Zing™ Polarizing Fiber

Fibercore Zing™ is an all-fiber polarizer, guiding only a single-polarization state, providing practical real-world polarizing performance. Straight or coiled, Zing™ delivers the high Polarization Extinction Ratio (PER) and broad, stable operating window that applications demand.

The secret of this excellent performance, is the extreme birefringence that only a ‘Bow-Tie’ geometry Polarization Maintaining (PM) fiber can create. With polarization beat-lengths approaching 0.5mm at 633nm, Fibercore Zing™ can provide 100nm of practical, usable polarizing bandwidth, providing a wide variety of packaging and source options – cabled or coiled, narrow line width laser or broadband Amplified Spontaneous Emission (ASE) source.

The polarizing window may be tuned by changing the length of the fiber and the coil diameter, either individually or together, altering the central wavelength and the width of the operating window.

Proven Results

Rapid bend loss on the loosely guided fast axis

Strong guidance on the slow axis

>100nm polarizing window possible at the chosen operating window

Advantages:
- Broadband polarization window
- High polarization extinction ratio
- High stability over temperature and vibration
- High reliability due to all-fiber design
- Tunable polarization window

Product Variants:
- HB830Z(5/80) Polarizer fiber for all-fiber polarizers at 830nm
- HB1060Z(7/125) Polarizer fiber for all-fiber polarizers at 1060nm
- HB1310Z(9/80) Polarizer fiber for all-fiber polarizers at 1310nm
- HB1550Z(11/125) Polarizer fiber for all-fiber polarizers at 1550nm

Related Products:
- Standard PM Fiber (HB)
- PM Gyro Fiber (HB-G)
- Telecoms PM Fiber (HB-T)
- Polyimide Coated PM Fiber (HB-P)
- PM Gyro Fiber (HB-HT)

Typical applications:
- Fiber Lasers
- Laser diodes
- Fiber Optic Gyroscopes (FOGs)
- Current sensors
- Interferometric sensors

T: +1 (949) 863 3144
E: sales@newport.com
www.newport.com

E: sales@fibercore.com
www.fibercore.com
Specifications

<table>
<thead>
<tr>
<th></th>
<th>HB830Z(5/80)</th>
<th>HB1060Z(7/125)</th>
<th>HB1310Z(9/80)</th>
<th>HB1550Z(11/125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Wavelength (nm)</td>
<td>830</td>
<td>1064</td>
<td>1310</td>
<td>1550</td>
</tr>
<tr>
<td>20dB Fast Edge*</td>
<td>≤790</td>
<td>≤1015</td>
<td>≤1260</td>
<td>≤1500</td>
</tr>
<tr>
<td>3dB Slow Edge*</td>
<td>≥860</td>
<td>≥1105</td>
<td>≥1360</td>
<td>≥1600</td>
</tr>
<tr>
<td>Polarization Extinction Ratio* (dB)</td>
<td>>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode Field Diameter (µm)</td>
<td>4.1 – 7.7 @830nm</td>
<td>6.0 – 8.0 @1064nm</td>
<td>7.0 – 10.3 @1310nm</td>
<td>10.0 – 12.5 @1550nm</td>
</tr>
<tr>
<td>Attenuation (dB/m)</td>
<td>≤0.02</td>
<td>≤0.02</td>
<td>≤0.02</td>
<td>≤0.02</td>
</tr>
<tr>
<td>Proof Test (%)</td>
<td></td>
<td></td>
<td>1 (100kpsi)</td>
<td></td>
</tr>
<tr>
<td>Cladding Diameter (µm)</td>
<td>80 ± 1</td>
<td>125 ± 1</td>
<td>80 ± 1</td>
<td>125 ± 1</td>
</tr>
<tr>
<td>Core Concentricity (µm)</td>
<td></td>
<td></td>
<td>≤1.0</td>
<td></td>
</tr>
<tr>
<td>Coating Diameter (µm)</td>
<td>170 ± 10</td>
<td>245 ± 15</td>
<td>170 ± 10</td>
<td>245 ± 15</td>
</tr>
<tr>
<td>Coating Type</td>
<td></td>
<td></td>
<td></td>
<td>Dual Acrylate</td>
</tr>
</tbody>
</table>

* Typical polarizing performance with deployment conditions of 5m length in a coil.

Visit fibercore.com/fiberpaedia for our encyclopedia of industry terms/knowledge base.