			
DIRECTION 1	c11		12.00		OK		
	c12		12.00		OK		
DIRECTION 2	c21		12.00		OK		
	c22	1.5hef	12.00 6.5		OK		\frown
ACROSS SHEAR FORCE	C1A	1.51101	12.00				()
	C2A		12.00				\setminus \angle
							\sim
PARALLEL TO (ALONG) SHEAR FORCE	c1		12.00) IN _			
PARALLEL TO (ALONG) SHEAR FORCE MIN. EDGE DIST	c1 cmin	6*d	2.2		OK		D.8.3, D.8.4

7/31/2015

DESIGN PARAMETER	NAME	FORMULA OR SWITCH	VALUE UNIT ?	COMMENT	REFERENCE
STEEL STRENGTH, TENSION			ANCHOR	INSERT	
THREADS PER INCH	nt		16.00	11	
EFFECTIVE AREA	Ase=	π /4(d09743/nt) 2	0.0775 IN ²	0.2476	NET AREAS
NOM. STRENGTH OF ANCHOR GROUP - STEEL	Ns	nt*(Ase)futa	11.62 K	37.13	
STEEL STRENGTH REDUCTION FACTOR	<i>\$</i>		0.75	0.75	D 9.2
DESIGN STRENGTH, STEEL		Φ S*Ns	8.72 K	27.85	
	NS1		8.72 K		
	NS2	1.2NS1	13.95 K		

CONCRETE BREAKOUT STRENGTH, TENSION

PROJ. AREA OF TENSION FAILURE SURFACE FOR ANCHOR GROUP

nt=1 CLOSE TO EDGE	AN1c	(c1+1.5hef)(2*1.5hef)	-	IN^2	c1<1.5hef	D D.5.2
nt=1 AWAY FROM EDGE	AN0	9hef ²	169	IN ²	c1>1.5hef	
nt=2 CLOSE TO EDGE	AN2c	(c1+s1+1.5hef)(2*1.5hef)	-	IN ²	c1<1.5hef, s1<3hef	
nt=2 AWAY FROM EDGE	AN2a	(s1+3*hef)(3*hef)	247		c1>1.5hef, s1<3hef	
nt=4 CLOSE TO EDGE	AN4c	(c1+s1+1.5hef)* *(c2+s2+2*1.5hef)	-	IN^2	c2<1.5hef, s1<3hef, s2<3hef	
nt=4 AWAY FROM EDGE	AN4a	(s1+3*hef)(s2+3*hef)	-	IN^2	c1>1.5hef, c2>1.5hef, s1<3hef, s2<3hef	
		n*AN0	337			
	AN	<=n*AN0	172	IN ²		
	kc		24		UNCRACKED	E TBL 12
BASIC BREAKOUT STRENGTH IN CONCRETE	Nb	kc*(f'c) ^{1/2} *(hef) ^{3/2}	11.84	к	0.1010101122	D D-6
ECCENTRICITY OF PULLOUT FORCE	e'N1		0.00	IN		000
	e'N2		0.00	IN		
		14 · O · IN //OF · OF		IIN		
MODIFICATION FACTOR FOR ECCENTRICITY	Ψ11 	[1+2e'N/(3hef)] ⁻¹	1.00			D D-8
	Ψ12 - I	[1+2e'N/(3hef)] ⁻¹	1.00			
	Ψ1	$\Psi11*\Psi12$	1.00			
MODIFICATION FACTOR FOR EDGE EFFECT			1.00		c1>=1.5hef	D D-9
			-		c1<1.5hef	D D-10
	Ψ2		1.00			
MODIF FACTOR FOR CRACKED TENSION ZONE NOMINAL CONCRETE BREAKOUT STRENGTH	Ψ3	IF $(f_t < f_r) = 1.25, 1.00$	1.25		NO TENSION CRACKS	
FOR SINGLE ANCHOR	Ncb	(AN/AN0) (Ψ 2)(Ψ 3)Nb	14.81	К		D D-3
FOR GROUP OF ANCHORS	Ncbg	(AN/AN0) (Ψ 1) (Ψ 2)(Ψ 3)Nb	15.09	к		D D-4
STRENGTH REDUCTION FACTOR	φ C 1		0.75			D D.4.3(a)
DESIGN BREAKOUT STRENGTH	,	ϕ C1*Ncbg	11.32	ĸ		D D.4.0(u)
DESIGN BREAKOUT STRENGTT		<i>↓</i> 01 Nebg	11.52	ĸ		
CONCRETE PULLOUT STRENGTH, TENSION						
BOND STRENGTH IN CONCRETE	τ1		1,600	PSI	UNCRACKED	E TBL 12
MIN. EMBEDMENT	hefm		3	IN		E TBL 12
MINIMUM SPACING	smin		1.88	IN		E TBL 12
	$\tau 3$	<=24*(hef*f'c) ^{1/2} /(<i>π</i> *d)	1,340			
				P31		E 4.1.10.2
	kcc	MAX(3.1-0.7h/hef; 1.4)	2.13			E 4.1.10.2
CRITICAL EDGE DISTANCE	cac	hef* $(\tau 3/1, 160)^{0.4*}$ kcc	4.59	IN		E 4.1.10.2
	cna	10da*(<i>τ</i> uncr/1,100) ^{0.5}	8.49533	IN		D D-21
	cc1	MIN(cac, cna)	4.59	IN		
MODIFICATION FACTORS FOR:						
POST INSTALLED ANCHORS	$\Psi_{ ext{CPNA}}$		1.00		cmin≥cc1	D D-26
		cmin/cc1	-		cmin <cc1< td=""><td>D D-27</td></cc1<>	D D-27
EDGE EFFECTS	Ψ_{EDNA}		1		cmin≥cc1	D D-24
	20111	0.7+0.3*cmin/cc1	N/A		cmin <cc1< td=""><td>D D-25</td></cc1<>	D D-25
FOR ECCENTRICITY	$\Psi_{ m ecna}$		1.00		NO ECCENTRICITY	D D-23
1 Sit 200Elitition 1	- ECNA					
STRENGTH REDUCTION FACTORS:						
FOR BOND IN SEIS. CATEGORIES C-F	~		0.80			E TBL 14
FUR DUND IN SEIS. UNIEGURIES U-F	α_{NS}		0.80			CIDL 14
	<i>d</i> 1					E TBL 14
STRENGTH REDUCTION FACTOR	Φ1		0.65			

7/31/2015

DESIGN PARAMETER	NAME	FORMULA OR SWITCH	VALUE	UNIT	?	COMMENT	REFERENCE
PROJ. AREA OF PULLOUT FAILURE SURFACE FOR A	NCHOR GI	ROUP				PULLOU	IT, CONTINUE
nt=1 CLOSE TO EDGE		(c11+c12)(c21+c22)		IN ²		c1 <cc1< td=""><td>D D.5.5.1</td></cc1<>	D D.5.5.1
nt=1 AWAY FROM EDGE nt=2 CLOSE TO EDGE		(2*cac) ² (c11+s1+c12)(c21+c22)		IN ² IN ²		c1>cc1 c1 <cc1; s1<2cc1<="" td=""><td></td></cc1;>	
nt=2 AWAY FROM EDGE		(011.31.012)(021.022)		IN ²		c1>cc1; s1<2cc1	
nt=4 CLOSE TO EDGE	AN4c 1	(c11+s1+c12)(c21+s2+c22)	-	IN ²		c1 <cc1; c2<cc1;<="" td=""><td></td></cc1;>	
						s1<2cc1; s2<2cc1 c1>cc1; c2>cc1;	
nt=4 AWAY FROM EDGE	AN4a 1			IN ²		s1<2cc1; s2<2cc1	
	AN 1	n*AN0 <=n*AN0 1		IN ² IN ²			
			591	IIN			
	Na0	$ au$ 1* π *d*hef* $lpha_{ m NS}$	11.3	К			D D-22
NOMINAL STATIC PULLOUT (BOND) STRENGTH							
FOR SINGLE ANCHOR	Na	(AN1/AN01)* $\Psi_{ extsf{EDNA}}$ * $\Psi_{ extsf{CPNA}}$ *Na0	11.3	к			D D-18
FOR GROUP OF ANCHORS	Ncbg	(AN1/AN01)* $\Psi_{ extsf{EDNA}}^{}^{}\Psi_{ extsf{ECNA}}^{}^{}\Psi_{ extsf{CPNA}}^{}^{}^{}$ Na0	52.5	к			D D-19
DESIGN PULLOUT STRENGTH		<i>ϕ 1 ∗</i> Ncbg	34.2	к			
ANCHOR GROUP TENSION STRENGTH			<u> </u>	12			
STEEL Ns CONCRETE Nc			8.7 11.3				
DUCTILE STEEL ANCHOR Y/N		Y	11.5	IX.			
STEEL STRENGTH GOVERNS Y/N		Y					
CONSERV., NO SUPPL REINF. , COND B, Y/N		Y					
FACT'D TENSILE STRENGTH, ANCHOR GROUP		MIN(Ns, Nc*ksds)	8.49	к	ок		
HEAR STEEL STRENGTH IN SHEAR	Vs	ns*kg*n*0.6*Ase*fut	13.95	к			D D-29
REDUCTION FOR SEISMIC SHEAR	0		0.70				E TBL 11
STRENGTH REDUCTION FACTOR	α _{vs}		0.70				
STEEL	φs		0.60				E TBL 11
	φc		0.70				E TBL 12
CONCRETE BREAKOUT STRENGTH (SHEAR) SHEAR FORCE PARALLEL TO EDGE Y/N	ksd	Ν	1.00				
SHEAR FORCE ECCENTRICITY	e'V		0.00		OK		
MODIFICATION FACTORS FOR SHEAR STRENGTH:							
FOR ECCENTRICITY	$\Psi_{\sf ECV}$	[1+2*e'v/(3*C1)] ⁻¹ ≤1	1.00			NO ECC	D D-36
EDGE EFFECTS	$\Psi_{\rm EDV}$		-			ca2/ca1≥1.5	D D-37
FOR TENSION IN THE ANCHORING ZONE	- EDV	0.7+0.3*cmin/cc1	0.90			ca2/ca1<1.5	D D-38
CRACKING IN THE ANCHORING ZONE		Ν					
SUPPLEMENTARY REBAR >=#4		Y					
	$\Psi_{\rm CV}$		1.40			ba/a1>1 E	D D.6.2.7
	$\Psi_{ m HV}$		- 1.73			ha/c1≥1.5 ha/c1<1.5	D D-39
			1.73				
LOAD BEARING ANCHOR LENGTH, SHEAR	Le		4.33			L<=8d0	
PAD THICKNESS	1.5c1 tp		18.00 6.00				
	-	NIIN1/1 End +->>					
DEPTH OF SHEAR FAILURE HALF-PYRAMID BASE	dp	MIN(1.5c1,tp)	6.00				
ANCHOR SPACING ALONG LOADED EDGE	SL cef		6.00	IN			
EDGE DISTANCE ACROSS SHEAR FORCE	CA		12.00	IN			
	cd	MIN(1.5c1,c2)	12.00				
BASIC BREAKOUT STRENGTH, SINGLE ANCHOR		7(Le/d) ^{0.2} (d) ^{1/2} (f ¹ c) ^{1/2} (c1) ^{1.5}	18.776	к			D D-33
	Vb	$9(fc)^{1/2}(c1)^{1.5}$	20.49				D D-34
		3(10) (01)	18.78				
# OF ANCHORS ALONG LOADED EDGE	NALE		2.00				
		11 '					

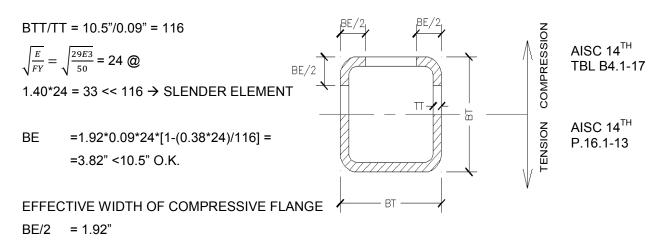
Newport - AC51.xlsm HIT-HY200

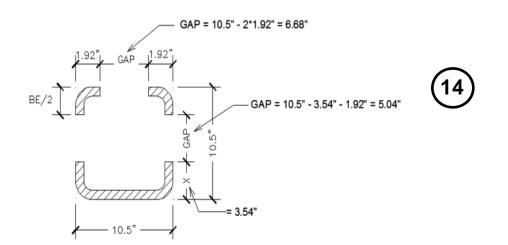
S. Gordin Structural Design & Engineering Services (SGE) Irvine CA Tel. (949) 552-5244

7/31/2015

DESIGN PARAMETER	NAME	FORMULA OR SWITCH	VALUE	UNIT	?	COMMENT	REFERENC
						SHE	AR, CONTINU
WIDTH OF SHEAR FAILURE HALF-PYRAMID BASE							
GROUP		2*1.5c1+(NALE-1)*SL	42.00	IN			
	wp	c1a+1.5c1+(NALE-1)*SL	36.00				
		c1a+c2+(NALE-1)*SL	30.00 30.00				
SINGLE	wp1	MIN [wp, 3c1,(c1a+c2a)]	24.00	IN			
DESIGN WIDTH OF HALF-PYRAMID BASE							
GROUP	wpd	MIN(wpa,wp)	30.00	IN			
AREA OF SHEAR FAILURE HALF-PYRAMID BASE							
ACTUAL	AV	dp*wpd	180	IN ²			
SINGLE, DEEP CONCRETE AWAY FROM EDGES	AV0	4.5(ca1) ²	648	IN ²			D D-32
NOMINAL CONCRETE BREAKOUT STRENGTH		AV/AV0($\Psi_{ extsf{EDV}}^{*}\Psi_{ extsf{ECV}}^{*}\Psi_{ extsf{HV}})$ Vb	11 20	к			D D-30
ANCHOR GROUP		$AV/AVO(\Psi_{EDV} \Psi_{ECV} \Psi_{HV})VD$ $AV/AVO(\Psi_{EDV} \Psi_{ECV} \Psi_{HV} \Psi_{HV})VD$	11.38 11.38				D D-30 D D-31
CONCRETE PRYOUT STRENGTH IN SHEAR							D D.6.3
	kcp		2.00			hef>=2.5 IN	D D-40
PRYOUT STRENGTH, SINGLE ANCHOR PRYOUT STRENGTH, ANCHOR GROUP		kcp*Ncb kcp*Ncbg	29.61 30.18				D D-41
ANCHOR GROUP NOMINAL STRENGTH, SHEAR							
STEEL Vs		ϕ s*Vs* α vs	5.86	к			
CONCRETE VG		$\phi c^* V c^* \alpha v c$	5.58				
DUCTILE STEEL ANCHOR Y/N		Y					
STEEL STRENGTH GOVERNS Y/N		Y					
CONSERV., NO SUPPL REINF. , COND B, Y/N		Y					
FACTORED SHEAR STRENGTH, GROUP	Φ V	MIN(Ns, Nc)	5.58	к	OK		
	STRE	NGTH DESIGN INTERACTION	ON SUM	MAR	Y		
	KN	(Nu/FNn)<=1.0	0.94	ſ	OK		D D.7 D D.7.1
	KV	(Vu/FVn)<=1.0	0.00		OK		D D.7.2
		(Nu/FNn) ^{5/3} +(Vu/FVn) ^{5/3} ≤1	-	l	OK	J	RD 7
						<i>,</i>	
CTILE STEEL TO GOVERN							
R ANCHOR GROUP (na ≥ 1)							
MINAL SHEAR STRENGTH STEEL	VS		13 95	к			

PER ANCHOR GROUP (na ≥ 1) NOMINAL_SHEAR STRENGTH, STEEL	VS		13.95	к	
NOMINAL SHEAR STRENGTH, CONCRETE	VC		11.38	К	
SHEAR DEMAND	V		0.00	К	
NOMINAL TENSILE STRENGTH					
STEEL	TSU		13.95	К	D D.3.3.4.3a1
CONCRETE, BREAKOUT	TCU1		15.09	К	
CONCRETE, PULLOUT	TCU2		21.77	К	
CONCRETE, MIN	TCU		15.09	К	
TENSILE DEMAND	Т		8.00	К	
UTILIZATION (DEMAND-TO-CAPACITY RATIOS)					
SHEAR, STEEL	kvs	V/VS	0.000		1
SHEAR, CONCRETE	kvc	V/VC	0.000		
TENSION, STEEL	kts	T/TS	0.574	~	D RD.3.3.4.3
TENSION, CONCRETE	ktc	T/TC	0.530		D RD.3.3.4.3
TOTAL, STEEL	KS	kvs+kts	0.574	ES .	
TOTAL, CONCRETE	KC	kvc+ktc	0.530	OK STEEL GOVERNS	6
		12			•


		Structural Calculations
	Project:	Newport ERS
	SGE No.:	515.052.369
	Date:	7/31/2015
SGE	Engineer:	DT
	Checked by	SG


2

RESTRAINT STRENGTH BASED ON TOWER CAPACITY

BY INSPECTION, COMPRESSION GOVERNS OVER TENSION

EFFECTIVE PROPERTIES OF RESTRAINT TOWER

Structural Calculations Newport ERS 515.052.369 7/31/2015 DT SG

Project:

SGE No.:

Engineer:

Checked by

Date:

SGE Structural Engineers Irvine CA connect@sgeconsulting.com

: 580006 r: KW-0602158, Ver 5.8.0, 1-Nov-2006 983-2006 ENERCALC Engineering Software		Built-Up Section Properties			restraint 2011.ecw:Calculations		
cri	ption	TOWER BTTM					
əra	I Informatio	on					
	Туре					X cg	Ycg
1	Rectangular	Height	0.0900 in	Width	10.5000 in	5.2500 in	0.0000 in
2	Rectangular	Height	3.5400 in	Width	0.0900 in	0.0000 in	1.7700 in
3	Rectangular	Height	3.5400 in	Width	0.0900 in	10.5000 in	1.7700 in
4	Rectangular	Height	1.9200 in	Width	0.0900 in	0.0000 in	9.5400 in
5	Rectangular	Height	1.9200 in	Width	0.0900 in	10.5000 in	9.5400 in
ŧ6	Rectangular	Height	0.0900 in	Width	1.9200 in	0.9600 in	10.5000 in
7	Rectangular	Height	0.0900 in	Width	1.9200 in	9.5400 in	10.5000 in
Su	mmary						
	Total Area	2.2734 in2	bx		43.794 in4	r xx	4.3890 in
			lyy		42.238 in4	r yy	4.3104 in
X cg Dist.		5.2500 in		stances from			
	Y cg Dist.	3.5426 in	+X		5.2950 in	S left	7.9769 in3
			-X +Y		-5.2950 in 7.0024 in	S right	7.9769 in3 6.2541 in3
			-Y		-3.5876 in	S top S bottom	712.2072 in3
						FFECTIVE IN	/
					CO	MPRESSION —	

STEEL STRENGTH OF FULLY EFFECTIVE PORTION OF TOWER WALL, LRFD

 $\mathsf{MTR}/\mathsf{SEFF} \leq 0.9*50 \;\mathsf{KSI} = 45 \;\mathsf{KSI}$

SEFF = 6.25 IN^3

FOR GROUND FLOOR, CASE 1: NR = 3,

MTR = 6.514 (IP)*(W0) = 14.39 K

WTRA = 2.71 K < WTRS = 14.39 K :: ANCHOR-BASED CAPACITY GOVERNS

6

Proiect:

SGE No.:

Engineer:

Checked by

Date:

RESTRAINT STRENGTH BASED ON WELD CAPACITY

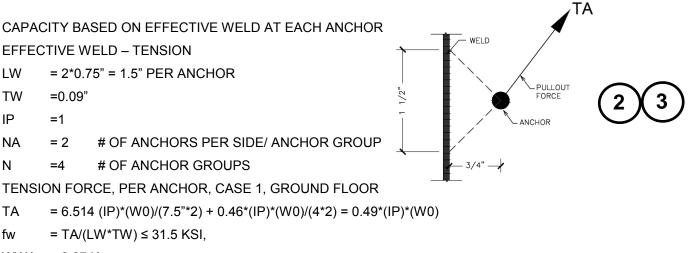
CAPACITY BASED ON OVERALL WELD STRENGTH, LRFD

 $AW = 2.27 IN^2$

 $SW = 6.25 IN^3 (MIN)$

TW = 0.09 IN FILLET WELD LEG & EFFECTIVE THROAT, LIGHT-GAGE STEEL

 $\frac{\sqrt{PTR^2 + VTR^2}}{Aw} + \frac{MTR}{Sw} \le 0.75^* 0.6^* 70 \text{ KSI} = 31.5 \text{ KSI}$


FOR GROUND FLOOR, CASE 1:

NR = 3, MTR = 6.514 (IP)*(W0), PTR = 0.46(IP)*(W0), VTR = 0.221(IP)*(W0)

1.27 (IP)*(W0) ≤ 31.5 KSI

W0 = 24.80 K

WEIGHT TRIBUTARY TO EACH PER RESTRAINT BASED ON WELD STRENGTH WTRW = W0/NR = 8.27 K >WTRA = 2.71 K ∴ ANCHOR-BASED CAPACITY GOVERNS

WWA ≤ 8.67 K

WTRA ≤ 2.71 K < WWA =8.67 K.: ANCHOR-BASED CAPACITY GOVERNS

		Structural Calculations
	Project:	Newport ERS
	SGE No.:	515.052.369
	Date:	7/31/2015
SCAF	Engineer:	DT
	Checked by	SG

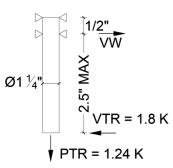
RESTRAINT STRENGTH BASED ON BASEPLATE CAPACITY

MAXIMUM (GOVERNING) ANCHOR FORCE:

- TA =8K /2=4K (LRFD)
- MPL =4K*0.75"=3 IN-K PER ANCHOR
- ZPL =1.5"*TPL^2/4=0.375TPL^2
- fb =MPL/ZPL≤0.9*36 KSI
- TPL ≥0.5", ∴½" PLATE O.K.

RESTRAINT STRENGTH BASED ON RETAINING SHAFT CAPACITY

BASED ON ANCHOR CAPACITY, KH=KF=1, CASE 1, 2 (NR=3), GROUND FLOOR

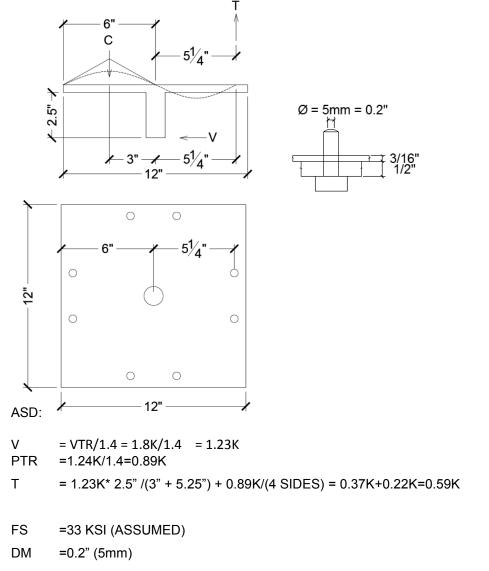

- WTR =W0/NR= 2.71K
- VTR =K1*(IP)*(W0)/NR=0.6624*(1)*(2.71) =1.80K (LRFD)
- PTR =1.24K

MMAX = 1.8K * 3" = 5.4K

- D =1.25" SHAFT DIAMETER
- Z =1.25³/6 = 0.33 IN² A = 1.23 IN²
- f = 5.4 IN-K/(0.33 IN³)+1.24K/(1.23 IN²) = 17.4 KSI<0.9 (36 KSI) = 32.4 KSI \therefore O.K

WELD

- VW = 1.8K*3"/0.5" = 10.8 K MAX. REACTION AT WELD
- AW = $0.7071 * (1.25"+0.25")*3.14*0.25"=0.83 IN^{2}$
- fw $=\frac{\sqrt{10.8^2+1.24^2}}{0.833}$ = 13.1 KSI < 31.5 KSI, \therefore 1/4" WELD OK



		4	
	ł	Í	7
$\left \right>$) (lė	

Structural Calculations
Newport ERS
515.052.369
7/31/2015
DT
SG

RETAINING PLATE DESIGN

L =3T/(3.14*DM*FS) = 3*0.59K/[3.14*(0.2")*(33KSI)] = 0.07" < 3/16" \therefore PLATE OK

ANCHOR STRESS

- V = 1.23K/8 = 0.15K
- T = 0.59K/2 = 0.30K (2) ANCHORS IN TENSION
- A = $0.2^{2*}3.14/4 = 0.03 \text{ IN}^2$
- f = (0.15K + 0.30K)/0.031 = 14.5 KSI ANCHORS OK

PER SIDE -(2) ANCHORS

FASTENER DESIGN MANUAL, NASA PUBL. 1228, 0. 21

ECCENTRIC POSITION OF RESULTANT OF LATERAL FORCE CAUSING TRANSLATION AND ROTATION IN THE PLANE OF THE TABLE **CASE 1**

	i			1	2	3	4	
ſ	Ai		IN	28	17.09	17.09	0	
	∑Al ²				1368	3		
	EX		IN	20	20	20		
	L		IN		6	6		
	В		IN		32	32		
	α	ATAN(B/2/L)	RAD	0	1.212	1.212		
			DEG		69.4	69.4		
EX	М	E*(V0=1)	IN-#	20	20	20		
-~	RM	M*Ai/∑Ai		0.409	0.250	0.250		
	RMX	RM*SIN α		0.000	0.234	0.234		
	RVX	1/3		0.000	0.000	0.000		
	RX	RMX+RVX		0.000	0.234	0.234		
	RMZ	RM*COS α	#	0.409	0.088	0.088		
	RVZ	1/3		0.330	0.330	0.330		
	RZ	RMZ+RVZ		0.739	0.418	0.418		
	R0	(RX ² +RZ ²) ^{0.5}		0.739	0.479	0.479		
	КХ	V0/(3*R0)		0.45	0.69	0.69		
		KX MIN (@ ±EX)			0.4	5		

	i			1	2	3	4
	Ai		IN	28	17.09	17.09	0
	∑Al ²				1368	3	
	EZ		IN	18	18	18	
	L		IN		6	6	
	В		IN		32	32	
	α	ATAN(B/2/L)	RAD	0	1.212	1.212	
			DEG		69.4	69.4	
ΕZ	М	E*(V0=1)	IN-#	18	18	18	
	RM	M*Ai/∑Ai		0.368	0.225	0.225	
	RMX	RM*SIN α		0.000	0.211	0.211	
	RVX	1/3		0.333	0.333	0.333	
	RX	RMX+RVX		0.333	0.544	0.544	
	RMZ	RM*COS α	#	0.368	0.079	0.079	
	RVZ	1/3		0.000	0.000	0.000	
	RZ	RMZ+RVZ		0.368	0.079	0.079	
	R0	(RX ² +RZ ²) ^{0.5}		0.497	0.549	0.549	
	KZ	V0/(3*R0)		0.66	0.60	0.60	
		KZ MIN (@ ±EZ)			0.60	0	

ECCENTRIC POSITION OF RESULTANT OF LATERAL FORCE CAUSING TRANSLATION AND ROTATION IN THE PLANE OF THE TABLE

i			1	2	3	4
Ai		IN	112	55.36	55.36	0
∑Al ²				1867	3	
EX		IN	67	67	67	
L		IN		53	53	
В		IN		32	32	
α	ATAN(B/2/L)	RAD	0	0.293	0.293	
		DEG		16.8	16.8	
М	E*(V0=1)	IN-#	67	67	67	
RM	M*Ai/∑Ai		0.402	0.199	0.199	
RMX	RM*SIN α		0.000	0.057	0.057	
RVX	1/3		0.000	0.000	0.000	
RX	RMX+RVX		0.000	0.057	0.057	
RMZ	RM*COS α	#	0.402	0.190	0.190	
RVZ	1/3		0.330	0.330	0.330	
RZ	RMZ+RVZ		0.732	0.520	0.520	
R0	(RX ² +RZ ²) ^{0.5}		0.732	0.523	0.523	
кх	V0/(3*R0)		0.45	0.63	0.63	
	KX MIN (@ ±EX)			0.4	5	

CASE 2

	i			1	2	3	4
	Ai		IN	112	55.36	55.36	0
	∑Al ²				1867	3	
	EZ		IN	18	18	18	
	L		IN		53	53	
	В		IN		32	32	
	α	ATAN(B/2/L)	RAD	0	0.293	0.293	
			DEG		16.8	16.8	
EZ	М	E*(V0=1)	IN-#	18	18	18	
	RM	M*Ai/∑Ai		0.108	0.053	0.053	
	RMX	RM*SIN α		0.000	0.015	0.015	
	RVX	1/3		0.333	0.333	0.333	
	RX	RMX+RVX	щ	0.333	0.348	0.348	
	RMZ	RM*COS α	#	0.108	0.051	0.051	
	RVZ	1/3		0.000	0.000	0.000	
	RZ	RMZ+RVZ		0.108	0.051	0.051	
	R0	(RX ² +RZ ²) ^{0.5}		0.350	0.352	0.352	
	KZ	V0/(3*R0)		0.94	0.94	0.94	
		KZ MIN (@ ±EZ)			0.94	4	

ECCENTRIC POSITION OF RESULTANT OF LATERAL FORCE CAUSING TRANSLATION AND ROTATION IN THE PLANE OF THE TABLE

3

		RESTR	RAINTS EF	FECTIVE 4	of 4		
	i			1	2	3	4
	Ai		IN	112	112	16	16
	∑Al ²				2560	0	
	EX		IN	67	67	67	67
	L		IN		0	0	0
	В		IN		32	32	32
	α	ATAN(B/2/L)	RAD	0	0.000	1.570	1.57
			DEG		0.0	90.0	90.0
ΓV	М	E*(V0=1)	IN-#	67	67	67	67
EX	RM	M*Ai/∑Aí		0.293	0.293	0.042	0.042
	RMX	RM*SIN α		0.000	0.000	0.042	0.042
	RVX	1/4		0.000	0.000	0.000	0.000
	RX	RMX+RVX		0.000	0.000	0.042	0.042
	RMZ	RM*COS α	#	0.293	0.293	0.000	0.000
	RVZ	1/4		0.250	0.250	0.250	0.250
	RZ	RMZ+RVZ		0.543	0.543	0.250	0.250
	R0	(RX ² +RZ ²) ^{0.5}		0.543	0.543	0.254	0.254
	КХ	V0/(4*R0)		0.46	0.46	0.99	0.99
		KX MIN (@ ±EX)			0.40	6	

	i			1	2	3	4
	Ai		IN	112	112	16	16
	∑Al ²				2560	0	
	EZ		IN	18	18	18	18
	L		IN		0	0	0
	В		IN		32	32	32
EZ	α	ATAN(B/2/L)	RAD	0	0.000	1.570	1.570
			DEG		0.0	90.0	90.0
	М	E*(V0=1)	IN-#	18	18	18	18
LZ	RM	M*Ai/∑Ai		0.079	0.079	0.011	0.011
	RMX	RM*SIN α		0.000	0.000	0.011	0.011
	RVX	1/4		0.250	0.250	0.250	0.250
	RX	RMX+RVX		0.250	0.250	0.261	0.261
	RMZ	RM*COS α	#	0.079	0.079	0.000	0.000
	RVZ	1/4		0.000	0.000	0.000	0.000
	RZ	RMZ+RVZ		0.079	0.079	0.000	0.000
	R0	(RX ² +RZ ²) ^{0.5}		0.262	0.262	0.261	0.261
	KZ	V0/(4*R0)		0.95	0.95	0.96	0.96
		KZ MIN (@ ±EZ)			0.9	5	

CASE 3