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Conclusion 
 
A simple method of measuring the junction temperature and thermal impedance of high power laser 
diodes has been described.  The method presented here is based on cw measurements made with 
readily available instrumentation.  Use of an integrating sphere based optical multimeter head allows 
simultaneous measurement of optical power and power-averaged wavelength, thereby avoiding the 
requirement for a separate optical spectrometer or the need to couple light into an optical fiber. 
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Laser diode operating characteristics and life time are greatly affected by the temperature of the 
semiconductor junction.  This is particularly true for high power laser diodes in which several watts of 
waste heat must be removed from a small semiconductor laser chip.  In this case die bond quality and 
package thermal impedance are critical to achieving good device performance.  During production, chip 
burn-in temperature must be accurately controlled in order to ensure adequate screening of defective 
devices is achieved without excessive loss of good devices.  A simple, accurate method for measuring 
junction temperature and heat sink-to-chip thermal impedance is needed to enable the development and 
production of high power laser diodes.  This article presents a simple cw method based on the use of 
readily available test and measurement instrumentation. 

Background 
Measurement of junction temperature has been recognized as critical to the advancement of laser diode 
technology for decades.  Commonly used measurement methods are based on some change in the 
physical properties of the semiconductor junction with temperature.  For laser diodes the most 
commonly used methods are based on change in optical output power, threshold current, forward 
voltage, or wavelength1.  Generally, these methods are based on a change in the measured physical 
property between pulsed and continuous wave (cw) operation of the laser diode.  When operated with 
very short pulses (< 1 s) and low duty cycle (0.1%), there is essentially no heating in the 
semiconductor junction and the temperature of the junction is equal to that of the heat sink that the 
packaged laser is mounted to.  Measurement techniques based on voltage and wavelength 
measurement under pulsed and cw operation have been described by Hughes2 and Paoli3 respectively. 
 
While these methods have been shown to be accurate, they require the use of short current pulses 
which can be inconvenient to provide in practice, especially when high currents are required.  The 
simpler method described here is based on cw measurement of laser output power and power-averaged 
wavelength using a wavelength sensing optical multimeter.   
 
Laser junction temperature is related to heat sink temperature by the following relationship. 
 
 Tj  =  Ths + Rth * Pj (1) 
 
where, 
 
 Tj = junction temperature in °C 
 Ths = heat sink temperature in °C 
 Rth = thermal impedance from the laser chip to the heat sink in °C/W 
 Pj = waste heat dissipated in the laser junction in W 
 
Waste heat is the thermal power dissipated in the junction and is equal to the total power supplied to the 
junction less the power that is radiated optically in the laser’s light output.  The waste thermal power 
dissipated in the junction is determined by the following relationship. 
 
 Pj  =  I * V - Po (2) 
 
 



 
 

- 2 - 

where, 
 
 I = laser forward current in A 
 V = laser forward voltage in V 
 Po = optical output power in W 
 
The optical output spectrum of a Fabry-Perot laser diode is generally complex and dependent on the 
gain profile of the semiconductor laser medium combined with the longitudinal modes of the laser cavity4.  
In low power laser diodes, the optical output spectrum is often characterized by only a few longitudinal 
modes which shift in a complex manner with changes in temperature.  The optical output spectrum of 
high power laser diodes and laser diode bars is usually highly multi-mode, effectively “filling” the gain 
profile of the laser medium.  Over operating conditions of interest for most applications the relationship 
between the wavelength of the spectral peak and junction temperature is essentially linear.  The optical 
output spectrum of a typical 940 nm high power laser diode is shown in figure 1. 
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Figure 1.  Optical Spectrum of a High Power 940nm Laser Diode 
at Heat Sink Temperature of 20°C 

 
Previous techniques generally rely on using a spectrometer to measure the peak or average wavelength 
of the optical output spectrum.  A more convenient wavelength measurement technique based on 
colored glass filters may also be used and does not require coupling the output of the laser into an 
optical fiber.  The technique presented here measures power-averaged wavelength5.  As shown in 
Figure 2, the relationship between power-averaged wavelength and temperature is very linear.  The 
data in Figure 2 was obtained by measuring power-averaged wavelength vs heat sink temperature with 
a constant waste thermal power of 1500 mW.   At a constant thermal waste power, junction temperature 
is related to heat sink temperature by a constant offset, T= Rth * Pj.  Once the relationship between 
wavelength and junction temperature has been characterized for a particular laser structure, this 
relationship can be used as a calibration table to determine junction temperature through a simple cw 
power-averaged wavelength measurement.  
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Using the data in Table 1 again for a drive current of 1.2 amps, the power dissipated in the junction is 
calculated using equation 2, 
 
 Pj  =  ( 1.200 ) * ( 1.558 ) - ( 0.552 ) = 1.317 watts 
 
The thermal impedance is then calculated using equation 1, 
 
 Tj  =  Ths + Rth * Pj (4) 
 
 Rth = ( Tj - Ths) / Pj = ( 56.1 - 50.0 ) / 1.317 = 4.6 °C/W. 
 
Averaging the thermal impedance values from all of the data collected yields the slightly smaller value of 
4.2 °C/W. 
 
Alternate Method of Data Analysis 
 
While the method of data analysis described in the previous section is intuitively appealing, a faster and 
more statistically rigorous method has been suggested by JDSU6.  Assuming a linear relationship 
between wavelength and junction temperature, it can be expressed as, 
 
   =  m * Tj + b (5) 
 
Substituting Tj using equation 1 yields the following results. 
 
   =  m * [ Ths + Rth * Pj ] + b 
 
   =  m * Ths + m * Rth * Pj + b 
 
or,   =  m1 * Ths + m2 * Pj + b (6) 
 
Equation 6 is a linear equation in two variables that expresses wavelength in terms of heat sink 
temperature and power dissipated in the junction, where Pj  =  I * V - Po.  The constants m1, m2, and b 
may be readily solved using Microsoft Excel and the LINEST worksheet function.  Once determined, 
these constants can be used to express simple relationships for junction temperature and thermal 
impedance. 
 
 Tj = ( - m1) / b (7a) 
 
 Rth =  m2 / m1 (7b)  
 
Using the same data that is plotted in Figure 3, the following results are obtained, 
 
 Tj = ( - 933.01 nm ) / (0.3427 nm/°C) 
 
 Rth =  3.7 °C/W 
 
These results compare favorably with those obtained in the preceding section.  Over the temperature 
range of 20°C to 70°C calculated junction temperature agrees within ±0.6°C.  The thermal impedance 
calculations differ from each other by 12%. 
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Figure 4.  Power-Averaged Wavelength vs Laser Diode Junction Temperature 

 
Results 
 
The plotted data yields the following relationship between power-averaged wavelength of the laser’s 
optical output and junction temperature of the laser, 
 
   =  (0.335 nm/°C) * Tj + (933.1 nm) (3a) 
 
 Tj = ( - 933.15 nm ) / (0.3354 nm/°C) (3b) 
 
where, 
 
  = wavelength in nm 
 Tj = junction temperature in °C 
 
For example, using the data from Table 1 for a heat sink temperature of 50°C and laser drive current of 
1.2 amps, the measured wavelength was 951.9 nm.  The junction temperature can then be calculated 
using equation 3b,  
 
 Tj = ( - 933.15 nm ) / (0.3354 nm/°C) = 55.9°C 
 
Thermal impedance between the junction and the heat sink can also be quickly calculated using 
equations 1 and 2 and the junction temperature, heat sink temperature, and waste thermal power.  
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Figure 2.  Power-Averaged Wavelength vs Heat Sink Temperature 

Test Technique 
To demonstrate this test technique a high power 940 nm AlGaInAs broad area pump laser 
manufactured by JDSU was used.  The laser structure features an InGaAs strained-layer quantum well 
active region and a separate confinement heterostructure waveguide region.  The C-mount packaged 
laser diode was mounted on a temperature controlled heat sink and its optical output is coupled into a 
power and wavelength optical multimeter as shown in Figure 2.  In this experiment an ILX Lightwave 
LDM-4409 C-Block Mount was used with the laser held in place using the mount’s quick release clip.  
Lower thermal impedance could have been obtained by using the mount’s capability for screw mounting.  
Forward device current was supplied by a stable laser diode current source which was also capable of 
accurate four-wire voltage measurement.  Four-wire voltage measurement is required to eliminate 
measurement of the voltage drop in the cable that connects the current source and laser.  For high 
power laser diodes this voltage drop can be significant due to the high drive currents required. 
 

 
 

 
 

 
 
 

 
                                     

Figure 2.  Test Setup 
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An LDT-5948 precision temperature controller was used to control the fixture temperature with a stability 
of better than ±0.1 °C.  The output of the laser diode was coupled into the sensing head of an integrating 
sphere-based optical multimeter.  In this experiment an ILX Lightwave OMH-6722B Silicon 
Power/WaveHead was used.  The use of an integrating sphere ensures that all of the diverging output 
beam of the laser is captured and allows accurate absolute optical power measurement.  The ILX 
Lightwave OMM-6810B Optical Multimeter provides a convenient simultaneous measurement of both 
optical power and power-averaged wavelength without the need for a separate optical spectrometer. 
 
In order to determine the relationship between wavelength and chip temperature the following procedure 
was repeated at a range of heat sink temperatures.  Laser current, voltage, output power, and power-
averaged wavelength were recorded for five or six laser drive current set points above the threshold 
current.  At each point the laser was allowed to reach thermal equilibrium before recording each set of 
data.  Equilibrium was easily verified by ensuring the wavelength measurement was stable.  The 
minimum current set point used should be at least 25% above the threshold current of the laser at the 
current temperature.  Measurement results for a heat sink temperature of 50°C are shown in the table 
below.   
 
 

MEASURED PARAMETERS CALCULATED PARAMETERS 

Current 
I (A) 

Voltage 
V (V) 

Output 
Optical Power 

Po (mW) 
Wavelength 

(nm) 

Supplied 
Electrical Power 

I * V (mW) 

Waste 
Thermal Power 

Pj (mW) 
0.6 1.437 107.6 950.3 862.2 754.6 
0.7 1.456 178.7 950.7 1019.2 840.5 
0.8 1.474 250.8 950.9 1179.2 928.4 
0.9 1.494 325.9 951.6 1344.6 1018.7 
1.0 1.514 401.3 951.7 1514.0 1112.7 
1.1 1.535 476.0 951.8 1688.5 1212.5 
1.2 1.558 552.4 951.9 1869.6 1317.3 
1.3 1.583 628.9 952.1 2057.9 1429.0 
1.4 1.611 706.5 952.2 2255.4 1548.9 
1.5 1.644 780.1 952.4 2466.0 1685.9 
1.6 1.672 855.5 952.5 2675.2 1819.7 
1.7 1.692 931.2 952.7 2876.4 1945.2 

 
Table 1.  Laser Operating Parameters and Calculated Results 

for 50°C Heat Sink Temperature 
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Figure 3.  Power-Averaged Wavelength vs Waste Thermal Power 
 
A linear fit was then calculated for each data set.  The zero power intercept for each data set predicts 
the power-averaged wavelength of the output spectrum at a laser junction temperature, Tj, since at the 
zero power intercept, Tj = Ths.  These zero-power intercepts were then plotted versus temperature to 
obtain the calibration relationship desired.  This relationship for the lasers tested in this experiment is 
plotted in Figure 4. 
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An LDT-5948 precision temperature controller was used to control the fixture temperature with a stability 
of better than ±0.1 °C.  The output of the laser diode was coupled into the sensing head of an integrating 
sphere-based optical multimeter.  In this experiment an ILX Lightwave OMH-6722B Silicon 
Power/WaveHead was used.  The use of an integrating sphere ensures that all of the diverging output 
beam of the laser is captured and allows accurate absolute optical power measurement.  The ILX 
Lightwave OMM-6810B Optical Multimeter provides a convenient simultaneous measurement of both 
optical power and power-averaged wavelength without the need for a separate optical spectrometer. 
 
In order to determine the relationship between wavelength and chip temperature the following procedure 
was repeated at a range of heat sink temperatures.  Laser current, voltage, output power, and power-
averaged wavelength were recorded for five or six laser drive current set points above the threshold 
current.  At each point the laser was allowed to reach thermal equilibrium before recording each set of 
data.  Equilibrium was easily verified by ensuring the wavelength measurement was stable.  The 
minimum current set point used should be at least 25% above the threshold current of the laser at the 
current temperature.  Measurement results for a heat sink temperature of 50°C are shown in the table 
below.   
 
 

MEASURED PARAMETERS CALCULATED PARAMETERS 

Current 
I (A) 

Voltage 
V (V) 

Output 
Optical Power 

Po (mW) 
Wavelength 

(nm) 

Supplied 
Electrical Power 

I * V (mW) 

Waste 
Thermal Power 

Pj (mW) 
0.6 1.437 107.6 950.3 862.2 754.6 
0.7 1.456 178.7 950.7 1019.2 840.5 
0.8 1.474 250.8 950.9 1179.2 928.4 
0.9 1.494 325.9 951.6 1344.6 1018.7 
1.0 1.514 401.3 951.7 1514.0 1112.7 
1.1 1.535 476.0 951.8 1688.5 1212.5 
1.2 1.558 552.4 951.9 1869.6 1317.3 
1.3 1.583 628.9 952.1 2057.9 1429.0 
1.4 1.611 706.5 952.2 2255.4 1548.9 
1.5 1.644 780.1 952.4 2466.0 1685.9 
1.6 1.672 855.5 952.5 2675.2 1819.7 
1.7 1.692 931.2 952.7 2876.4 1945.2 

 
Table 1.  Laser Operating Parameters and Calculated Results 

for 50°C Heat Sink Temperature 
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Figure 3.  Power-Averaged Wavelength vs Waste Thermal Power 
 
A linear fit was then calculated for each data set.  The zero power intercept for each data set predicts 
the power-averaged wavelength of the output spectrum at a laser junction temperature, Tj, since at the 
zero power intercept, Tj = Ths.  These zero-power intercepts were then plotted versus temperature to 
obtain the calibration relationship desired.  This relationship for the lasers tested in this experiment is 
plotted in Figure 4. 
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Figure 4.  Power-Averaged Wavelength vs Laser Diode Junction Temperature 

 
Results 
 
The plotted data yields the following relationship between power-averaged wavelength of the laser’s 
optical output and junction temperature of the laser, 
 
   =  (0.335 nm/°C) * Tj + (933.1 nm) (3a) 
 
 Tj = ( - 933.15 nm ) / (0.3354 nm/°C) (3b) 
 
where, 
 
  = wavelength in nm 
 Tj = junction temperature in °C 
 
For example, using the data from Table 1 for a heat sink temperature of 50°C and laser drive current of 
1.2 amps, the measured wavelength was 951.9 nm.  The junction temperature can then be calculated 
using equation 3b,  
 
 Tj = ( - 933.15 nm ) / (0.3354 nm/°C) = 55.9°C 
 
Thermal impedance between the junction and the heat sink can also be quickly calculated using 
equations 1 and 2 and the junction temperature, heat sink temperature, and waste thermal power.  
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Figure 2.  Power-Averaged Wavelength vs Heat Sink Temperature 

Test Technique 
To demonstrate this test technique a high power 940 nm AlGaInAs broad area pump laser 
manufactured by JDSU was used.  The laser structure features an InGaAs strained-layer quantum well 
active region and a separate confinement heterostructure waveguide region.  The C-mount packaged 
laser diode was mounted on a temperature controlled heat sink and its optical output is coupled into a 
power and wavelength optical multimeter as shown in Figure 2.  In this experiment an ILX Lightwave 
LDM-4409 C-Block Mount was used with the laser held in place using the mount’s quick release clip.  
Lower thermal impedance could have been obtained by using the mount’s capability for screw mounting.  
Forward device current was supplied by a stable laser diode current source which was also capable of 
accurate four-wire voltage measurement.  Four-wire voltage measurement is required to eliminate 
measurement of the voltage drop in the cable that connects the current source and laser.  For high 
power laser diodes this voltage drop can be significant due to the high drive currents required. 
 

 
 

 
 

 
 
 

 
                                     

Figure 2.  Test Setup 
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where, 
 
 I = laser forward current in A 
 V = laser forward voltage in V 
 Po = optical output power in W 
 
The optical output spectrum of a Fabry-Perot laser diode is generally complex and dependent on the 
gain profile of the semiconductor laser medium combined with the longitudinal modes of the laser cavity4.  
In low power laser diodes, the optical output spectrum is often characterized by only a few longitudinal 
modes which shift in a complex manner with changes in temperature.  The optical output spectrum of 
high power laser diodes and laser diode bars is usually highly multi-mode, effectively “filling” the gain 
profile of the laser medium.  Over operating conditions of interest for most applications the relationship 
between the wavelength of the spectral peak and junction temperature is essentially linear.  The optical 
output spectrum of a typical 940 nm high power laser diode is shown in figure 1. 
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Figure 1.  Optical Spectrum of a High Power 940nm Laser Diode 
at Heat Sink Temperature of 20°C 

 
Previous techniques generally rely on using a spectrometer to measure the peak or average wavelength 
of the optical output spectrum.  A more convenient wavelength measurement technique based on 
colored glass filters may also be used and does not require coupling the output of the laser into an 
optical fiber.  The technique presented here measures power-averaged wavelength5.  As shown in 
Figure 2, the relationship between power-averaged wavelength and temperature is very linear.  The 
data in Figure 2 was obtained by measuring power-averaged wavelength vs heat sink temperature with 
a constant waste thermal power of 1500 mW.   At a constant thermal waste power, junction temperature 
is related to heat sink temperature by a constant offset, T= Rth * Pj.  Once the relationship between 
wavelength and junction temperature has been characterized for a particular laser structure, this 
relationship can be used as a calibration table to determine junction temperature through a simple cw 
power-averaged wavelength measurement.  
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Using the data in Table 1 again for a drive current of 1.2 amps, the power dissipated in the junction is 
calculated using equation 2, 
 
 Pj  =  ( 1.200 ) * ( 1.558 ) - ( 0.552 ) = 1.317 watts 
 
The thermal impedance is then calculated using equation 1, 
 
 Tj  =  Ths + Rth * Pj (4) 
 
 Rth = ( Tj - Ths) / Pj = ( 56.1 - 50.0 ) / 1.317 = 4.6 °C/W. 
 
Averaging the thermal impedance values from all of the data collected yields the slightly smaller value of 
4.2 °C/W. 
 
Alternate Method of Data Analysis 
 
While the method of data analysis described in the previous section is intuitively appealing, a faster and 
more statistically rigorous method has been suggested by JDSU6.  Assuming a linear relationship 
between wavelength and junction temperature, it can be expressed as, 
 
   =  m * Tj + b (5) 
 
Substituting Tj using equation 1 yields the following results. 
 
   =  m * [ Ths + Rth * Pj ] + b 
 
   =  m * Ths + m * Rth * Pj + b 
 
or,   =  m1 * Ths + m2 * Pj + b (6) 
 
Equation 6 is a linear equation in two variables that expresses wavelength in terms of heat sink 
temperature and power dissipated in the junction, where Pj  =  I * V - Po.  The constants m1, m2, and b 
may be readily solved using Microsoft Excel and the LINEST worksheet function.  Once determined, 
these constants can be used to express simple relationships for junction temperature and thermal 
impedance. 
 
 Tj = ( - m1) / b (7a) 
 
 Rth =  m2 / m1 (7b)  
 
Using the same data that is plotted in Figure 3, the following results are obtained, 
 
 Tj = ( - 933.01 nm ) / (0.3427 nm/°C) 
 
 Rth =  3.7 °C/W 
 
These results compare favorably with those obtained in the preceding section.  Over the temperature 
range of 20°C to 70°C calculated junction temperature agrees within ±0.6°C.  The thermal impedance 
calculations differ from each other by 12%. 
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Conclusion 
 
A simple method of measuring the junction temperature and thermal impedance of high power laser 
diodes has been described.  The method presented here is based on cw measurements made with 
readily available instrumentation.  Use of an integrating sphere based optical multimeter head allows 
simultaneous measurement of optical power and power-averaged wavelength, thereby avoiding the 
requirement for a separate optical spectrometer or the need to couple light into an optical fiber. 
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Laser diode operating characteristics and life time are greatly affected by the temperature of the 
semiconductor junction.  This is particularly true for high power laser diodes in which several watts of 
waste heat must be removed from a small semiconductor laser chip.  In this case die bond quality and 
package thermal impedance are critical to achieving good device performance.  During production, chip 
burn-in temperature must be accurately controlled in order to ensure adequate screening of defective 
devices is achieved without excessive loss of good devices.  A simple, accurate method for measuring 
junction temperature and heat sink-to-chip thermal impedance is needed to enable the development and 
production of high power laser diodes.  This article presents a simple cw method based on the use of 
readily available test and measurement instrumentation. 

Background 
Measurement of junction temperature has been recognized as critical to the advancement of laser diode 
technology for decades.  Commonly used measurement methods are based on some change in the 
physical properties of the semiconductor junction with temperature.  For laser diodes the most 
commonly used methods are based on change in optical output power, threshold current, forward 
voltage, or wavelength1.  Generally, these methods are based on a change in the measured physical 
property between pulsed and continuous wave (cw) operation of the laser diode.  When operated with 
very short pulses (< 1 s) and low duty cycle (0.1%), there is essentially no heating in the 
semiconductor junction and the temperature of the junction is equal to that of the heat sink that the 
packaged laser is mounted to.  Measurement techniques based on voltage and wavelength 
measurement under pulsed and cw operation have been described by Hughes2 and Paoli3 respectively. 
 
While these methods have been shown to be accurate, they require the use of short current pulses 
which can be inconvenient to provide in practice, especially when high currents are required.  The 
simpler method described here is based on cw measurement of laser output power and power-averaged 
wavelength using a wavelength sensing optical multimeter.   
 
Laser junction temperature is related to heat sink temperature by the following relationship. 
 
 Tj  =  Ths + Rth * Pj (1) 
 
where, 
 
 Tj = junction temperature in °C 
 Ths = heat sink temperature in °C 
 Rth = thermal impedance from the laser chip to the heat sink in °C/W 
 Pj = waste heat dissipated in the laser junction in W 
 
Waste heat is the thermal power dissipated in the junction and is equal to the total power supplied to the 
junction less the power that is radiated optically in the laser’s light output.  The waste thermal power 
dissipated in the junction is determined by the following relationship. 
 
 Pj  =  I * V - Po (2) 
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