Introduction

Direct measurements of laser pulses less than 20 ps using photo detectors remain a challenge. The response time of high-speed photodiodes is currently limited to around 20 picoseconds; moreover, large bandwidth oscilloscopes (>60 GHz) required to accurately measure the output of these detectors are quite expensive.

Figure 1.1 illustrates a typical autocorrelator setup. The principle of operation is based on recording the second order correlation function using a Michelson Interferometer. An incoming pulse with electric field \(E(t) \), is first split into two replicas by means of a beamsplitter. The two replicas are sent down two independent delay lines, one variable and one fixed, in order to generate a time delay, \(\tau \), between the two replicas. The two replicas, \(E(t) \) and \(E(t+\tau) \), are next recombined in a nonlinear crystal. Under proper phase matching conditions a second harmonic signal is generated in the crystal. The total intensity of the second harmonic signal \(I_{\text{SH}} \), is proportional to,

\[
I_{\text{SH}}(t+\tau) \sim [2E(t)E(t+\tau)]^2
\]

(1)

Unfolding the square of equation 1,

\[
I_{\text{SH}}(t+\tau) \sim E(t)^2 + [2E(t)E(t+\tau)] + E(t+\tau)^2
\]

(2)

illustrates that there is a component of the second harmonic, \(|2E(t)E(t+\tau)| \), that is due solely to the temporal overlap of the two pulses (i.e. this component of the signal will only be present when the two pulses are overlapping in time). In the case that the two beams enter the crystal in a noncollinear geometry as shown in Figure 1.1, and when the phase matching conditions are satisfied only for the two beam contribution, equation (2) simplifies to,

\[
I_{\text{SH}}(t+\tau) \sim [2E(t)E(t+\tau)]
\]

(3)

The iris positioned after the doubling crystal blocks the two initial replica beams, and the middle second harmonic beam is sent to a detector. On top of converting the second harmonic to an electrical signal, the detector serves to square the incident field as well as integrate over the duration of the femtosecond pulse, \(t \). Now, the amplitude of the photo detector signal, \(I_{\text{AC}} \), is proportional to,

\[
I_{\text{AC}}(\tau) \sim \int [2E(t)E(t+\tau)]^2 dt
\]

(4)

which, by relating the square of the electric field to intensity can be expressed as,

\[
I_{\text{AC}}(\tau) \sim \int I(t)[I(t+\tau)] dt
\]

(5)

This represents the intensity autocorrelation of the laser pulse. It is proportional to the intensity of the two replicas. Equation 5 is formally a correlation integral and illustrates that the autocorrelation does not actually measure the pulse width directly, but a correlation function of pulse of the two replicas. If indeed the two replicas are identical, then equation 5 can be solved analytically and the pulse width can be determined simply by dividing the autocorrelation signal width by a constant factor that depends on the profile of the pulse (note that the autocorrelation width is always greater than the width of the actual pulse). Table 1 lists the parameters for two common pulse profiles, Gaussian and hyperbolic secant squared.

<table>
<thead>
<tr>
<th>(I(t))</th>
<th>(I(t+\tau))</th>
<th>(\Delta \tau/\Delta t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian Pulse</td>
<td>(\exp(-h/2[x^2/(\Delta \tau)^2]))</td>
<td>(\exp(-2h/2[x^2/(\Delta \tau)^2]))</td>
</tr>
<tr>
<td>Hyperbolic Secant Squared Pulse</td>
<td>(3[xc/(\Delta \tau)^2/\cosh(cx(\Delta \tau))])</td>
<td>(2.719)</td>
</tr>
</tbody>
</table>

Table 1 Parameters for Two Common Pulse Profiles

There are several commercially available autocorrelators on the market, including Newport’s PulseScout™ (www.newport.com/pulsescout). They are usually designed to measure pulses from a few femtoseconds to several picoseconds in duration within a limited wavelength range. Very often, however, there is a need in research labs to combine the capabilities of measuring very short pulses in the range of tens of femtoseconds with the capability of measuring long pulses on the order of tens of picoseconds with femtosecond resolutions. A typical example is the stretching of a femtosecond pulse to many picoseconds for experiments where large bandwidths are required. In many
cases these measurements are performed within a broad range of wavelengths covering tuning curves of lasers, OPAs and OPOs. More than just measuring ultrashort pulses, autocorrelators can also be used to detect signals in time regions relatively inaccessible by most detectors. The autocorrelator kit described in this note provides a simple and cost effective solution for measuring pulse widths of various ultrafast lasers with wavelength in the 480 nm-2000 nm spectral range. It has 25 mm of travel corresponding to a total time delay of greater than 160 ps with 25 fs resolution. This makes it a valuable tool for investigating sidebands and satellites of laser pulses, which may contain significant amounts of the total pulse energy and interfere with complex time-domain signals associated with pump-probe experiments. In contrast to the commercially available autocorrelators, which have clear apertures of a few millimeters, the long scan autocorrelator described in this note is suitable for beam sizes of up to 10mm. The dynamic range of the detection system allows contrast measurements up to 7000:1.

2. Building the Assemblies

WARNING-Radiation emitted by laser devices can be dangerous to the eyes and appropriate precautions must be taken when they are in use. Only individuals who are adequately trained in proper laser use and safety procedures should operate the laser devices described herein.

Detailed diagrams for building subassemblies of the long scan autocorrelator are presented in the Appendix. When building Delay Line 1 (Assembly 1), the silver mirrors should be glued to the mirror mounts using epoxy glue (not included). Make sure that the two mirrors are positioned at a 90° angle with respect to each other and at a 45° angle with respect to the plane of the optical table. This is the correct orientation for the mirrors if the laser beam is horizontally polarized. (If the laser is polarized in the vertical direction, a l/2 wave-plate should be used to rotate the polarization). This assembly is meant to provide a vertical displacement to the incoming beam. When aligned correctly, the direction of the outgoing beam will be independent of stage position.

When short pulses are measured and the typical delay times are within a few hundred femtoseconds, then rapid scanning and quick updates of the autocorrelation trace can be achieved. In that case the computer controlled motorized actuator should be installed on the Delay Line 2 (see Appendix, Assembly 2; Fig. 1.1, variable arm). When tens of picoseconds of delays are required, the actuator should be installed on the Delay Line 1 (see Appendix, Assembly 1; Fig. 1.1, fixed arm).

As an option, the kit can be made portable, by assembling it on a base plate.

3. Routing the Beam

Prior to building the autocorrelator, the beam must be routed from the laser to the location of the autocorrelator. This should be done through the use of two routing mirrors. Figure 3.1 provides an illustrative example of a typical amplified femtosecond setup for experiments in nonlinear spectroscopy. A possible layout for placing the autocorrelator (AC) and routing the beam of a Ti:Sapphire laser or OPA into the AC, is shown.

The first mirror/beam sampler should be positioned such that the beam exiting the laser is centered on it. This mirror should then be adjusted such that the reflected beam is centered on the second mirror. The height of the second mirror should be chosen carefully since it defines the height of the beam throughout the autocorrelator.

4. Assembling the Autocorrelator

At this point, it is useful to construct an alignment tool using the parts from the Iris Assembly. The Iris Assembly should be aligned such that the beam is centered in the middle of the iris immediately after the second routing mirror as illustrated in Figure 4.1.

Using the hole pattern on the optical table as a guide, the iris should be moved in a straight line far from the 2nd routing mirror as shown in Figure 4.2. Using the tip/tilt adjustment on the 2nd routing mirror, center the beam on the iris.
Repeat this procedure iteratively until the beam travels parallel to the hole pattern of the table.

Position the Delay Line 1 Assembly at least 200 mm behind routing mirror 2 such that the beam is centered on both mirrors (see Figure 4.3). Using the two routing mirrors, ensure that the beam is traveling at a constant height and parallel to the axis of motion of the stage. The beam should hit the center of the top mirror and be reflected from the center of the bottom mirror. The beam exiting the delay line should travel parallel to the incoming beam with a vertical displacement of approximately 25 mm as show in Figure 4.4. The exiting beam should not translate with position of the stage.

Insert the Beamsplitter Assembly between routing mirror 2 and Delay Line 1 as shown in Figure 4.5. The center of the beamsplitter should be approximately 100 mm from the edge of the stage and the beam should be centered vertically on the beamsplitter approximately 1 cm from the top. Using the tip/tilt adjustments on the Beamsplitter Assembly, ensure that the reflected beam travels at constant height and is completely perpendicular to the axis of motion of Delay Line 1 as shown in Figure 4.6. Use the procedure described above utilizing the Iris Assembly as a target.

Insert Delay Line 2 approximately 115 mm behind the Beamsplitter Assembly. Using the tip/tilt adjustments on the mirror mount, ensure that this beam travels back on itself. After the beamsplitter, verify that the two beams corresponding to the two arms of the autocorrelator are displaced vertically by approximately 25 mm and are traveling parallel to each other as well as to the table.

Insert the Focusing Assembly approximately 50 mm after the beamsplitter. Adjust the position of the lens such that the two beams are centered vertically and balanced horizontally. The two beams should overlap in tight focus approximately 200 mm behind the lens. If the two beams do not overlap in tight focus, use the tip/tilt adjustment on the Delay Line 2 mirror to overlap them.

Insert the Crystal Assembly approximately 200 mm after the lens at the intersection of the two beams. Make sure that the principle plane of the crystal is oriented at 90 degrees with respect to the polarization plane of the incoming beam. Place the dichroic filter immediately after the crystal. Using a sheet of white paper, rotate the crystal until the second harmonic of one of the two beams becomes visible on the paper (note the angle). Continue rotating the crystal until the second harmonic of the second beam becomes visible (note the angle). The phase-matching angle for two beam second harmonic is the half point between these two angles. Set the crystal angle to this half point.

Scan the two delay lines until a time dependent second harmonic signal can be observed between the two beams. This is a delicate procedure, which may involve several iterations of overlapping the two beams spatially in the crystal followed by scanning the two delay lines. Once the two beam second harmonic is found, aperture it with the Iris Assembly such that no additional contribution from the single beam second harmonic is passing through the iris. Place the detector head as close to the iris as possible. Center the second harmonic on the detector head. When completed, the autocorrelator should resemble that shown in Figure 4.7.
5. Detection, Computer Configuration and Data Acquisition

Detection is based on Newport’s 1935-C series power meter with 918D-UV-OD3 photodiode head. The data acquisition and analysis is accomplished through LabVIEW® based software provided with this kit.

The following requirements are necessary to operate this software. The processor should be at least a Pentium 4 (or equivalent) with 512 MB of RAM. The hard drive should have at least 50 MB of storage space available. The operating system tested with this device is Windows XP Professional Edition.

Install the Newport Power Meter, SMC100 User Tool and the Autocorrelator software using the disks provided. Reboot the computer. Connect the power meter to the computer through the USB port located on the rear of the power meter. Connect the motorized actuator to the SMC100CC controller. Connect the SMC100CC controller to the computer using the RS232 cable provided.

Make sure the detector head is attached to the power meter and turn the power meter on. Block the beam and zero the power meter. Unblock the beam and optimize the power of the second harmonic using the micrometer on Delay Line 1 and the tip/tilt adjustment on the mirror mount of Delay Line 2. The minimum SH power requirement for the autocorrelator to operate is 1 nanowatt. If the average power of the second harmonic is less than 1 nanowatt, a photomultiplier will be required.

If faster data acquisition rates are required, the analog output of the power meter along with a fast D/A converter should be utilized. Provided software will work for data transfer through USB only. Connect the motorized actuator on Delay Line 2 to the SMC100CC Controller. Run the SMC100 user tool program from the Programs folder under the Start Menu. Make sure the actuator is properly configured and then send the actuator to the home position. The home position corresponds to the actuator fully retracted. Now command the actuator back to its original position such that the second harmonic signal is again optimized on the detector; note this offset value. Close the SMC100 user tool program.

Open the Autocorrelator software. The Configuration tab (Figure 5.1) will open upon initialization. Test the communication between the software, power meter and controller by the following steps.

![Figure 5.1 Configuration tab of Long Scan Autocorrelator](image)

The USB address will default to 1. Press the Test USB (Power Meter) button. If communication between the devices is working properly, the indicator will turn green and the USB Response will display the firmware version of the power meter (as shown). If this is not the case, check that the power meter is powered on, and the cabling and connections are properly seated. Also check to see whether the USB Address should be set to a different value for your computer.

The default VISA Resource address is COM1. Press the Test VISA (SMC100CC) button to check communication between the software and controller. Once again, successful communication between the two will return a green indicator as well as the firmware version in the VISA Response display box (as shown). Troubleshoot a failure to successfully communicate in the same manner as for the power meter.

The Data Folder Path is also displayed on the Configuration tab. Change the default directory by clicking the folder icon. Select or create the folder and then press the Select Folder button. (Figure 5.2)
The Velocity and Acceleration adjustments are also on the Configuration tab. These settings will default to maxima, but can be adjusted as necessary.

Once the Configuration parameters are properly defined, click on the Main tab of the Autocorrelator software. Recall the stage offset value determined with the SMC100 User Tool software where the second harmonic signal was optimized. Enter this value into the Home (mm) control box and press the button beside it to define the center of stage travel around this offset.

Enter the Total Delay (fs) value in femtoseconds. The default value is 1000 fs. The stage will travel back and forth symmetrically over this range in a forward and reverse scan. If the second harmonic is optimized at the center of the 25 mm actuator travel, the total delay can be more than 160 ps. When the second harmonic signal is optimized off center of travel, the total delay possible will be reduced accordingly.

Press the Start Test button to begin an autocorrelation scan.

Figure 5.3 shows a sample autocorrelation trace centered around 19.3 mm from the stage home position with a total delay of 500 fs. The full width at half maximum (FWHM) values for the Forward and Reverse autocorrelation traces are reported in fs with the conversion ratios applied based on a Gaussian pulse. The slight offset in the forward and reverse traces is typical and has no effect on the autocorrelation measurement.

The PM Averages control box allows for averaging of multiple power meter readings at each point in the scan.

The Continuous Loop check box allows for continuous scanning of autocorrelation traces. The Save Data check box is selected prior to a single or continuous scan if the autocorrelation data is to be saved. The output is then saved as an ASCII formatted text file at the completion of a single run or after selecting the Stop Test button when Continuous Loop has been selected. This data can be imported to any data analysis software.

There are two other indicator boxes, Current Power and Current Position (mm). These update to show current power meter readings and stage position data throughout the scan.

Figure 5.4 shows the result of a long scan autocorrelation measurement performed on a Spectra-Physics Spitfire® Pro Ti: Sapphire amplifier at Newport’s Technology and Applications Center. Contrast ratio of 7000:1 is demonstrated throughout the entire scanning range of the autocorrelator.
A Status Log tab (Figure 5.5) displays various current and past events including initialization, communication confirmation, and any errors. Error messages will offer standard choices to either Continue or Abort. (Figure 5.6) The status log can be cleared at any time using the Clear Status button. The log can be saved by pressing the Save Status button.

Exit the program by pressing the Quit button from any screen.

You will be given the option of saving the current configuration. This allows for faster setup of subsequent autocorrelations if your input parameters will be the same.
This Application Note has been prepared based on development activities and experiments conducted in Newport's Technology and Applications Center and the results associated therewith. Actual results may vary based on laboratory environment and setup conditions, the type and condition of actual components and instruments used and user skills.

Nothing contained in this Application Note shall constitute any representation or warranty by Newport, express or implied, regarding the information contained herein or the products or software described herein. Any and all representations, warranties and obligations of Newport with respect to its products and software shall be as set forth in Newport's terms and conditions of sale in effect at the time of sale or license of such products or software. Newport shall not be liable for any costs, damages and expenses whatsoever (including, without limitation, incidental, special and consequential damages) resulting from any use of or reliance on the information contained herein, whether based on warranty, contract, tort or any other legal theory, and whether or not Newport has been advised of the possibility of such damages.

Newport does not guarantee the availability of any products or software and reserves the right to discontinue or modify its products and software at any time. Users of the products or software described herein should refer to the User's Manual and other documentation accompanying such products or software at the time of sale or license for more detailed information regarding the handling, operation and use of such products or software, including but not limited to important safety precautions.

This Application Note shall not be copied, reproduced, distributed or published, in whole or in part, without the prior written consent of Newport Corporation.

Copyright ©2009 Newport Corporation. All Rights Reserved.
LabVIEW® is a registered trademark of National Instruments, Inc.