Picomotor™ Controller/Driver

User's Manual
Declaration of Conformity

We declare that the accompanying product, identified with the \(\mathbb{C} \) mark, complies with requirements of the Electromagnetic Compatibility Directive, 2004/108/EC and the Low Voltage Directive 2006/95/EC.

Model Numbers: 8743-CL

Year \(\mathbb{C} \) mark affixed: 2013

Type of Equipment: Electrical equipment for measurement, control and laboratory use in industrial locations.

Manufacturer: Newport Corporation
1791 Deere Avenue
Irvine, CA 92606

Standards Applied:
Compliance was demonstrated to the following standards to the extent applicable:

BS EN61326-1: 2006 “Electrical equipment for measurement, control and laboratory use – EMC requirements”.

This equipment meets the CISPR 11:2009+A1:2010 Class A Group 1 radiated and conducted emission limits.

BS EN 61010-1:2010, “Safety requirements for electrical equipment for measurement, control and laboratory use”.

Mark Carroll
Sr. Director, Instruments Business
Newport Corporation
1791 Deere Ave, Irvine, CA92606 USA
Warranty

New Focus warrants that this product will be free from defects in material and workmanship and will comply with New Focus’s published specifications at the time of sale for a period of one year from date of shipment. If found to be defective during the warranty period, the product will either be repaired or replaced at New Focus's option.

To exercise this warranty, write or call your local New Focus office or representative, or contact Newport headquarters in Irvine, California. You will be given prompt assistance and return instructions. Send the product, freight prepaid, to the indicated service facility. Repairs will be made and the instrument returned freight prepaid. Repaired products are warranted for the remainder of the original warranty period or 90 days, whichever first occurs.

Limitation of Warranty

The above warranties do not apply to products which have been repaired or modified without New Focus's written approval, or products subjected to unusual physical, thermal or electrical stress, improper installation, misuse, abuse, accident or negligence in use, storage, transportation or handling. This warranty also does not apply to fuses, batteries, or damage from battery leakage.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. NEW FOCUS SHALL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM THE PURCHASE OR USE OF ITS PRODUCTS.

First printing 2013

© 2013 by New Focus, Santa Clara, CA. All rights reserved. No part of this manual may be reproduced or copied without the prior written approval of New Focus.

This manual has been provided for information only and product specifications are subject to change without notice. Any change will be reflected in future printings.
Confidentiality & Proprietary Rights

Reservation of Title

The New Focus programs and all materials furnished or produced in connection with them ("Related Materials") contain trade secrets of New Focus and are for use only in the manner expressly permitted. New Focus claims and reserves all rights and benefits afforded under law in the Programs provided by New Focus.

New Focus shall retain full ownership of Intellectual Property Rights in and to all development, process, align or assembly technologies developed and other derivative work that may be developed by New Focus. Customer shall not challenge, or cause any third party to challenge the rights of New Focus.

Preservation of Secrecy and Confidentiality and Restrictions to Access

Customer shall protect the New Focus Programs and Related Materials as trade secrets of New Focus, and shall devote its best efforts to ensure that all its personnel protect the New Focus Programs as trade secrets of New Focus. Customer shall not at any time disclose New Focus's trade secrets to any other person, firm, organization, or employee that does not need (consistent with Customer's right of use hereunder) to obtain access to the New Focus Programs and Related Materials. These restrictions shall not apply to information (1) generally known to the public or obtainable from public sources; (2) readily apparent from the keyboard operations, visual display, or output reports of the Programs; 3) previously in the possession of Customer or subsequently developed or acquired without reliance on the New Focus Programs; or (4) approved by New Focus for release without restriction.

Trademarks

The New Focus logo and name are registered trademarks of Newport Corporation in Mexico, Israel, Singapore, European Union, Taiwan, Hong Kong, China, Japan, Korea, Canada, Australia, and the United States.

Service Information

This section contains information regarding factory service for the source. The user should not attempt any maintenance or service of the system or optional equipment beyond the procedures outlined in this manual. Any problem that cannot be resolved should be referred to New Focus.
Technical Support Contacts

North America
New Focus
3635 Peterson Way, Santa Clara, CA 95054
Telephone: (866) 683-6287
Telephone: (408) 919-1500

Europe
Newport/MICRO-CONTROLE S.A.
Zone Industrielle
45340 Beaune la Rolande, FRANCE
Telephone: (33) 02 38 40 51 56

Asia
Newport Opto-Electronics Technologies
中国 上海市 爱都路 253号 第3号楼 3层
C部位，邮编 200131
253 Aidu Road, Bld #3, Flr 3, Sec C, Shanghai 200131, China
Telephone: +86-21-5046 2300
Fax: +86-21-5046 2323

Newport Corporation Calling Procedure
If there are any defects in material or workmanship or a failure to meet specifications, promptly notify Newport's Returns Department by calling 1-800-222-6440 or by visiting our website at www.newport.com/returns within the warranty period to obtain a Return Material Authorization Number (RMA#). Return the product to Newport Corporation, freight prepaid, clearly marked with the RMA# and we will either repair or replace it at our discretion. Newport is not responsible for damage occurring in transit and is not obligated to accept products returned without an RMA#.

E-mail: rma.service@newport.com

When calling New Focus Corporation, please provide the customer care representative with the following information:

Your Contact Information
Serial number or original order number
Description of problem (i.e., hardware or software)

To help our Technical Support Representatives diagnose your problem, please note the following conditions:

Is the system used for manufacturing or research and development?
What was the state of the system right before the problem?
Have you seen this problem before? If so, how often?
Can the system continue to operate with this problem? Or is the system non-operational?
Can you identify anything that was different before this problem occurred?
Table of Contents

Declaration of Conformity ... ii
Warranty .. iii
Technical Support Contacts .. v
Table of Contents .. vi
List of Figures ... ix

1 Safety Precautions 10

1.1 Definitions and Symbols ... 10
 1.1.1 General Warning or Caution .. 10
 1.1.2 Electric Shock .. 10
 1.1.3 Potential Burn Hazard .. 10
 1.1.4 European Union CE Mark .. 11
 1.1.5 Alternating voltage symbol ... 11
 1.1.6 On ... 11
 1.1.7 Off .. 11
 1.1.8 Ground ... 11
 1.1.9 DC Symbol .. 12
 1.1.10 Waste Electrical and Electronic Equipment (WEEE) 12
 1.1.11 Control of Hazardous Substances ... 12
1.2 Warnings and Cautions ... 13
 1.2.1 General Warnings .. 13
 1.2.2 General Cautions ... 14
 1.2.3 Summary of Warnings and Cautions ... 14
1.3 Location of Labels and Warnings .. 17
1.4 Safety Grounding Considerations ... 18

2 General Information 19

2.1 System Overview .. 19
2.2 Scope of this Manual .. 20
2.3 Unpacking and Inspection ... 20
 2.3.1 What is included ... 20
2.4 Available accessories ... 20
2.5 Safety ... 21
2.6 Specifications .. 22
2.6.1 Operating Limits* ..22
2.6.2 Weight, Dimensions ...23

3 Theory of Operation 24
3.1 How the Picomotor Actuator Works24
3.2 Stepping the Picomotor with the 8743-CL Controller/Driver24
3.3 Closed-Loop Operation ...25
3.4 Status Indicator ..26
3.5 Power Supply ..27
3.5.1 Fault Protection ...27
3.6 Input / Output Connections ..28
3.6.1 USB ...29
3.6.2 Ethernet ...29
3.6.3 RS-485 ..29
3.6.4 Power ..30
3.6.5 Picomotor Interfaces ..30
3.7 Mounting the unit ...30

4 Initial Setup 31
4.1 Introduction ..31
4.2 Grounding ...31
4.3 Power ..31
4.4 Connecting 8743-CL to a Computer via USB31
4.5 Connecting 8743-CL to a Computer via Ethernet32
4.5.1 Connecting to a Router ..32
4.6 Picomotor Connections ..33
4.6.1 Motor Connectors ..33
4.6.2 Feedback Connectors ..34
4.7 Connecting Multiple Units to a Computer 35
4.7.1 Using USB Hubs ..37
4.7.2 Using Ethernet Routers/Switchers 38
4.7.3 Using RS-485 LAN to Daisy-Chain 39

5 Computer Interfacing 41
5.1 Introduction ...41
5.2 Computer Interface Terminology41
5.3 USB Communication ..42
5.3.1 USB Command Termination ..42
List of Figures

Figure 1 General Warning or Caution Symbol .. 10
Figure 2 Electrical Shock Symbol ... 10
Figure 3 Hot Surface Symbol .. 10
Figure 4 CE Mark .. 11
Figure 5 Alternating Voltage Symbol ... 11
Figure 6 On Symbol .. 11
Figure 7 Off Symbol ... 11
Figure 8 Ground Symbol .. 11
Figure 9 DC Symbol .. 12
Figure 10 WEEE Directive Symbol .. 12
Figure 11 RoHS Compliant Symbol ... 12
Figure 12 Labels and Warnings ... 17
Figure 13 Dimensional Outline Drawing ... 23
Figure 14 Servo Loop .. 25
Figure 15 Status Indicators position .. 26
Figure 16 Heatsink mounting slots ... 28
Figure 17 8743-CL Inputs and Outputs .. 29
Figure 18 Motor and Feedback Connectors ... 33
Figure 19 L-bracket .. 35
Figure 20 Using L-brackets to stack up several Controllers 35
Figure 21 Multiple Units Stacking & Interconnection 36
Figure 22 Connecting four units to a computer via a USB hub 37
Figure 23 Connecting three units to a computer via an Ethernet router 38
Figure 24 Connecting four units to a computer via RS-485 LAN 39
Figure 25 Connecting four units to a computer via RS-485 adapter 40
Figure 26 Picomotor Controller RS-485 LAN Topology 46
Figure 27 Picomotor Application Software .. 48
Figure 28 Controller Address Identification ... 49
Figure 29 Jog Tab ... 50
Figure 30 Cycle Tab ... 51
Figure 31 Terminal Tab .. 52
Figure 32 Home Tab .. 53
Figure 33 Setup Window (Closed-Loop) ... 55
Figure 34 Options Window ... 56
Figure 35 Properties Window ... 57
Figure 36 Controller Scan .. 58
Figure 37 Address Conflict Resolution Window ... 59
Figure 38 Device Address Window ... 60
Figure 39 Internet Browser View .. 61
Figure 40 Command Syntax Diagram .. 63
1 Safety Precautions

1.1 Definitions and Symbols

The following terms and symbols are used in this documentation and also appear on the Model 8743-CL Controller/Driver where safety-related issues occur.

1.1.1 General Warning or Caution

![Exclamation Symbol](image1)

Figure 1 General Warning or Caution Symbol

The Exclamation Symbol in the figure above appears on the product and in Warning and Caution tables throughout this document. This symbol designates that documentation needs to be consulted to determine the nature of a potential hazard, and any actions that have to be taken.

1.1.2 Electric Shock

![Electrical Shock Symbol](image2)

Figure 2 Electrical Shock Symbol

The Electrical Shock Symbol in the figure above appears throughout this manual and on the product. This symbol indicates a hazard arising from dangerous voltage. Any mishandling could result in irreparable damage to the equipment, and personal injury or death.

1.1.3 Potential Burn Hazard

![Hot Surface Symbol](image3)

Figure 3 Hot Surface Symbol

The Hot Surface Symbol in the figure above appears throughout this manual and on the product. This symbol indicates a hazard arising from a high temperature. Any mishandling could result in personal injury.
1.1.4 European Union CE Mark

![CE Mark](image4)

The presence of the CE Mark on New Focus equipment means that this instrument has been designed, tested and certified compliant to all applicable European Union (CE) regulations and recommendations.

1.1.5 Alternating voltage symbol

![Alternating Voltage Symbol](image5)

This international symbol implies an alternating voltage or current.

1.1.6 On

![On Symbol](image6)

The symbol in the figure above represents a power switch position on a Model 8743-CL. This symbol represents a Power On condition.

1.1.7 Off

![Off Symbol](image7)

The symbol in the figure above represents a power switch position on the Model 8743-CL. This symbol represents a Power Off condition.

1.1.8 Ground

![Ground Symbol](image8)

The symbol in the figure above represents a connection to ground or earth.
The symbol in the figure above appears on the Model 8743-CL to indicate the screw to be used to ground the case of the unit. This symbol identifies the frame or chassis terminal.

1.1.9 DC Symbol

![DC Symbol](image)

Figure 9 DC Symbol

This international symbol implies an unvarying current or voltage.

1.1.10 Waste Electrical and Electronic Equipment (WEEE)

![WEEE Directive Symbol](image)

Figure 10 WEEE Directive Symbol

This symbol on the product or on its packaging indicates that this product must not be disposed with regular waste. Instead, it is the user responsibility to dispose of waste equipment according to the local laws. The separate collection and recycling of the waste equipment at the time of disposal will help to conserve natural resources and ensure that it is recycled in a manner that protects human health and the environment. For information about where the user can drop off the waste equipment for recycling, please contact your local New Focus representative.

1.1.11 Control of Hazardous Substances

![RoHS Compliant Symbol](image)

Figure 11 RoHS Compliant Symbol

This label indicates the products comply with the EU Directive 2002/95/EC that restricts the content of six hazardous chemicals.
1.2 Warnings and Cautions

The Model 8743-CL is a component of a system that will contain one or more Picomotors and other items. Since New Focus cannot control these other system components, the User is ultimately responsible for ensuring that the complete system meets all applicable product and workplace safety regulations. Specific attention should be directed to the description of safety grounding concerns described in Section 1.4, below.

The following are definitions of the Warnings, Cautions and Notes that are used throughout this manual to call your attention to important information regarding your safety, the safety and preservation of your equipment or an important tip.

<table>
<thead>
<tr>
<th>WARNING</th>
<th>Situation has the potential to cause bodily harm or death.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION</td>
<td>Situation has the potential to cause damage to property or equipment.</td>
</tr>
<tr>
<td>NOTE</td>
<td>Additional information the user or operator should consider.</td>
</tr>
<tr>
<td></td>
<td>Situation has the potential to cause the product to not comply with applicable European Union regulations.</td>
</tr>
</tbody>
</table>

1.2.1 General Warnings

Observe these general warnings when operating or servicing this equipment:

- Heed all warnings on the unit and in the operating instructions.
- Do not use this equipment in or near water.
- Although the input power to this equipment is below 20 VDC, this equipment internally generates much higher voltages that are present on the Model 8743-CL connector pins. Only properly trained personnel should touch either of these items.
- The Model 8743-CL is intended to be used as a component in a larger system. When this product is included as part of a larger assembly, the user MUST ensure that appropriate additional safety and EMC-compliance features are incorporated the assembly.
- The Model 8743-CL is typically supplied with an external DC power source. When the external power source is connected to MAINS power, the external power source’s detachable power cord
may be used to disconnect power to the 8743-CL. Do not position the external power supply so that its MAINS power cord cannot be easily disconnected.

- Disconnect power before cleaning the equipment. Do not use liquid or aerosol cleaners; use only a damp lint-free cloth.
- Lockout all electrical power sources before servicing the equipment.
- There are no user-replaceable fuses in this equipment. The user must ensure that appropriate current-limiting protection is provided by the external DC power source.
- To avoid explosion, do not operate this equipment in an explosive atmosphere.
- Qualified service personnel should perform safety checks after any service.
- Use only the New Focus-supplied MAINS power cord with the external DC supply. Use of under-rated power cords and cause property damage

1.2.2 General Cautions

Observe these cautions when operating this equipment:

- If this equipment is used in a manner not specified in this manual, the protection provided by this equipment may be impaired.
- Do not block ventilation openings.
- Use only the specified replacement parts.
- Follow precautions for static sensitive devices when handling this equipment.
- This product should only be powered as described in the manual.
- There are no user-serviceable parts inside the Model 8743-CL Picomotor Drive Module.

1.2.3 Summary of Warnings and Cautions

The following general warning and cautions are applicable to this instrument:

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Picomotor Controller/Driver is incomplete in constructional features and is considered only to be a component for the purposes of regulatory compliance. It is “equipment for building in;” a suitable enclosure must be provided so that the unit is not user accessible when incorporated into the final product.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Model 8743-CL Picomotor Controller/Driver internally generates non-SELV voltages. These voltages are present, at times, on the Picomotor connectors even when a Picomotor is not connected. The user shall mount the Model 8743-CL with appropriate barriers, spacings, markings, etc. to ensure that all applicable regulatory requirements are met. THIS IS THE USER’S RESPONSIBILITY.</td>
</tr>
</tbody>
</table>
WARNING

Do not attempt to operate this equipment if there is evidence of shipping damage or you suspect the unit is damaged. Damaged equipment may present additional hazards to you. Contact New Focus technical support for advice before attempting to plug in and operate damaged equipment.

WARNING

The Model 8743-CL is intended for use ONLY with New Focus Picomotors. Connection of other devices to the unit’s motor connectors may cause damage to the unit or the connected device, fire, and/or personal injury.

WARNING

Before operating the Model 8743-CL Picomotor Driver, please read and understand all of Section 1.

WARNING

Do not attempt to operate this equipment if there is evidence of shipping damage or you suspect the unit is damaged. Damaged equipment may present additional hazards to you. Contact New Focus technical support for advice before attempting to plug in and operate damaged equipment.

WARNING

Do not apply external DC power to this equipment in excess of 14.5 VDC.

WARNING

Use only the New Focus-supplied MAINS power cord with the external DC power supply. Use of an under-rated power cord may cause damage to the product, fire, and/or personal injury.

CAUTION

There are no user serviceable parts inside the Model 8743-CL Picomotor Controller/Driver. Work performed by persons not authorized by New Focus will void the warranty.
WARNING

If this equipment is used in a manner not specified in this manual, the protection provided by this equipment may be impaired.

WARNING

This instrument is intended for use by qualified personnel who recognize thermal, shock, or laser hazards and are familiar with safety precautions required to avoid possible injury. Read the instruction manual thoroughly before using, to become familiar with the instrument’s operations and capabilities.

CAUTION

The Model 8743-CL Picomotor Controller/Driver is designed to be safe when operated under Normal Environmental Conditions as defined in EN61010-1:2010. Operation under harsher environmental conditions can result in severe injury.

CAUTION

The case of the Model 8743-CL Picomotor Controller/Driver is used to dissipate internally-generated heat. Blocking the normal convective airflow around the unit, or thermally insulating the unit, can result in severe injury, damage to the product, and/or fire.

CAUTION

When operated at higher pulse rates for extended periods of time, the temperature on the outside of the Model 8743-CL’s case may rise above the “surface temperature limits in normal operation” as defined in EN61010-1:2010 unless the user takes appropriate measures. These may include the addition of an external heat sink, barriers to contact, reducing the pulse frequency, or other appropriate mitigations. Failure to take appropriate action when operating the Model 8743-CL under these conditions can result in severe injury.

The Model 8743-CL Picomotor Controller/Driver is intended for use in an industrial laboratory environment. Use of this product in other environments, such as residential, may result in electromagnetic compatibility difficulties due to conducted as well as radiated disturbances.
1.3 Location of Labels and Warnings

- CE Mark
- High Voltage Warning Symbol
- Model Number
- Power Supply Voltage and Current
- Serial Number and WEEE Symbol
- Applicable US Patents
- Chassis Ground Identification

Figure 12 Labels and Warnings
1.4 Safety Grounding Considerations

There are potentially lethal voltages generated within the Model 8743-CL Picomotor Controller/Driver and presented on the pins of the “Motor” connectors EVEN WHEN NO PICOMOTOR IS INSTALLED. (These voltages are not present when power is not applied to the unit. They are not present when the unit is switched OFF.) The User must manage certain system-level aspects to ensure safe operation. One of these is grounding.

The Model 8743-CL’s external DC power supply provides 12VDC. The negative output from this supply is typically isolated from MAINS earth ground, but this isolation should not be assumed. This same negative output is connected directly to the Model 8743-CL’s external case within the Model 8743-CL. This same “ground” is at the same potential as the MOTOR connectors’ return signal pins. This means that the MOTOR connectors’ drive signal pins are, at times, at VERY HIGH VOLTAGES relative to the Model 8743-CL case, the USB connector shell, and the DC input/loop-through connectors’ negative terminals.

An 8-32 screw is provided on the unit and marked with the “Ground” symbol shown in Paragraph 1.1.8, above. While it is not necessary to connect this terminal to a building “earth” ground, New Focus recommends doing so because it will simplify system-level compliance with most regulatory requirements. Once this connection is made, the user must ensure that all other system components are appropriately grounded. Do not depend upon the physical mounting hardware to accomplish this grounding.

If the other components are not grounded, a damaged Picomotor (or its wire) could result in a dangerously high voltage being present between anything that is grounded (like the 8743-CL and a computer attached to it via USB) and the Picomotor case. Note that the simplest way to ground a Picomotor is via its threaded mounting bushing or other mounting hardware. DO NOT ATTEMPT TO OPEN A PICOMOTOR TO ACHIEVE THIS GROUNDING.

If system requirements prevent the Picomotor from being grounded, then the user must ensure that the Model 8743-CL and all other system components (including any USB-connected computers) are properly isolated from earth ground. This is because a short of the high-voltage drive signal to an earth ground may result in potentially lethal voltages existing between the case of the 8743-CL and anything that is earth grounded, such as a floor. The User is advised to consult all applicable regulations because this insulation will probably need to have a breakdown voltage of several thousand volts due to lightning concerns.

In summary, New Focus strongly recommends grounding the Model 8743-CL’s case.
2 General Information

2.1 System Overview

8743-CL is a 2-axis closed-loop motion controller/driver for Picomotors, offering a complete motion solution for many applications. It can control up to 2 Picomotors and it can work in systems with other Model 8743-CL and 8743-CL Controller/Drivers to drive a large number of Picomotors. The controller can be programmed via USB, Ethernet, and RS-485 communication interfaces to perform different motion tasks: relative and absolute moves, jogging, etc.

Key Product Features

A number of advanced features make the 8743-CL an excellent choice for many applications:

- Intelligent 2-axis closed-loop control
- Compact, integrated controller and driver design
- Patented Picomotor™ compatibility with auto-sensing technology
- Programmable settings stored in non-volatile memory
- Plug-and-play USB 2.0 interface
- 10/100-Mbps Ethernet connectivity (Sockets interface, TCP/IP, DHCP, UDP)
- Embedded dynamic HTTP server
- RS-485 LAN Daisy-chain Capability
- Over temperature protection
- Advanced microcontroller technology
- Embedded real-time operating system
- Easy to use Windows software utility
- LabVIEW™ and C# programming support
- Local Power ON / OFF Switch
2.2 Scope of this Manual

Please carefully read this instruction manual before using the 8743-CL Picomotor Controller/Driver. Be especially careful to observe the warnings and cautions throughout this manual (see Safety Symbols and Terms). If any operating instructions are not clear, contact New Focus.

This instruction manual contains the necessary information for operation and maintenance of the Model 8743-CL, as well as information for troubleshooting and obtaining service if necessary.

2.3 Unpacking and Inspection

The Model 8743-CL is carefully assembled, tested and inspected before shipment. Upon receiving this instrument, check for any obvious signs of physical damage that might have occurred during shipment. Report any such damage to the shipping agent immediately.

NOTE

Retain the original packing materials in case reshipment becomes necessary.

2.3.1 What is included

The 8743-CL package contents:

- 8743-CL Controller/Driver
- USB Flash Drive which contains the user manual, various documents, USB driver, software application and libraries.

2.4 Available accessories

- Power supply/AC adapter, 60 Watt (Model 8745-PS)
- Power supply link cable, 6 inch, for daisy chaining multiple controllers together using a single 12 VDC supply (Model 8745-PWR-CBL)
- RS-485 LAN link cable, 6 inch, for daisy-chaining (Model 8745-RS485-CBL)
- USB cable, 3 meter micro-B to USB-A cable (Model 8745-USB-CBL)
- L-shaped bracket for stacking several Controllers/Drivers (Model 8745-STK-KIT)
- Optical table mounting plate kit (Model 8745-MTG-KIT)
2.5 Safety

Voltages of up to 130 V are accessible inside the 8743-CL Controller/Driver chassis, mounts, and Picomotors. DO NOT operate the units with the driver or mount covers removed. If the wire of a mount or Picomotor is damaged, discontinue use and return it for repair. If the device is used in a manner not specified by New Focus, the protection provided by the device may be impaired.

Normally, the case of the Model 8743-CL will rise a few degrees when a Picomotor is moved. Under conditions of extreme use, meaning long distance moves on one or more motor channels, the case temperature may rise above what is considered safe under various international safety conventions. Even after extreme use, the unit’s case temperature will drop to safe levels within a few minutes. The user should not touch the case immediately following such use. Note that the Model 8743-CL does contain internal temperature protection circuitry that will shut down the unit when the case approaches a temperature that could degrade or damage the unit.

CAUTION

The case of the Model 8743-CL Picomotor Controller/Driver is used to dissipate internally-generated heat. Blocking the normal convective airflow around the unit, or thermally insulating the unit, can result in severe injury, damage to the product, and/or fire.
2.6 Specifications

2.6.1 Operating Limits*

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 8743-CL Power input voltage (+V IN)</td>
<td>10.5 V</td>
<td>14.5 V</td>
</tr>
<tr>
<td>Power Consumption @ 12 Volts</td>
<td>2 Watts</td>
<td>11 Watts</td>
</tr>
<tr>
<td></td>
<td>(Idle)</td>
<td>(@ 2 kHz speed)</td>
</tr>
<tr>
<td>Ambient still-air operating temperature</td>
<td>0 °C</td>
<td>65 °C</td>
</tr>
<tr>
<td>Storage temperature (non-operating)</td>
<td>-40 °C</td>
<td>95 °C</td>
</tr>
<tr>
<td>Relative Humidity, operating (non-condensing)</td>
<td>10%</td>
<td>90%</td>
</tr>
<tr>
<td>Altitude</td>
<td></td>
<td>2000 meters</td>
</tr>
<tr>
<td>Environment, Use</td>
<td></td>
<td>Indoor Use Only</td>
</tr>
<tr>
<td>Pollution Degree</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Operating outside the operating limits may damage the unit.
2.6.2 Weight, Dimensions

<table>
<thead>
<tr>
<th>Weight</th>
<th>9.5 oz (270 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>(L x W x H)</td>
</tr>
<tr>
<td></td>
<td>5.84 in x 3.61 in x 1.02 in</td>
</tr>
<tr>
<td></td>
<td>148.3 mm x 91.7 mm x 25.9 mm</td>
</tr>
</tbody>
</table>

![Dimensional Outline Drawing](image-url)

Figure 13 Dimensional Outline Drawing
3 Theory of Operation

3.1 How the Picomotor Actuator Works

The patented design of the Picomotor actuator relies on the basic difference between dynamic and static friction. A graphic example of this is the “tablecloth trick”, in which a quick pull of the cloth leaves the dishes on the table, while a slow pull of the tablecloth ends up pulling the dishes off the table (high static friction).

The Picomotor actuator uses the same principle with a threaded jaw, similar to two halves of a split nut, clamped around a precision 80-pitch screw. One jaw is connected to one end of a piezoelectric transducer, and the other jaw is connected to the other end of the transducer. A slow electrical signal applied to the piezo slowly changes the length, causing the two jaws to slide in opposite direction. This slow sliding motion makes the screw turn (static friction). At the end of the transducer motion, a fast electrical signal quickly returns the jaws to their starting positions. Because of the screw’s inertia and low dynamic friction, it remains motionless, holding its position. Simply reversing the order of the fast and slow signals reverses the direction of rotation.

3.2 Stepping the Picomotor with the 8743-CL Controller/Driver

Although the Picomotor is not a stepper, per se, it can be driven step-by-step. Each step size depends on the Picomotor model, but it is usually < 30nm, allowing for very small, controlled movements.

8743-CL can be programmed for single step control, as well as a predetermined number of steps. Moreover, 8743-CL can drive the Picomotor in a continuous motion, in either direction at variable speeds.

As opposed to magnetic motors, the Picomotor actuator has a set-and-forget stability. When no power is applied, the actuator does not move. The user can feel confident that the Picomotor will not change its position, even when the 8743-CL Controller/Driver is powered off. Therefore, the 8743-CL has a power ON/OFF switch for convenience. If a user has a 2-Picomotor system, once the system is set, the user can turn the power OFF, to assure that the Picomotors will not be inadvertently moved through computer control. In addition, the 8743-CL Controller/Driver can be programmed with the outputs disconnected, with the same effect as in the power OFF state.
3.3 Closed-Loop Operation

The Model 8743-CL can operate in an open-loop mode with either closed-loop or open-loop Picomotors. In addition, it can operate in closed-loop mode when connected to closed-loop Picomotors. The unit will also support mixed operation whereby an open-loop Picomotor is operated in open-loop mode on one axis and a closed-loop Picomotor is operated in closed-loop (or open-loop) mode on the other axis.

While operating in closed-loop mode, the Model 8743-CL will respond to motion command displacements based upon increments of the closed-loop Picomotor positioner’s internal optical encoder, rather than by actual Picomotor steps. The controller will automatically determine the appropriate number of Picomotor STEPS needed to accomplish the target COUNTS displacement.

Closed-loop correction takes affect only during position regulation (holding position) as opposed to while moving. Furthermore, the positioning units must be in ‘Counts’ (see SN command) and closed-loop positioning must be enabled (see MM command) for corrections to occur.

The 8743-CL closed-loop update interval is programmable and can be set from 0.1 second to about 27 hours. Moreover, for maximum user application flexibility, each axis’ parameter settings are independent and can, therefore, be set to a different interval rate.

NOTE: Closed-Loop correction is automatically disabled after a controller reset, power-up, or a Following Error condition (see FE command).

NOTE: The user can enable Closed-Loop mode via MM command or by clicking the Enable Closed-Loop button in the Windows software application.

NOTE: When controlling a standard open-loop Picomotor positioner (1) set ‘Units’ option to ‘Steps’ and (2) disable ‘Travel Limit Checking.’

![Servo Loop Diagram](image_url)
3.4 **Status Indicator**

The LED located near the power switch has several functions:

- Power Indicator
- Status Indicator
- Troubleshooter

![Status Indicator Diagram]

Figure 15 *Status Indicators position*

When the unit is turned on the unit goes through a series of verifications and turns the LED solid green. The unit is ready to drive Picomotors.

If any problems are found, the LED will blink or turn on a color corresponding to the issue found. Please refer to the following table and contact New Focus support if this happens.

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>LED STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No power applied to unit</td>
<td>OFF</td>
</tr>
<tr>
<td>Unit OK; no critical errors detected</td>
<td>Solid green</td>
</tr>
<tr>
<td>Reboot condition occurred</td>
<td>Fast blinking green for 0.5 second</td>
</tr>
<tr>
<td>Corrupted firmware detected</td>
<td>Solid amber</td>
</tr>
<tr>
<td>Critical fault detected (e.g. over-temperature)</td>
<td>Solid red</td>
</tr>
</tbody>
</table>

Table 1 LED Status Indicator
3.5 **Power Supply**

The 8743-CL Controller/Driver can place stress on the system power supply. The stress has two components:

Inrush current: The inrush current on power-up charges the internal filter capacitor. While the energy magnitude of the inrush current is limited, it can still cause problems with power supplies not designed to handle it.

Dynamic load: Dynamic current is supplied to the 8743-CL internal power supply for each Picomotor drive pulse. The input-filter capacitor will supply more dynamic current as the resistance between the capacitor and system power supply increases. Do not increase this resistance: it will increase ripple-current stress on the internal input-filter capacitor, leading to early failure of the Model 8743-CL. The best strategy is to keep the resistance between the power supply and the 8743-CL below 0.1 Ω and use the power supply recommended by New Focus that came with the 8743-CL Controller/Driver.

3.5.1 **Fault Protection**

The 8743-CL Controller/Driver incorporates circuit-protection schemes to protect itself and the system power supply:

Over-voltage protection: If the power input voltage exceeds 16.7 to 18.5 V, a transient voltage suppressor (TVS) shunts the power input to ground. The internal 2.5 A fuse will then open. The TVS will also shunt the power input to ground if an internal fault shorts any high voltage to the power input. The input fuse will also open if the input power voltage is reversed. Brief power supply transients will not blow the fuse. Therefore, it is highly recommended to use the correct New Focus-supplied power supply. If the fuse was blown, the unit has to be serviced by New Focus. It is not user replaceable.

Over-temperature protection: If the base plate of the unit reaches 80 °C, the unit will turn the status indicator solid red to tell the user that the base plate, which acts as a heatsink, reached the maximum allowed temperature. The user is expected to take some measures like decreasing the pulse rate, force-air cool the 8743-CL case, or use an extra heatsink. If the case temperature continues to rise, at 85 °C the output will be turned off. The output will remain off until the base plate temperature decreases to 75 °C, when the output will be ready to drive the motor again. In that case the status indicator will turn solid green to indicate that the normal operation has resumed (see Table 1). If left unattended, the unit will protect itself cycling between 85 °C and 75 °C.

The unit does not need an extra heatsink in normal laboratory environment. However, if forced cooling is needed, usually at high ambient temperatures, a heatsink can be mounted using the 4 slots of the unit base (see Figure 16).
3.6 Input / Output Connections

Figure 16 shows the 8743-CL input and output connections.

Communication Interfaces: USB, Ethernet, RS-485 (2)

Power Inputs: +12VDC (2)

Picomotor Interfaces: 4

The following figure shows the position of the inputs and outputs as well as the power switch.
3.6.1 **USB**

The USB input is a Micro-AB connector. Use a Micro-B to USB-A cable to connect the 8743-CL Controller/Driver to a computer.

3.6.2 **Ethernet**

The Ethernet input is a standard RJ-45 connector. Use a Cat 5 Ethernet cable to connect the 8743-CL Controller/Driver to a router, an Ethernet switch, or a computer.

3.6.3 **RS-485**

There are two RS-485 connectors that accept standard 3.5mm stereo plugs. The two connectors are connected in parallel inside the Model 8743-CL. (The wiring convention is TIP = D+, RING = D-, SLEEVE = GND.) These connections are used to simplify the wiring between an external computer and multiple 8743-CL or 8743-CL Controller/Driver units.

See Section 4.7.3 Using RS-485 LAN to Daisy-Chain and Section 5.5 RS-485 Communication for more information on setting up these configurations. See the Accessories Section 2.4 for information on an RS-485 cable that will facilitate normal multi-unit linking.
3.6.4 Power

There are two power inputs that can take a standard barrel connector with the output diameter 5.5 mm and internal diameter 2.1 mm. The provided power supply can be plugged in either of these two connectors. The other connector is used to link the power supply to another 8743-CL Controller/Driver. See the Accessories Section 2.4 for information on the Power supply link cable.

Use the power switch to turn the unit ON and check the LED status as described in Section 3.4.

3.6.5 Picomotor Interfaces

Each 8743-CL can drive up to 2 Picomotors, one motor at a time. Before connecting, inspect the Picomotor cables, connectors and generally their integrity. The Picomotors will receive high voltage pulses that can be dangerous if wires are exposed. Contact New Focus if you see any problems.

The 8743-CL will support both Open-loop and Closed-Loop Picomotors. The modular RJ-22 connectors on the 8743-CL provide the drive voltages to both types. Closed-Loop Picomotors have an additional High-Density DB-15 connector that provides the required feedback signals. The feedback signals typically include I/Q position, limit sense, index position, and/or home position information, depending upon the type of Closed-Loop Picomotor.

Do not connect anything else to the 8743-CL outputs. The Controller/Driver is designed to handle only New Focus standard Picomotors. If the output is shortened or otherwise misused, an internal component will open and the unit will have to be serviced.

3.7 Mounting the unit

8743-CL may be set on a table top.

While not required, the 8743-CL can be bolted to the table top in either horizontal or vertical orientation.

Under conditions of extreme usage, the case temperature of the Model 8743-CL may exceed the levels considered safe by various international safety conventions. If such use is anticipated, the user must position, or block access to, the unit so that the unit cannot be accidentally touched.
4 Initial Setup

4.1 Introduction
This section contains information on how to connect the 8743-CL Controller/Driver to your local line voltage and how to connect the Picomotor to the controller. It also includes a discussion about the remote interface and the instrument’s power-up.

4.2 Grounding
Connect the 8-32 grounding screw to a good earth ground using a dedicated wire of at least 20AWG diameter. See Section 1.4 for advice on making this connection.

4.3 Power
Make sure that that power switch is in the off position. Connect the external power supply to AC and connect the power barrel plug into one of the 8743-CL power inputs. If more than one unit needs to be connected to the same power supply use the power link cable to daisy-chain them. Up to 3 units can be powered by one power supply.

4.4 Connecting 8743-CL to a Computer via USB
The 8743-CL Controller/Driver can be connected to a computer with a standard Micro-B to USB-A cable. If several 8743-CL units have to be connected to the same computer the user can connect them to a USB hub and then connect the hub to the computer USB input. Alternatively, the first unit can be connected to the computer with subsequent units daisy-chained as described in Section 4.7.3 Using RS-485 LAN to Daisy-Chain.
4.5 Connecting 8743-CL to a Computer via Ethernet

4.5.1 Connecting to a Router

The 8743-CL Controller/Driver can be connected to an Ethernet Router. Attach the computer Ethernet cable to the same router. If desired, the router can be attached to a WAN (Wide Area Network) so that the computer can also be connected to internet, or company network.

By default, the 8743-CL Controller/Driver is set for DHCP (Dynamic Host Configuration Protocol). This means that, when connected to a router which is set in DHCP mode, the router will automatically assign it a local IP address from the router address pool. The computer will also receive a local IP address. The IP address normally will be in the range of 192.168.1.1 to 192.168.255.255. Check your router settings to verify the IP address pool.

As soon as both units, 8743-CL and computer, are connected to the router the Picomotor Controller/Driver is ready to communicate with the computer. The discovery utility will automatically find the IP address of the 8743-CL Controller/Driver and the user can start sending commands to the unit. See Section 5 for details.

If several 8743-CL units have to be connected to the same computer the user can connect them individually to an Ethernet hub or router. Alternatively, the first unit can be connected to the router (or computer) with subsequent units daisy-chained as described in Section 4.7.3 Using RS-485 LAN to Daisy-Chain.
4.6 Picomotor Connections

Each 8743-CL axis has its own set of positioner interfacing connectors. In total there are two(2) feedback interface connectors and two(2) motor output connectors.

![Motor and Feedback Connectors](image)

Figure 18 Motor and Feedback Connectors

4.6.1 Motor Connectors

Each Model 8743-CL controller/driver can control one of two 4-pin RJ-22 single output ports for use with any single-channel Picomotor actuator at any given time.

RJ-22 motor connector pinouts are as follows:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not Connected</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>Motor</td>
</tr>
<tr>
<td>4</td>
<td>Ground</td>
</tr>
</tbody>
</table>

The model 8725 multi-axis adapter can be used to connect the 4-pin RJ-22 output ports to New Focus™ Picomotor products with 6-pin RJ-11 connectors.
4.6.2 Feedback Connectors

Each model 8743-CL controller/driver can monitor the position status of up two to Closed-Loop Picomotors. In response to this information the 8743-CL will move (or hold) the position to which it was last commanded.

DB-15HD Feedback connector pinouts are as follows:

- Pin-1: +5V Power
- Pin-2: Positive (Forward) Limit
- Pin-3: Negative (Reverse) Limit
- Pin-4: Encoder Phase A-
- Pin-5: Encoder Phase A+
- Pin-6: Ground
- Pin-7: *not connected*
- Pin-8: Ground
- Pin-9: Encoder Phase B-
- Pin-10: Encoder Phase B+
- Pin-11: +5V Power
- Pin-12: +5V Power
- Pin-13: Ground
- Pin-14: Index+
- Pin-15: Index-
4.7 Connecting Multiple Units to a Computer

The L-bracket (Figure 19) is an optionally accessory to stack up several 8743-CL or 8743-CL units. The stack is shown in Figure 20.

Figure 19 L-bracket

Figure 20 Using L-brackets to stack up several Controllers
Multiple Units Stacking & Interconnection

(8742 controllers shown)

Stacking Bracket
(model 8745-STK-KIT)

RS-485 LAN Cable
(model 8745-RS485-CBL)

12 V Power Supply
(model 8745-PS)

USB Cable, Micro-B to USB-A
(model 8745-USB-CBL)

Power Supply Link Cable
(model 8745-PWR-CBL)

Figure 21 Multiple Units Stacking & Interconnection
4.7.1 Using USB Hubs

Each 8743-CL Controller/Driver in the stack can be connected to a USB hub. Connect the hub to a computer and launch the Picomotor Application provided on the USB Flash Drive. The application will automatically discover and display the 8743-CL units and make them available for control.

Figure 22 Connecting four units to a computer via a USB hub
4.7.2 Using Ethernet Routers/Switchers

If several 8743-CL units need to be controlled via Ethernet, connect them to a router at the LAN (Local Area Network) ports. The router will assign an IP address to each 8743-CL Controller/Driver. Connect a computer to the same router at one LAN port. Use the Picomotor Application provided on the USB Flash Drive to discover and establish a connection to each 8743-CL unit.

![Diagram of Ethernet Router or Switch connecting units to a computer]

Figure 23 Connecting three units to a computer via an Ethernet router
4.7.3 Using RS-485 LAN to Daisy-Chain

If several 8743-CL units need to be controlled via Ethernet or USB, they do not all have to be connected directly to an Ethernet Switch or USB Hub. Instead, a single unit can act as a gateway by connecting it to the Router, Switch, or Hub and also connecting it to the remaining units using a half-duplex RS-485 LAN bus. In these configurations, the “Gateway” unit, henceforth referred to as the Master Controller, will be a bus master while the other units will be slaves.

To facilitate these connections, each 8743-CL has two 3.5mm phone jacks connected in parallel. The wiring convention is TIP is D+, RING is D-, and SLEEVE is ground.

The normal convention with RS-485 is a daisy-chain configuration of devices; a “STAR” configuration is not supported. A nominally 100-ohm resistance is applied between the D+ and D- wires at each end of the bus, but not at the units in the middle of the bus. To simplify implementation of these bus termination resistances, the 8743-CL applies a 100-ohm termination between the D+ and D- wires UNLESS a plug is inserted into BOTH of the 3.5mm jacks. In other words, the two 3.5mm jacks in the 8743-CL each have integrated switches that go open-circuit when a plug is inserted into the connector. The switches in the two jacks are connected in parallel, as are the TIP, RING, and SLEEVE connections. Thus, the termination will be applied between the D+ and D- wires at each end of the daisy-chain. Units in the middle of the daisy-chain will not apply their termination resistances because both of their jacks will be occupied.

![Diagram of connecting units via RS-485 LAN](image)

* Supports up to 31 controllers

Figure 24 Connecting four units to a computer via RS-485 LAN
This product’s RS-485 LAN implementation is a multidrop, half-duplex, 2-wire, differential signaling, balanced line over twisted pair setup. Hence, 1.2 km (~4K feet) distance is theoretically possible.

Note that it is possible to use an off-the-shelf third party RS-485 converter/adapter to connect into the controller’s RS-485 LAN as an alternative to USB or Ethernet connectivity. However, the Picomotor Windows application and software support will not detect the controller’s presence in this configuration and, therefore, user developed software will be required to make it communicate with the PC.

Applications handling the RS-485 bus terminations externally can cause a unit at the end of the daisy-chain to disconnect its internal termination by inserting an unconnected 3.5mm plug into the otherwise unused jack.

For more details on RS-485 LAN communication please see Section 5.5.

Figure 25 Connecting four units to a computer via RS-485 adapter
5 Computer Interfacing

5.1 Introduction

The Model 8743-CL Controller/Driver has three (3) computer interface ports: USB, Ethernet, and RS-485. All commands for the 8743-CL Controller/Driver are device dependent commands.

Please see the General Guidelines sections for using either the USB (Section 5.3), Ethernet (Section 5.4) or RS-485 (Section 5.5) interfaces. These sections include important information on using these interfaces properly.

5.2 Computer Interface Terminology

Key abbreviations and concepts used in the command reference section of this manual are listed below:

<CR> Carriage Return
The ASCII decimal “13” byte.

<LF> Line Feed
An ASCII decimal “10” byte.

<NL> New Line

Whitespace
Optional between commands and between parameters. Whitespace is any character with a binary value less than or equal to an ASCII space character (except the <NL> character).

Numerical types
Numerical parameters are passed and returned as the actual ASCII characters in the string representation of the number. The 8743-CL Controller/Driver Series instrument accepts numeric values in decimal format only.
5.3 USB Communication

Before connecting the controller to a host PC using a standard Micro-B to USB-A cable, the user should install the application included in the USB Flash Drive that accompanies the Unit. The application automatically installs the correct USB drivers. Communication can be done through this interface by using the application or by developing software in the user’s preferred programming language.

The USB Flash Drive contains communication drivers and software for operating the controller/driver.

5.3.1 USB Command Termination

Commands and queries sent to the 8743-CL Controller/Driver through the USB port must be terminated by a <LF> (line feed).

All responses sent by the Controller/Driver are terminated with a <LF> (line feed).

5.4 Ethernet Communication

The default Ethernet configuration should work for most users. Simply connect the 8743-CL controller to your Ethernet router, install and run the Picomotor application software that came with the product. After a few seconds, mostly depending on network TCP/IP negotiation with router and/or computer (e.g., Peer-to-Peer), the software should automatically ‘discover’ the controller on the network and Picomotor control may begin.

This controller supports the following network protocols: IP, TCP, UDP, ICMP, DHCP, PPP, ARP. Additionally, Sockets interfacing is supported. Note that the 8743-CL server can handle up to 4 sockets.

The 8743-CL provides various commands to help setup and tailor Ethernet communication to most needs. (See below)

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GATEWAY</td>
<td>Default gateway address</td>
</tr>
<tr>
<td>GATEWAY?</td>
<td>Default gateway address query</td>
</tr>
<tr>
<td>HOSTNAME</td>
<td>Hostname</td>
</tr>
<tr>
<td>HOSTNAME?</td>
<td>Hostname query</td>
</tr>
<tr>
<td>IPADDR</td>
<td>IP address</td>
</tr>
<tr>
<td>IPADDR?</td>
<td>IP address query</td>
</tr>
<tr>
<td>IPMODE</td>
<td>IP mode</td>
</tr>
<tr>
<td>IPMODE?</td>
<td>IP mode query</td>
</tr>
<tr>
<td>MACADDR?</td>
<td>MAC address query</td>
</tr>
<tr>
<td>NETMASK</td>
<td>Network mask address</td>
</tr>
<tr>
<td>NETMASK?</td>
<td>Network mask address query</td>
</tr>
</tbody>
</table>

Table 2 Ethernet Related Commands
5.4.1 Ethernet Dynamic and Static IP Address Setup

Use IPMODE command to setup either Dynamic or Static IP mode.

The IP mode command (IPMODE) is used to set the controller’s IP mode. In order for this setting to take effect, please save this setting in the controller’s non-volatile memory and reset the controller.

As the name implies, Static IP addresses are the same every time you connect. Dynamic IP addresses may change each time you connect to the Internet. Dynamic IP addresses are the normal customer access method used by most ISPs or Service Providers and this is the default IP mode for this product.

Having a static IP address for your dedicated server means an IP address will be assigned to your server (controller) only once and that IP address will belong to your dedicated server forever. A static IP address will be given out to your dedicated server so that every time it logs in it will be using the same IP address for all of its sessions.

NOTE: Send Ethernet commands via USB interface as Ethernet communication may become unstable during Ethernet settings configuration. While connected via USB, use the Picomotor application software to send commands (Go to ‘Terminal’ tab).

5.4.2 Ethernet Peer-to-Peer Setup

Peer-to-Peer Ethernet connection means connecting your 8743-CL directly to your PC without the use of a router. This may or may not require the use of a special Ethernet ‘crossover’ cable as many new computers no longer require it.

An Ethernet crossover cable is a type of Ethernet cable used to connect computing devices together directly. Normal straight through or patch cables were used to connect from a host network interface controller (a computer or similar device) to a network switch, hub or router. A cable with connections that “crossover” was used to connect two devices of the same type: two hosts or two switches to each other. Owing to the inclusion of Auto-MDIX capability, modern implementations of the Ethernet over twisted pair standards usually no longer require the use of crossover cables.
5.4.3 Communicating Using a Hostname

The hostname (HOSTNAME) command is used to set the controller’s hostname. A hostname is a label or nickname assigned to a device connected to a computer network and is used to identify the device in various forms of communication. This feature enables users to assign the controller a more easily identifiable name, perhaps linked to its actual function in an application (e.g., TIPTILT, MIRROR-2). This command is more common with Ethernet but can also be used with USB communication.

NOTE: Send Ethernet commands via USB interface as Ethernet communication may become unstable during Ethernet settings configuration. While connected via USB, use the Picomotor application software to send commands (Go to ‘Terminal’ tab).

The default hostname for the controller is 8743-CL-serialnum, where serialnum is the controller’s serial number. The hostname can have a maximum of 15 alphanumeric characters. The first character in the hostname cannot be a hyphen (“-“). Issue a Save (SM) and Reset (RS) command to controller for the new hostname to take effect.
5.5 **RS-485 Communication**

RS-485 interface can be used to communicate with up to 31 Picomotor controllers (8743-CL or 8743-CL) that are daisy-chained, using a single USB/Ethernet connection.

Once the desired controllers are daisy-chained using the RS-485 link cable, any one of these controllers can be connected to a host PC via USB or Ethernet interface. The controller on the network that is directly connected to a host PC is referred to as the “master controller”. This controller is responsible for receiving commands from the host PC, and sending responses, if any, back to the host PC.

NOTE: There can be only one designated master controller on the RS-485 local area network (LAN).

All the controllers connected to a master controller via RS-485 link cable are referred to as the “slave controllers”. There can be up to 30 slave controllers connected to 1 designated master controller.

When the master controller receives a command from a host PC, it first determines if the command is addressed to it or if the command is addressed to one of the slave controllers. If the command is addressed to it, it processes the command and sends any responses back to the host PC. On the other hand, if the command is addressed to one of the slave controllers, it transmits the command on the RS-485 LAN. Since the controller RS-485 is configured in a multidrop, parallel bus topology, all the slave controllers receive the command transmitted by the master controller. Each slave controller then determines if the command is addressed to it, and processes the same if it is the intended recipient. All other slave controllers ignore the received command. If the command is a query (i.e., requires response), the slave controller that processed the command may transmit the response on the RS-485 LAN. Once again, all the controllers on the RS-485 LAN, including the master controller, receive the response transmitted by the slave controller. The master controller determines that the information it received on the network was a response to a command it had initially transmitted on the network, and sends this response to host PC; all the slave controllers ignore the response they received.
Note that a *multidrop bus* is a computer bus in which all components are connected to the same set of electrical wires. A process of arbitration determines which device gets the right to be the sender of information at any point in time. The other devices must listen for the data that is intended to be received by them. Multidrop buses have the advantage of simplicity and extensibility.

5.5.1 Setting up an RS-485 Network

All the controllers on an RS-485 network must have unique addresses in order for a host PC to communicate with them individually. In the case of Picomotor Controllers, these addresses can be values (integers) between 1 and 31. Since the default address of a controller is 1, users must change the addresses of the controllers to unique values.

There are two (2) ways—manual and automatic—in which unique addresses can be assigned to all the controllers. The manual approach involves powering ON only one controller at a time, connecting this controller directly to a host PC via USB/Ethernet, changing the address to a desired value using “SA” command, saving the address in the controller using “SM” command, and powering OFF the controller. This process must be repeated for all the controllers on the network.

Picomotor Controllers support a novel automatic approach that allows a master controller to assign unique addresses to all the slave controllers. The automatic approach involves powering ON all the controllers on the network, issuing “SC” command to initiate scan process, and waiting for the scan process to complete by monitoring the scan status via
“SD?” command. Once the scan is completed, the master controller can be queried to find out the addresses of all the slave controllers.

NOTE: The Picomotor Windows software application (version 2.0 and above) provides the quickest and easiest path to controller address configuration. The user friendly software will automatically report any RS-485 address conflicts found and offer easy resolution options.

The Remote Command Set chapter provides a detailed description of the commands used to setup the RS-485 network.

The 8743-CL provides various commands to help setup the RS-485 network. (See below)

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Set controller address</td>
</tr>
<tr>
<td>SA?</td>
<td>Controller address query</td>
</tr>
<tr>
<td>SC</td>
<td>Initiate scan process</td>
</tr>
<tr>
<td>SC?</td>
<td>Scan result query</td>
</tr>
<tr>
<td>SD?</td>
<td>Scan status query</td>
</tr>
</tbody>
</table>

Table 3 RS-485 LAN Related Commands

5.5.2 Communication with a Slave Controller

All the commands intended for a slave controller connected via RS-485 LAN must have a slave controller address prefix added to the command. For example, to query the motion status of motor 2 on a slave controller with address 3, the host PC must send “3>2MD?” command to the master controller via Ethernet or USB. In this command, “3>” is the slave controller address prefix. This prefix tells the master controller that the command “2MD?” is intended for slave controller with address 3 on the RS-485 LAN.

When the master controller sends a response back to host PC, it too will have a slave controller address prefix. This is used to inform the host that the response came from a slave controller with that address. For example, the response received by a host PC to the above mentioned command might be “3>1”. This indicates that the motion of motor #2 in slave controller with address 3 is complete.

NOTE: RS-485 LAN transmission speed is 115 Kbit/s (~100 µs/character)

If a command does not have controller address prefix, the master controller will assume that the command is addressed it and process the same.

NOTE: The host PC is effectively the ‘master’ in the special case of direct LAN connection via RS485-to-RS232 adapter/converter configuration
5.6 Picomotor Controller Software Application

5.6.1 Introduction

Included with the Picomotor controller is a Windows software application to facilitate quick, user-friendly motion system check via controller’s USB or Ethernet interfaces. This application comes on a USB flash drive or can be downloaded from the product’s Newport.com web page ‘Downloads’ section.

NOTE: If you already have installed a different version of the software and drivers then it is recommended that you uninstall it first before installing new software.

Before connecting the instrument to a host PC using a standard Micro-B to USB-A cable, the user should install the application included in the USB Flash Drive that accompanies the Unit. The application automatically installs the correct USB drivers. Communication can be done through this interface by using the application or by developing software in the user’s preferred programming language. The USB Flash Drive contains the communication drivers and software for operating the controller/driver.

Figure 27 Picomotor Application Software
5.6.2 Overview

This Windows software application has advanced auto-discovery feature which automatically finds computer connected Picomotor controllers and list them in the “Device Tree” window. So called ‘Slave’ controllers (devices) connected via RS-485 LAN are listed immediately underneath and shifted to the right of ‘Master’ controllers which have direct computer connection. The user can then select the controller to operate. Also, near the upper right area of the application the user can select which specific motor (1, 2, 3 or 4) to control.

NOTE: In the device tree window, the software will show the address (1-31) to the right of each controller’s model number/serial number information in parenthesis only when controllers are connected together via RS-485 LAN.

![Controller Address Identification](image)

At the bottom of the application is a “Message” window where application and controller generated messages are shown (e.g., error messages, status).

Additionally, at the very bottom of the application is a connection status indicator which lets the user know when the application is actively communicating with a controller.

There are three(3) main application views or tabs: (1) Jog tab, (2) Cycle tab, and (3) Terminal tab.

The Jog tab allows a user to “Jog” a motor forward or backward in predefined “Relative” displacements or in “Free Run” (continuous) moves, depending on mode selected. In this tab view one can also move to an target position.

In the Cycle tab, a user can enter two target position destinations to have the Picomotor cycle between these two points with programmable dwell time between stops and optional number of cycles limit.

The Terminal tab allows users familiar with the controller’s native ASCII commands and syntax to manually type and send commands to the controller, thereby offering maximum flexibility and control.

Additionally, there are File, View, Setup, and Help menus selections at the top of application screen.
Most notably the Setup/Controller menu selection allows the user to set motor velocity, acceleration, and motor type for each axis. The parameters shown on the pop-up window represent the settings read from the controller’s memory. Clicking ‘Apply’ button will immediately send the updated parameters to the controller and save them in its non-volatile memory. The ‘OK’ buttons does the same action as ‘Apply’ plus it then closes the Setup window.

Jog Motion and General Overview

![Jog Tab](image)

NOTE: The Closed-Loop button will toggle between “Enable Closed-Loop” and “Disable Closed-Loop” functions depending on the present motor control state.

NOTE: Closed-loop correction is automatically disabled after a controller reset, power-up condition, or motor Following Error (see FE command). The user can enable closed-loop mode by issuing an MM command or by clicking the Enable Closed-Loop button in the Windows software application.
Cycle Motion

Figure 30 Cycle Tab
Command Line Terminal

Figure 31 Terminal Tab
5.6.3 **Homing Methods**

The 8743-CL closed-loop controller supports three (3) methods of Homing a Picomotor positioner: (1) Find Home, (2) Find Index, and (3) Find Travel Limit. Which methods can be used depends primarily on what compatible signals are made available on your Picomotor positioners (i.e., Home signal, Index signal and/or Limit signal).

In general, the HOME Search routine is a sequence of motion segments through which the controller determines the exact location of a home (origin), index, or limit switch.
5.6.3.1 Find Home
The Find Home function (see OR command) moves to find the positioner’s Home signal. The controller executes a unique sequence of motion in order to locate and finally stop the positioner at a repeatable position. The repeatability precision will depend mostly on the repeatability of the Home switch itself. It is not unusual for a Home only signal (with no Index) to be repeatable to within 20 encoder counts (e.g., 8310-V actuator).

The Home signal state (High or Low) at the time the Find Home command is received tells the controller which direction to first move toward in order to find the signal transition.

NOTE: The Find Home function is compatible with 8310-V Picomotor positioner.

5.6.3.2 Find Index
The Find Index function (see MZ command) moves to find the positioner’s next Index signal. The controller executes a unique sequence of motion in order to locate and finally stop the positioner at a repeatable position. The repeatability precision will depend mostly on the repeatability of the Index signal. It is not unusual for an Index signal to be repeatable to within 4 encoder counts (e.g., 8410 rotary stage).

The Index signal is a momentary pulse captured during motion. Unlike with Find Home, the Find Index function requires that the user tell the controller which direction to travel in order to find the next Index signal pulse.

NOTE: The Find Index function is compatible with 8410 Picomotor rotary positioner.

5.6.3.3 Find Limit
The Find Limit function (see MT command) moves to find the positioner’s travel limit. The controller executes a unique sequence of motion in order to locate and finally stop the positioner at a repeatable limit position. The repeatability precision will depend mostly on the repeatability of the limit switch itself. It is not unusual for a Limit signal to be repeatable to within 20 encoder counts (e.g., 8310 and 8310-V actuators).

Positioners with Limit signals typically have a negative and positive travel limit. Hence, the Find Limit function requires that the user tell the controller which limit (positive or negative) to find so the controller can move in that direction.

NOTE: The Find Limit function is compatible with 8310 and 8310-V positioners.

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR</td>
<td>Set controller address</td>
</tr>
<tr>
<td>MT</td>
<td>Controller address query</td>
</tr>
<tr>
<td>MZ</td>
<td>Initiate scan process</td>
</tr>
</tbody>
</table>

Table 4 Homing Related Commands
Controller Setup (Closed-Loop)

NOTE: When controlling a standard open-loop Picomotor positioner (1) set ‘Units’ option to ‘Steps’ and (2) disable (uncheck ‘Enable’) ‘Travel Limit Checking.’

NOTE: The Travel Limit Checking feature should be disabled when controlling the 8410 rotary positioner.
The Options window lets users manage:
- Auto connect options
- Auto motor checking
- Auto closed-loop enable
- Status refresh rate
- Ethernet discovery rate

Figure 34 Options Window
USB and Ethernet Properties

The device (controller) properties window opens when

(a) Selected by a ‘right-click’ over the controller model and serial number info within the ‘device tree’ list and then,

(b) Followed by a click on the Properties option.

Figure 35 Properties Window
The Scan for controllers function begins when...

(a) Selected by a ‘right-click’ over the controller model and serial number info within the ‘device tree’ list and then,

(b) Followed by a click on the ‘Scan’ option

Initiating a Scan causes the selected controller to check for presence of any ‘slave’ controllers connected to its RS-485 LAN and list them.

Note: A Scan is automatically initiated whenever a controller is first ‘discovered’ via Ethernet or USB.

Figure 36 Controller Scan
Address Conflict Resolution

The Address Conflict Resolution pop-up window automatically appears whenever a duplicate ‘slave’ controller address is found after a Scan.

Users then have the option to:
(a) Do nothing (ignore it)
(b) Reassign all unit addresses to sequential order or,
(c) Reassign only unit addresses found in conflict

Most common resolution option selected

Address conflict found

Figure 37 Address Conflict Resolution Window
The device (controller) Change Addresses window opens when

(a) Selected by a ‘right-click’ over the controller model and serial number info within the ‘device tree’ list and then,

(b) Followed by a click on the Change Addresses option

Figure 38 Device Address Window
5.6.4 **Embedded Dynamic HTTP Server**

It is also possible to communicate to the controller via its Ethernet interface through a computer’s web browser (e.g., Safari, Chrome, Internet Explorer). Once you know the controller’s IP address, which can be gotten from the Ethernet Properties view in the Windows Application (see previous page). Enter the IP address in the browser’s address bar and this will take you to the controller’s HTTP server page.

This advanced controller has an embedded HTTP server which generates a dynamic Web page to accept command line input and show immediate response.

Embedded Dynamic HTTP Server

![Chrome Browser (v22) running on Windows 7](image)

Figure 39 *Internet Browser View*
5.7 LabVIEW™ and C# Programming Support

Detailed LabVIEW and C# programming instructions are discussed in a separate document named “Picomotor Samples.pdf” (Typically installed in the following folder C:\Program Files\New Focus\Picomotor Application\Docs)

Additionally, sample code is found in the “Samples” folder (Typically installed in the following folder C:\Program Files\New Focus\Picomotor Application\Samples)

5.7.1 Introduction

The programming samples are divided into two folders: C# and LabVIEW. These two folders contain samples that have been developed in the C# programming language and the LabVIEW programming language.
6 Remote Command Set

6.1 Command Syntax

The 8743-CL Controller/Driver utilizes an ASCII command set and also outputs system status in ASCII format. Commands may be either upper or lower case characters.

The diagram below illustrates the 8743-CL controller command syntax. As indicated in this diagram, a valid command consists of three main fields. The first field consists of a numerical parameter “xx”, the second field consists of a two letter ASCII mnemonic, and the third field consists of numerical parameter “nn”. The command is finally terminated by a carriage return. For example, 3PA10 is a valid command.

If a command does not require parameter “xx” and/or parameter “nn”, that field may be skipped by leaving a blank character (space). For example, 1DH, and VE? are valid commands.

Multiple commands can be issued on a single command line by separating the commands with a semi-colon (;). For example, “3VA1500; 3PA1000” is a valid command line. If a command line has multiple query commands, the response string from the controller will have responses to all the query commands in the command line. Each response in the response string will be separated by a semi-colon. For example, the response to “3VA?; 3AC?” command can be “2000; 30000”. In this example, the value 2000 is a response to 3VA? command, and the value 30000 is a response to 3AC? command.

![Command Syntax Diagram](image)

Figure 40 Command Syntax Diagram
6.1.1 RS-485 Command Syntax

The command syntax for communicating with controllers on an RS–485 network is very similar to communicating with them directly using USB/Ethernet interface with the following exceptions:

1. All the commands intended for a slave controller must have a slave controller address prefix added to the command. For example, to query the motion status of motor 2 on a slave controller with address 3, the host PC must send “3>2MD?” command to the master controller. In this command, “3>” is the slave controller address prefix. This prefix tells the master controller that the command “2MD?” is intended for slave controller with address 3.

2. When the master controller sends a response back to host PC, it too will have a slave controller address prefix. This is used to inform the host that the response came from a slave controller with that address. For example, the response received by a host PC to the above mentioned command might be “3>1”. This indicates that the motion of motor #2 in slave controller with address 3 is complete.

3. If a command does not have controller address prefix, the master controller will assume that the command is addressed it and process the same.

4. Since the master controller processes one command string at a time, semicolon (’;’) delimited commands cannot be sent to slave controllers.

NOTE

A controller command (or a sequence of commands) has to be terminated with a carriage return character. However, responses from the controller are always terminated by a carriage return/line feed combination. This setting may not be changed.
6.1.2 Summary of Command Syntax

COMMAND FORMAT

The general format of a command is a two character mnemonic (AA). Both upper and lower case are accepted. Depending on the command, it could also have optional or required preceding (xx) and/or following (nn) parameters.

BLANK SPACES

Blank spaces are allowed and ignored between parameters and commands. For the clarity of the program and memory saving considerations, use blank spaces with restraint. The following two commands are equivalent.

2 PA 1000

2PA1000

COMMAND LINE

Commands are executed line by line. A line can consist of one or a number of commands. The controller will interpret the commands in the order they are received and execute them sequentially. This means that commands issued on the same line are executed significantly closer to each other than if they would be issued on separate lines. The maximum number of characters allowed on a command line is 64.

SEPARATOR

Commands issued on the same line must be separated by semicolons (;).

Multiple parameters issued for the same command are separated by commas (,).

TERMINATOR

Each command line must end with a line terminator, i.e., carriage return.
6.2 Command List

The controller understands many commands. The following table lists all of them in alphabetical order. It also shows whether the command can be issued while motion of any Picomotor is in progress or otherwise.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Command executed when motion is in progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>*IDN?</td>
<td>Identification string query</td>
<td>✦</td>
</tr>
<tr>
<td>*RCL</td>
<td>Recall parameters</td>
<td></td>
</tr>
<tr>
<td>*RST</td>
<td>Reset instrument</td>
<td>✦</td>
</tr>
<tr>
<td>AB</td>
<td>Abort motion</td>
<td>✦</td>
</tr>
<tr>
<td>AC</td>
<td>Set acceleration</td>
<td>✦</td>
</tr>
<tr>
<td>AC?</td>
<td>Get acceleration</td>
<td>✦</td>
</tr>
<tr>
<td>CL</td>
<td>Set closed-loop update interval</td>
<td></td>
</tr>
<tr>
<td>CL?</td>
<td>Get closed-loop update interval</td>
<td>✦</td>
</tr>
<tr>
<td>DB</td>
<td>Set deadband</td>
<td></td>
</tr>
<tr>
<td>DB?</td>
<td>Get deadband</td>
<td>✦</td>
</tr>
<tr>
<td>DH</td>
<td>Define home position</td>
<td></td>
</tr>
<tr>
<td>DH?</td>
<td>Get home position</td>
<td>✦</td>
</tr>
<tr>
<td>FE</td>
<td>Set following error limit</td>
<td></td>
</tr>
<tr>
<td>FE?</td>
<td>Get following error limit</td>
<td>✦</td>
</tr>
<tr>
<td>MC</td>
<td>Motor check</td>
<td></td>
</tr>
<tr>
<td>MD?</td>
<td>Get motion done status</td>
<td>✦</td>
</tr>
<tr>
<td>MM</td>
<td>Enable closed-loop control</td>
<td></td>
</tr>
<tr>
<td>MM?</td>
<td>Get closed-loop control status</td>
<td>✦</td>
</tr>
<tr>
<td>MT</td>
<td>Find travel limit position</td>
<td></td>
</tr>
<tr>
<td>MV</td>
<td>Move indefinitely</td>
<td></td>
</tr>
<tr>
<td>MV?</td>
<td>Get motion direction</td>
<td>✦</td>
</tr>
<tr>
<td>MZ</td>
<td>Find index position</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Find home position</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>Move to a target position</td>
<td></td>
</tr>
<tr>
<td>PA?</td>
<td>Get destination position</td>
<td>✦</td>
</tr>
<tr>
<td>PH?</td>
<td>Get hardware status</td>
<td>✦</td>
</tr>
<tr>
<td>PR</td>
<td>Move relative</td>
<td></td>
</tr>
<tr>
<td>PR?</td>
<td>Get destination position</td>
<td>✦</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>Command executed when motion is in progress</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>QM</td>
<td>Set motor type</td>
<td>♦</td>
</tr>
<tr>
<td>QM?</td>
<td>Get motor type</td>
<td>♦</td>
</tr>
<tr>
<td>RS</td>
<td>Reset the controller</td>
<td>♦</td>
</tr>
<tr>
<td>SA</td>
<td>Set controller address</td>
<td>♦</td>
</tr>
<tr>
<td>SA?</td>
<td>Get controller address</td>
<td>♦</td>
</tr>
<tr>
<td>SC</td>
<td>Scan RS-485 network</td>
<td>♦</td>
</tr>
<tr>
<td>SC?</td>
<td>Get RS-485 network controller addresses</td>
<td>♦</td>
</tr>
<tr>
<td>SD?</td>
<td>Get scan status</td>
<td>♦</td>
</tr>
<tr>
<td>SM</td>
<td>Save to non-volatile memory</td>
<td>♦</td>
</tr>
<tr>
<td>SN</td>
<td>Set units</td>
<td>♦</td>
</tr>
<tr>
<td>SN?</td>
<td>Get units</td>
<td>♦</td>
</tr>
<tr>
<td>ST</td>
<td>Stop motion</td>
<td>♦</td>
</tr>
<tr>
<td>TB?</td>
<td>Get error message</td>
<td>♦</td>
</tr>
<tr>
<td>TE?</td>
<td>Get error number</td>
<td>♦</td>
</tr>
<tr>
<td>TP?</td>
<td>Get position</td>
<td>♦</td>
</tr>
<tr>
<td>VA</td>
<td>Set velocity</td>
<td>♦</td>
</tr>
<tr>
<td>VA?</td>
<td>Get velocity</td>
<td>♦</td>
</tr>
<tr>
<td>VE?</td>
<td>Firmware version string query</td>
<td>♦</td>
</tr>
<tr>
<td>XX</td>
<td>Purge memory</td>
<td>♦</td>
</tr>
<tr>
<td>ZH</td>
<td>Set hardware configuration</td>
<td>♦</td>
</tr>
<tr>
<td>ZH?</td>
<td>Get hardware configuration</td>
<td>♦</td>
</tr>
<tr>
<td>ZZ</td>
<td>Set configuration register</td>
<td>♦</td>
</tr>
<tr>
<td>ZZ?</td>
<td>Get configuration register</td>
<td>♦</td>
</tr>
</tbody>
</table>

ETHERNET RELATED COMMANDS

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Command executed when motion is in progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>GATEWAY</td>
<td>Default gateway address</td>
<td>♦</td>
</tr>
<tr>
<td>GATEWAY?</td>
<td>Default gateway address query</td>
<td>♦</td>
</tr>
<tr>
<td>HOSTNAME</td>
<td>Hostname</td>
<td>♦</td>
</tr>
<tr>
<td>HOSTNAME?</td>
<td>Hostname query</td>
<td>♦</td>
</tr>
<tr>
<td>IPADDR</td>
<td>IP address</td>
<td>♦</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>Command executed when motion is in progress</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>IPADDR?</td>
<td>IP address query</td>
<td>♦</td>
</tr>
<tr>
<td>IPMODE</td>
<td>IP mode</td>
<td>♦</td>
</tr>
<tr>
<td>IPMODE?</td>
<td>IP mode query</td>
<td>♦</td>
</tr>
<tr>
<td>MACADDR?</td>
<td>MAC address query</td>
<td>♦</td>
</tr>
<tr>
<td>NETMASK</td>
<td>Network mask address</td>
<td>♦</td>
</tr>
<tr>
<td>NETMASK?</td>
<td>Network mask address query</td>
<td>♦</td>
</tr>
</tbody>
</table>

CLOSED-LOOP RELATED COMMANDS

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Command executed when motion is in progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td>Set closed-loop update interval</td>
<td></td>
</tr>
<tr>
<td>CL?</td>
<td>Get closed-loop update interval</td>
<td>♦</td>
</tr>
<tr>
<td>DB</td>
<td>Set deadband</td>
<td></td>
</tr>
<tr>
<td>DB?</td>
<td>Get deadband</td>
<td>♦</td>
</tr>
<tr>
<td>FE</td>
<td>Set following error limit</td>
<td></td>
</tr>
<tr>
<td>FE?</td>
<td>Get following error limit</td>
<td>♦</td>
</tr>
<tr>
<td>MM</td>
<td>Enable closed-loop control</td>
<td></td>
</tr>
<tr>
<td>MM?</td>
<td>Get closed-loop control status</td>
<td>♦</td>
</tr>
<tr>
<td>SN</td>
<td>Set units</td>
<td></td>
</tr>
<tr>
<td>SN?</td>
<td>Get units</td>
<td>♦</td>
</tr>
<tr>
<td>ZH</td>
<td>Set hardware configuration</td>
<td></td>
</tr>
<tr>
<td>ZH?</td>
<td>Get hardware configuration</td>
<td>♦</td>
</tr>
</tbody>
</table>

HOMING RELATED COMMANDS

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Command executed when motion is in progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT</td>
<td>Find travel limit position</td>
<td></td>
</tr>
<tr>
<td>MZ</td>
<td>Find index position</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>Find home position</td>
<td></td>
</tr>
<tr>
<td>PH?</td>
<td>Get hardware status</td>
<td>♦</td>
</tr>
<tr>
<td>ZH</td>
<td>Set hardware configuration</td>
<td></td>
</tr>
<tr>
<td>ZH?</td>
<td>Get hardware configuration</td>
<td>♦</td>
</tr>
</tbody>
</table>
6.2.1 Description of Commands

NOTE

Many of the commands take an axis number as a parameter (xx). For such commands, the valid range of axis number is from 1 to 2.

IDN?

<table>
<thead>
<tr>
<th>Description</th>
<th>Product identification string query.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>*IDN?</td>
</tr>
<tr>
<td>Remarks</td>
<td>This query will cause the instrument to return a unique identification string. This similar to the Version (VE) command but provides more information. In response to this command the controller replies with company name, product model name, firmware version number, firmware build date, and controller serial number. No two controllers share the same model name and serial numbers, therefore this information can be used to uniquely identify a specific controller.</td>
</tr>
</tbody>
</table>

New_Focus XXXX vYYY mm/dd/yy, SNZZZZ

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Firmware Version #</th>
<th>Firmware Date</th>
<th>Controller Serial #</th>
</tr>
</thead>
</table>

Example

IDN?
New_Focus 8743-CL v1.9 10/23/12 SN10001
(Get product identification information)

IDN?
New_Focus 8743-CL v1.9 10/23/12 SN10001
(Controller replies with ID string)

See Also

VE?
RCL

Description Recall command.

Syntax

RCL *Bin*

Remarks
This command restores the controller working parameters from values saved in its non-volatile memory. It is useful when, for example, the user has been exploring and changing parameters (e.g., velocity) but then chooses to reload from previously stored, qualified settings. Note that "*RCL 0" command just restores the working parameters to factory default settings. It does not change the settings saved in EEPROM.

The parameters that can be restored are:
1. Hostname (see HOSTNAME command)
2. IP Mode (see IPMODE command)
3. IP Address (see IPADDRESS command)
4. Subnet mask address (see NETMASK command)
5. Gateway address (see GATEWAY command)
6. Configuration register (see ZZ command)
7. Motor type (see QM command)
8. Desired Velocity (see VA command)
9. Desired Acceleration (see AC command)

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin</td>
<td>0</td>
<td>Restores factory default settings</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Restores last saved settings</td>
</tr>
</tbody>
</table>

Example

RCL1 (Restore from last saved settings)

See Also
SM, XX
RST

Description
Reset command.

Syntax
RST

Remarks
This command performs a “soft” reset or reboot of the controller CPU. Upon restart the controller reloads parameters (e.g., velocity and acceleration) last saved in non-volatile memory.

Note that upon executing this command, USB and Ethernet communication will be interrupted for a few seconds while the controller re-initializes. Ethernet communication may be significantly delayed (~30 seconds) in reconnecting depending on connection mode (Peer-to-peer, static or dynamic IP mode) as the PC and controller are negotiating TCP/IP communication.

See Also
RS

AB

Description
Abort motion.

Syntax
AB

Remarks
This command is used to instantaneously stop any motion that is in progress. Motion is stopped abruptly. For stop with deceleration see ST command which uses programmable acceleration/deceleration setting.

Example
1MV+ (Move motor 1 indefinitely in positive direction)
AB (Abort /halt motion)

See Also
ST
AC

Description: Acceleration set.

Syntax: xxACnn

Remarks: This command is used to set the acceleration value for an axis. The acceleration setting specified will not have any effect on a move that is already in progress. If this command is issued when an axis' motion is in progress, the controller will accept the new value but it will use it for subsequent moves only.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
<tr>
<td>nn</td>
<td>1 to 200000</td>
<td>Acceleration (steps/sec2). Default = 100000 steps/sec2</td>
</tr>
</tbody>
</table>

Example: 2AC150000 (set acceleration to 150,000 steps/sec2)

See Also: AC?, VA, VA?

AC?

Description: Acceleration query.

Syntax: xxAC?

Remarks: This command is used to query the acceleration value for an axis.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
</tbody>
</table>

Response |

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer</td>
<td>Acceleration setting (steps/sec2)</td>
</tr>
</tbody>
</table>

Example: 2AC? (get acceleration setting) 150000 (reply: 150,000 steps/sec2)

See Also: AC, VA, VA?
CL

Description
Closed-loop control update interval set.

Syntax
xxCLnn

Remarks
This command is used to set the closed-loop control update interval for an axis. This will be the time duration between position error corrections during closed-loop positioning.

For maximum user application flexibility, each axis is allowed to have a different and independent time interval setting from one another.

Position error corrections occur only during position regulation (holding position) as opposed to while moving.

NOTE: Motor positioning units must be in ‘Counts’ (see SN command) and closed-loop mode enabled (see MM command) for CL command setting to take effect.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
<tr>
<td>nn</td>
<td>0.1 to 100000</td>
<td>Update interval (sec). Default = 0.1 sec</td>
</tr>
</tbody>
</table>

Example
1CL60 (set motor 1 closed-loop update interval to 60 seconds)
2CL1 (set motor 2 closed-loop update interval to 1 second)
SM (save to non-volatile memory)

See Also
CL?, MM, FE, SN

CL?

Description
Closed-loop control update interval query.

Syntax
xxCL?

Remarks
This command is used to query the closed-loop control update interval for an axis.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
</tbody>
</table>

Response
Value Integer Update interval (sec)

Example
2CL? (get closed-loop control update interval setting)
1 (reply: 1 sec)

See Also
CL, MM, FE, SN
DB

Description
Deadband set.

Syntax
`xxDBnn`

Remarks
This command is used to set the position deadband value for an axis. Since a majority of electro-mechanical systems have mechanical backlash or frictional hysteresis, closed-loop positioning can at times lead to oscillation or limit cycling of the systems around a desired position. In such situations, setting position deadband value judiciously can avoid limit cycling of the systems.

Note that this command is effective only during position regulation (holding position) as opposed to while moving. Also, the positioning units must be in ‘Counts’ (see SN command) and closed-loop positioning must be enabled (see MM command) for DB command to take effect.

NOTE: An error will be generated if the controller makes more than 100 consecutive unsuccessful attempts to correct the stage position, but is unable to bring the following error to within specified deadband setting.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>xx</code></td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
<tr>
<td><code>nn</code></td>
<td>0 to 2147483647</td>
<td>Deadband value (units). Default = 0</td>
</tr>
</tbody>
</table>

Example
2DB0
(set deadband value to 0 encoder counts)

2SN1
(set units to encoder counts)

2FE1000
(set following error threshold to 1000 counts)

2CL0.1
(set closed-loop update interval to 0.1 second)

SM
(save settings to non-volatile memory)

2MM1
(enable closed-loop positioning)

2PA+100
(move to encoder count position +100)

See Also
DB?, SN, MM, FE, CL
DB?

Description
Deadband query.

Syntax
`xxDB?`

Remarks
This command is used to query the deadband value for an axis.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>xx</code></td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Value</code></td>
<td>Integer</td>
<td>Deadband (units)</td>
</tr>
</tbody>
</table>

Example
2DB?
(get deadband setting)

0
(reply; 0 counts)

See Also
DB, CL, CL?, MM, MM?
DH

Description: Home position set.

Syntax: \(xx \text{DH} nn \)

Remarks: This command is used to define the “home” position for an axis. The home position is set to 0 if this command is issued without “nn” value. Upon receipt of this command, the controller will set the present position to the specified home position. The move to absolute position command (PA) uses the “home” position as reference point for moves.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(xx)</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
<tr>
<td>(nn)</td>
<td>Integer</td>
<td>Home position (steps). Default = 0 steps. Valid values between -2147483648 and +2147483647.</td>
</tr>
</tbody>
</table>

Example: 1DH (set motor 1 counter to 0)
2DH1000 (set motor 2 counter equal to 1000)

See Also: DH?, TP?, PA, OR, MT, MZ

DH?

Description: Home position query.

Syntax: \(xx \text{DH} ? \)

Remarks: This command is used to query the home position value for an axis.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(xx)</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>Integer</td>
<td>Home position setting (steps)</td>
</tr>
</tbody>
</table>

Example: 2DH? (get home position)
0 (reply; home position is 0)

See Also: DH, TP?
FE

Description
Maximum following error threshold set.

Syntax
xxFEnn

Remarks
This command is used to set the maximum allowed following (tracking) error threshold for an axis. This error is defined as the difference between the real (encoder) position and destination (target) position of a motion device. The real position is the one reported by the position sensing device (i.e., quadrature encoder).

If following error checking is enabled (see ZH command) and the following error exceeds the maximum threshold specified with this command, the controller will automatically disable closed-loop positioning (see MM command). Also, the positioning units must be set to ‘Counts’ in order for following error tracking and closed-loop correction to take effect (see SN command).

NOTE: Following error checking must be enabled (see ZH command) in order for FE command to take effect.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
<tr>
<td>nn</td>
<td>0 to 2147483647</td>
<td>Following error value (units). Default = 1000</td>
</tr>
</tbody>
</table>

Example
2SN1 (set units to ‘Counts’; encoder monitoring)
2FE1000 (set following error threshold to 1000 counts)
2CL0.1 (set closed-loop update interval to 0.1 second)
2ZH0 (enable travel limit checking and following error checking)
SM (save settings to non-volatile memory)

See Also
FE?, SN, SN?, MM, ZH
FE?

Description
Maximum following error threshold query.

Syntax
```
xxDB?
```

Remarks
This command is used to query the following error threshold value for an axis.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>Integer</td>
<td>Following error (units)</td>
</tr>
</tbody>
</table>

Example
```
2FE?  (get following error setting)
1000  (reply; 1000 counts)
```

See Also
FE, CL, CL?, MM, MM?

MC

Description
Motor check command

Syntax
```
MC
```

Remarks
This command scans for motors connected to the controller, and sets the motor type based on its findings. If the piezo motor is found to be type 'Tiny' then velocity (VA) setting is automatically reduced to 1750 if previously set above 1750. To accomplish this task, the controller commands each axis to make a one-step move in the negative direction followed by a similar step in the positive direction. This process is repeated for all the four axes starting with the first one. If this command is issued when an axis is moving, the controller will generate “MOTION IN PROGRESS” error message.

NOTE: Motor type and velocity changes are NOT automatically saved to non-volatile memory. Issue the Save (SM) command after motor check to save all changes.

Example
```
MC  (check all motors to determine type)
SM  (save new settings to memory)
```

See Also
RST, VA, SM
MD?

Description
Motion done status query.

Syntax
xxMD?

Remarks
This command is used to query the motion status for an axis.

Note that since this product implements a multiplexed driver architecture, it is recommended that each axis be checked for its motion done status to definitively determine if it is OK to issue a move command to that motor. That is because, for example, although motor 1 move is done (1MD?=0) it still would not be available for a new move command if, say, motor 2 is moving (2MD?=1).

The MD command can be used to monitor motion done status for the following commands: PR, PA, MV, OR, MT, MZ

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0</td>
<td>Motion is in progress</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Motion is not in progress</td>
</tr>
</tbody>
</table>

Example
2MD?
1 (get motor 2 motion status)
1 (returns value of 1 which means motor 2 is moving)

See Also
TP?, PA, PR, OR, MZ, MT, MV
MM

Description
Enable/disable closed-loop positioning.

Syntax
xxMMnn

Remarks
This command is used to enable/disable closed-loop positioning of an axis. If closed-loop positioning is disabled, Picomotors can be commanded to move, but the controller will not perform any end of move position correction. Closed-Loop correction takes affect only during position regulation (holding position) as opposed to while moving. Furthermore, the positioning units must be in ‘Counts’ (see SN command).

NOTE: Closed-Loop correction is automatically disabled (MM=0) after a controller reset, power-up, or a Following Error condition (see FE command).

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
<tr>
<td>nn</td>
<td>0</td>
<td>Disable closed-loop positioning. Default = 0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Enable closed-loop positioning</td>
</tr>
</tbody>
</table>

Example
2SN1 (set units to ‘Counts’; encoder monitoring)
2FE1000 (set following error threshold to 1000 counts)
2CL0.1 (set closed-loop update interval to 0.1 second)
SM (save settings to non-volatile memory)
2MM1 (enable closed-loop positioning)
2PA+100 (move to encoder count position +100)

See Also
MM?, SN, FE, CL

MM?

Description
Closed-loop positioning status query.

Syntax
xxDB?

Remarks
This command is used to query the closed-loop positioning status for an axis.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
</tbody>
</table>

Response

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 or 1</td>
<td>Disable or Enable</td>
</tr>
</tbody>
</table>

Example
2MM? (get closed-loop positioning status)
0 (reply; 0; closed-loop positioning presently disabled)

See Also
MM
MT

Description
Find hardware travel limit.

Syntax
xxMTnn

Remarks
This command is used to move an axis to its limit (positive or negative). The controller will automatically stop the axis after crossing the travel limit. If this command is issued when an axis’ motion is in progress, the controller will ignore this command and generate “MOTION IN PROGRESS” error message.

The controller executes a unique sequence of motion in order to locate and finally stop the positioner at a repeatable limit position. The repeatability precision depends mostly on the repeatability of the limit switch itself and ability to stop and hold final position. It is not unusual for a Limit signal to be repeatable to within 20 encoder counts (e.g., 8310 and 8310-V actuators).

Positioners with Limit signals typically have a negative and positive travel limit. Hence, the Find Limit function requires that the user tell the controller which limit (positive or negative) to find so the controller can move in that direction.

The MT motion status can be monitored using the Motion Done (MD?) command.

NOTE: The controller will NOT stop motion until it finds the travel limit. Send the Stop (ST) or Abort (AB) motion command to terminate motion.

NOTE: Travel limit signal checking should first be enabled (see ZH command) before Find Limit (MT) command is issued. Otherwise, error .x35 will be generated.

NOTE: MT is compatible with 8310 and 8310-V positioners as each model outputs travel limit signals. However, MT command is NOT compatible with 8410 rotary stage.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
<tr>
<td>nn</td>
<td>+</td>
<td>Travel limit search of desired axis in positive direction</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Travel limit search desired axis in negative direction</td>
</tr>
</tbody>
</table>

Example

1ZH0
(enable motor 1 travel limit checking and following error checking)

1MT+
(find motor 1 travel limit in positive direction)

AB
(abort / halt motion)

2ZH0
(enable motor 2 travel limit checking and following error checking)

2MT-
(find motor 2 travel limit in negative direction)

2MD?
(get move done status)

2DH
(when move done, zero the counter at limit position)

See Also
MV, MZ, OR, ST, AB, ZH
MV

Description Indefinite move command.

Syntax \texttt{xxMVnn}

Remarks This command is used to move an axis indefinitely. If this command is issued when an axis’
motion is in progress, the controller will ignore this command and generate “MOTION IN
PROGRESS” error message.

Issue a Stop (ST) or Abort (AB) motion command to terminate motion initiated by MV

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{xx}</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
<tr>
<td>\textit{nn}</td>
<td>+</td>
<td>Move desired axis in positive direction</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Move desired axis in negative direction</td>
</tr>
</tbody>
</table>

Example

\begin{align*}
\text{1MV+} & \quad \text{(Move motor 1 indefinitely in positive direction)} \\
\text{AB} & \quad \text{(Abort /halt motion)} \\
\text{2MV-} & \quad \text{(Move motor 2 indefinitely in negative direction)} \\
\text{2ST} & \quad \text{(Stop motion)}
\end{align*}

See Also PA, PR, ST, AB
MZ

Description
Find nearest index search.

Syntax
xxMZnn

Remarks
This command is used to move an axis to its nearest Index in positive or negative direction. The controller will automatically stop the axis after crossing the index. If this command is issued when an axis’ motion is in progress, the controller will ignore this command and generate “MOTION IN PROGRESS” error message.

The controller executes a unique sequence of motion in order to locate and finally stop the positioner at a repeatable Index position. The repeatability precision depends mostly on the repeatability of the Index itself and ability to stop and hold final position. It is not unusual for a Find Index function to be repeatable to within 4 encoder counts (e.g., 8410 rotary stage).

The MZ motion status can be monitored using the Motion Done (MD?) command.

NOTE: The controller will NOT stop motion until it finds the Index signal transition. Send the Stop (ST) or Abort (AB) motion command to terminate motion.

NOTE: The Find Index function is compatible with 8410 positioner.

NOTE: The Find Index function is NOT compatible with 8310 and 8310-V positioners.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
<tr>
<td>nn</td>
<td>+</td>
<td>Index search of desired axis in positive direction</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Index search desired axis in negative direction</td>
</tr>
</tbody>
</table>

Example
1MZ+ (index search of motor 1 in positive direction)
AB (abort / halt motion)
2MZ- (index search of motor 2 in negative direction)
2MD? (monitor move done status)
2DH (when move done, zero the counter at ‘index’ position)
OR

Description
Find Home search.

Syntax
`xx OR`

Remarks
This command is used to execute a home search routine for an axis. The controller will automatically stop the axis after crossing the index. If this command is issued when an axis’ motion is in progress, the controller will ignore this command and generate “MOTION IN PROGRESS” error message.

The controller executes a unique sequence of motion in order to locate and finally stop the positioner at a repeatable Home position. The repeatability precision depends mostly on the repeatability of the Home switch itself and ability to stop and hold final position. It is not unusual for a Find Home function to be repeatable to within 20 encoder counts (e.g., 8410-V positioner).

Issue the Define Home (DH) command after OR completed to make Home position the reference for Position Absolute (PA) commands.

The Home search motion status can be monitored using the Motion Done (MD?) command.

NOTE: The controller will NOT stop motion until it finds the Home signal transition. Send the Stop (ST) or Abort (AB) motion command to terminate motion.

NOTE: The Find Home function is compatible with 8310-V positioner.

NOTE: The Find Home function is NOT compatible with 8310 and 8410 positioners.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>xx</code></td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
</tbody>
</table>

Example

1OR (find motor 1 home switch)
1MD? (monitor move done status)
1DH (when move done, zero the counter at ‘home’ position)
PA

Description Target position move command.

Syntax xxPA nn

Remarks This command is used to move an axis to a desired target (absolute) position relative to the home position defined by DH command. Note that DH is automatically set to 0 after controller reset or a power cycle. If this command is issued when an axis’ motion is in progress, the controller will ignore this command and generate “MOTION IN PROGRESS” error message. The direction of motion and number of steps needed to complete the motion will depend on where the motor count is presently at before the command is issued.

While operating in closed-loop mode, the Model 8743-CL will respond to motion command displacements based upon increments of the closed-loop Picomotor positioner’s internal optical encoder, rather than by actual Picomotor steps. The controller will automatically determine the appropriate number of Picomotor steps needed to accomplish the target encoder counts based displacement.

NOTE: If positioning Units are set to ‘Steps’ (SN=0) then displacements will be in terms of Picomotor steps whereas if Units are set to ‘Counts’ then displacements will be in terms of closed-loop Picomotor positioner encoder counts. (See SN command)

Issue a Stop (ST) or Abort (AB) motion command to terminate motion initiated by PA

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
<tr>
<td>nn</td>
<td>Integer</td>
<td>Absolute position (steps). Default = 0 steps. Valid values between -2147483648 and +2147483647.</td>
</tr>
</tbody>
</table>

Example IPA+200000 (Move motor 1 to target position +200000)

See Also MV, PR, DH, SN
PA?

Description
Target position query.

Syntax
`xxPA?`

Remarks
This command is used to query the target position of an axis.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>xx</code></td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nn</code></td>
<td>Integer</td>
<td>Target position (steps).</td>
</tr>
</tbody>
</table>

Example
2PA?
(Get motor 2 target position)
200000
(Returns value of 200000 step target position)

See Also
MV, PR
PH?

Description Hardware status query.

Syntax PH?

Remarks This command is used to query general hardware status for all the axes. This function allows the user to observe the various digital input signals as they appear to the controller in real-time.

Note that the positioner’s Home or Index signals come in on the same controller differential input pair, feedback connector pins 14 & 15. That means that if an 8410 rotary positioner is connected then the Home/Index input actually represents ‘Index’ signal status, because that is what the 8410 provides. However, if an 8310-V actuator is connected then the Home/Index represents ‘Home’ signal status, because that is what the 8310-V provides.

Note that the Index signal is a momentary signal transition, a few encoder counts wide, whereas a Home signal is typically a logical High from the middle of positioner travel range to the positive travel limit and a logical Low from the negative travel limit to the positioner middle.

The controller treats the signal differently, as either Home or Index type, depending on whether the OR (Find Home) or MZ (Find Index) command was issued.

<table>
<thead>
<tr>
<th>Response Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn</td>
<td>Integer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Axis 1 positive hardware travel limit low</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Axis 1 positive hardware travel limit high</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Axis 1 negative hardware travel limit low</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Axis 1 negative hardware travel limit high</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>Axis 1 home/index signal low</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Axis 1 home/index signal high</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>Axis 2 positive hardware travel limit low</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Axis 2 positive hardware travel limit high</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>Axis 2 negative hardware travel limit low</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Axis 2 negative hardware travel limit high</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>Axis 2 home/index signal low</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Axis 2 home/index signal high</td>
</tr>
</tbody>
</table>

Example

PH? (Get hardware status)

9 (Returns 9. 9 decimal is equal to 1001 in binary. This means bits 0 and 3 are logical HIGH which also means positive hardware travel limits on axes 1 and 2 are TTL level HIGH)

See Also MT, MZ
PR

Description: Relative move command.

Syntax: xxPRnn

Remarks: This command is used to move an axis by a desired relative distance. If this command is issued when an axis’ motion is in progress, the controller will ignore this command and generate “MOTION IN PROGRESS” error message.

While operating in closed-loop mode, the Model 8743-CL will respond to motion command displacements based upon increments of the closed-loop Picomotor positioner’s internal optical encoder, rather than by actual Picomotor steps. The controller will automatically determine the appropriate number of Picomotor steps needed to accomplish the target encoder counts based displacement.

NOTE: If positioning Units are set to ‘Steps’ (SN=0) then displacements will be in terms of Picomotor steps whereas if Units are set to ‘Counts’ then displacements will be in terms of closed-loop Picomotor positioner encoder counts. (See SN command)

Issue a Stop (ST) or Abort (AB) motion command to terminate motion initiated by PR

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
<tr>
<td>nn</td>
<td>Integer</td>
<td>Relative distance (steps). Default = 0 steps. Valid values between -2147483648 and +2147483647.</td>
</tr>
</tbody>
</table>

Example: 1PR-200000 (Move motor 1 relative negative 200000 steps)

See Also: MV, PA, SN
PR?

Description Target position query.

Syntax \texttt{xxPR?}

Remarks This command is used to query the target position of an axis.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(xx)</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nn)</td>
<td>Integer</td>
<td>Target position (steps).</td>
</tr>
</tbody>
</table>

Example

2PR? (Get motor 2 target position)

200000 (Returns value of 200000 step target position)

See Also MV, PA, SN
QM

Description Motor type set command.

Syntax \texttt{xxQMnn}

Remarks This command is used to manually set the motor type of an axis. Send the Motors Check (MC) command to have the controller determine what motors (if any) are connected. Note that for motor type ‘Tiny’, velocity should not exceed 1750 step/sec. To save the setting to non-volatile memory, issue the Save (SM) command.

Note that the controller may change this setting if auto motor detection is enabled by setting bit number 0 in the configuration register to 0 (default) with ZZ command. When auto motor detection is enabled the controller checks motor presence and type automatically during all moves and updates QM status accordingly.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{xx}</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
<tr>
<td>\texttt{nn}</td>
<td>0</td>
<td>No motor connected</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Motor type unknown</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>‘Tiny’ Motor</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>‘Standard’ motor</td>
</tr>
</tbody>
</table>

Example
\texttt{2QM3} (Set motor 2 to type ‘Standard’ Picomotor)
\texttt{SM} (Save new settings to memory)

See Also \texttt{QM?}, MC, ZZ, SM
QM?

Description
Motor type query.

Syntax
```
xxQM?
```

Remarks
This command is used to query the motor type of an axis.

It is important to note that the QM? command simply reports the present motor type setting in memory. It does not perform a check to determine whether the setting is still valid or corresponds with the motor connected at that instant.

If motors have been removed and reconnected to different controller channels or if this is the first time connecting this system then issuing the Motor Check (MC) command is recommended. This will ensure an accurate QM? command response.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn</td>
<td>Integer</td>
<td>Motor type.</td>
</tr>
</tbody>
</table>

Example
1QM?
(Get motor 1 motor type setting)
0
(Return 0; no motor connected)

See Also
QM, CM, ZZ

RS

Description
Reset command

Syntax
```
RS
```

Remarks
This command performs a “soft” reset or reboot of the controller CPU. Upon restart the controller reloads parameters (e.g., velocity and acceleration) last saved in non-volatile memory and sets Home (DH) position to 0.

Note that upon executing this command, USB and Ethernet communication will be interrupted for a few seconds while the controller re-initializes. Ethernet communication may be significantly delayed (~30 seconds) in reconnecting depending on connection mode (Peer-to-peer, static or dynamic IP mode) as the PC and controller are negotiating TCP/IP communication.

Example
RS
(Reboot/reset controller)

See Also
*RST
SA

Description
Controller address set.

Syntax
SA\(nn\)

Remarks
This command is used to set the address of a controller. This command is useful when communicating with controllers on an RS-485 network, where all controllers on the network must have unique addresses. The default controller address is 1.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nn)</td>
<td>Integer</td>
<td>Controller address. Default = 1. Valid values between 1 and 31.</td>
</tr>
</tbody>
</table>

Example
SA\(5\) (set controller address to 5)
SM (save new address in controller’s memory)

See Also
SA, SC, SD?

SA?

Description
Controller address query.

Syntax
SA?

Remarks
This command is used to query the controller’s address.

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>Integer</td>
<td>Controller address</td>
</tr>
</tbody>
</table>

Example
SA? (get controller’s address)
5 (reply; controller address is 5)

See Also
SA, SC, SD?
SC

Description
Initiate scan process.

Syntax
SCnn

Remarks
This command is used to initiate scan of controllers on RS-485 network. When a master controller receives this command, it scans the RS-485 network for all the slave controllers connected to it.

If nn = 0, the master controller scans the network but does not resolve any address conflicts.

If nn = 1, the master controller scans the network and resolves address conflicts, if any. This option preserves the non-conflicting addresses and reassigns the conflicting addresses starting with the lowest available address. For example, during an initial scan, if the master controller determines that there are unique controllers at addresses 1, 2, and 7 and more than one controller at address 23, this option will reassign only the controllers with address conflict at 23; the controllers with addresses 1, 2, and 7 will remain untouched. In this case, after conflict resolution, the final controller addresses might be 1, 2, 3, 7, and 23 if the master determines that there are two (2) controllers initially at address 23.

If nn = 2, the master controller reassigns the addresses of all controllers on the network in a sequential order starting with master controller set to address 1. In the example mentioned above, after reassignment of addresses, the final controller addresses will be 1, 2, 3, 4, and 5.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn</td>
<td>Integer</td>
<td>Scan option. Valid values between 0 and 2.</td>
</tr>
</tbody>
</table>

Example
SC0 (scan the RS-485 network but do not any address conflicts)

See Also
SA, SC?, SD?
SC?

Description RS-485 controller address map query.

Syntax SC?

Remarks This command is used to query the list of all controllers on an RS-485 network.

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>Integer</td>
<td>32-bit value. Default = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit#</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>The scan process did not find any address conflicts</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>The scan process found at least one address conflicts</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>There is no controller with address 1 on the network</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>There is a controller with address 1 on the network</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>There is no controller with address 31 on the network</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>There is a controller with address 31 on the network</td>
</tr>
</tbody>
</table>

Bits 1—31 are one-to-one mapped to controller addresses 1—31. The bit value is set to 1 only when there are no conflicts with that address.

For example, if the master controller determines that there are unique controllers at addresses 1, 2, and 7 and more than one controller at address 23, this query will return 135. The binary representation of 135 is 10000111. Bit #0 = 1 implies that the scan found at least one address conflict during last scan. Bit #1, 2, 7 = 1 implies that the scan found controllers with addresses 1, 2, and 7 that do not conflict with any other controller.

Example SC? (get controller address map)
135 (reply; see above description)

See Also SA, SC, SD?
SD?

Description
Scan done status query.

Syntax
SD?

Remarks
This command is used to query the scan status.

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0</td>
<td>Scan is in progress</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Scan is not in progress</td>
</tr>
</tbody>
</table>

Example
SD?
(Get scan status)
1
(Returns value of 1 which means scan is not in progress)

See Also
SC, SC?
SM

Description Save settings command

Syntax SM

Remarks This command saves the controller settings in its non-volatile memory. The controller restores or reloads these settings to working registers automatically after controller reset or it reboots. The Purge (XX) command is used to clear non-volatile memory and restore to factory settings. Note that the SM saves parameters for all motors.

The SM command saves the following settings:

1. Hostname (see HOSTNAME command)
2. IP Mode (see IPMODE command)
3. IP Address (see IPADDRESS command)
4. Subnet mask address (see NETMASK command)
5. Gateway address (see GATEWAY command)
6. Configuration register (see ZZ command)
7. Motor type (see QM command)
8. Desired Velocity (see VA command)
9. Desired Acceleration (see AC command)
10. Closed-Loop interval (see CL command)
11. Deadband (see DB command)
12. Following Error (see FE command)
13. Units (see SN commands)
14. Hardware Configuration (see ZH command)

Example 1VA1750 (See motor 1 velocity)
 SM (Save settings to non-volatile memory)

See Also XX, *RCL
SN

Description
Axis displacement units set.

Syntax
`xxSNnn`

Remarks
This command is used to set the displacement units of an axis.

The inherent Picomotor positioner operates in steps and is open-loop. However, when a quadrature encoder is integrated into a Picomotor positioner and those signals are brought to the controller’s feedback connector then it is possible to monitor real position using encoder ‘Counts’. The use of ‘Counts’ as positioning units makes possible closed-loop control. However, when the control is set to use ‘Steps’ as positioning units then only open-loop control is possible.

NOTE: If units set to ‘Steps’ (SN=0) then only open-loop positioning is possible.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>xx</code></td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
<tr>
<td><code>nn</code></td>
<td>0</td>
<td>Units are steps (open-loop mode).</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Units are encoder counts. Default = 1</td>
</tr>
</tbody>
</table>

Example
1SN0
(set displacement units to steps)

2SN1
(set displacement units to encoder counts)

See Also
`SN?`, `CL`, `FE`, `MM`, `DB`
SN?

Description
Axis displacement units query.

Syntax
`xxSN?`

Remarks
This command is used to query the displacement units for an axis.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>xx</code></td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Value</code></td>
<td>0 or 1</td>
<td>Steps or Encoder counts</td>
</tr>
</tbody>
</table>

Example
2SN?
(get displacement units)
1
(reply; 1)

See Also
SN
ST

Description
Stop motion command

Syntax
xxST

Remarks
This command is used to stop the motion of an axis. The controller uses acceleration specified using AC command to stop motion. If no axis number is specified, the controller stops the axis that is currently moving. Use Abort (AB) command to abruptly stop motion without deceleration.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
</tbody>
</table>

Example
- 1MV+ (Move motor 1 indefinitely in positive direction)
- 1ST (Stop motion)
- ST (Stop motion on any motor that is moving)

See Also
AB, AC
TB?

Description Error message query

Syntax TB?

Remarks This command is used to read the error code, and the associated message.

The error code is one numerical value up to three(3) digits long. (see Appendix for complete listing) In general, non-axis specific errors numbers range from 0-99. Axis-1 specific errors range from 100-199, Axis-2 errors range from 200-299 and so on. The message is a description of the error associated with it. All arguments are separated by commas.

Note: Errors are maintained in a FIFO buffer ten(10) elements deep. When an error is read using TB or TE, the controller returns the last error that occurred and the error buffer is cleared by one(1) element. This means that an error can be read only once, with either command.

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn, ssse</td>
<td>integer, string</td>
<td>Error code, Error message</td>
</tr>
</tbody>
</table>

Example

TB? (Get error status)
108, MOTOR NOT CONNECTED (Returns motor 1 not connected error message)
TB? (Get error status)
0, NO ERROR DETECTED (Returns no error found message)

See Also

TE
TE?

Description
Error code query

Syntax
`TE?`

Remarks
This command is used to read the error code. The error code is one numerical value up to three(3) digits long. (see Appendix for complete listing) In general, non-axis specific errors numbers range from 0-99. Axis-1 specific errors range from 100-199, Axis-2 errors range from 200-299 and so on.

Note: Errors are maintained in a FIFO buffer ten(10) elements deep. When an error is read using TB or TE, the controller returns the last error that occurred and the error buffer is cleared by one(1) element. This means that an error can be read only once, with either command.

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nn</code></td>
<td>integer</td>
<td>Error code</td>
</tr>
</tbody>
</table>

Example
`TE?` (Get error status)
108 (Returns 108; motor 1 not connected)

`TE?` (Get error status)
0 (Returns 0; no error detected)

See Also
TB
TP?

Description
Actual Position query.

Syntax
xxTP?

Remarks
This command is used to query the actual position of an axis. The actual position represents the internal number of steps made by the controller relative to its position when controller was powered ON or a system reset occurred or Home (DH) command was received. Note that the real or physical position of the actuator/motor may differ as a function of mechanical precision and inherent positioning inaccuracies.

NOTE: TP response value could either represent encoder ‘Counts’ or open-loop ‘Steps’ depending on Units setting (see SN command).

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn</td>
<td>Integer</td>
<td>Present position (steps)</td>
</tr>
</tbody>
</table>

Example
1TP? (Get motor 1 position status)
10500 (Returns 10500; motor 1 position)

See Also
PA, PR, MV, DH, SN
VA

Description
Velocity set

Syntax

```
xxVA nn
```

Remarks
This command is used to set the velocity value for an axis. The velocity setting specified will not have any effect on a move that is already in progress. If this command is issued when an axis’ motion is in progress, the controller will accept the new value but it will use it for subsequent moves only. The maximum velocity for a ‘Standard’ Picomotor is 2000 steps/sec, while the same for a ‘Tiny’ Picomotor is 1750 steps/sec.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
<tr>
<td>nn</td>
<td>1 to 2000</td>
<td>Velocity (steps/sec). Default = 2000 steps/sec</td>
</tr>
</tbody>
</table>

Example

```
1VA1750  (Set motor 1 velocity to 1750 steps/sec)
```

See Also

VA?, AC, AC?

VA?

Description
Velocity query.

Syntax

```
xxVA?
```

Remarks
This command is used to query the velocity value for an axis.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
</tbody>
</table>

Response

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>Velocity setting (steps/sec)</td>
</tr>
</tbody>
</table>

Example

```
1VA?      (Get motor 1 velocity)
1750      (Returns 1750; motor 1 velocity)
```

See Also

VA, AC, AC?
VE?

Description Controller firmware version query.

Syntax VE?

Remarks This command is used to query the controller model number and firmware version. To query product serial number information see *IDN command.

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ss</td>
<td>String</td>
<td>8743-CL Version 1.9 11/01/12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>version = 1.; release date = 11/01/12</td>
</tr>
</tbody>
</table>

Example VE (Get model name and firmware version) 8743-CL Version 1.9 11/01/12 (Replies with model and firmware info string)

See Also *IDN?

XX

Description Purge all user settings in controller memory.

Syntax XX

Remarks This command is used to purge all user settings in the controller non-volatile memory and restore them to factory default settings.

The following parameters are affected by this command:

1. Hostname (see HOSTNAME command)
2. IP Mode (see IPMODE command)
3. IP Address (see IPADDRESS command)
4. Subnet mask address (see NETMASK command)
5. Gateway address (see GATEWAY command)
6. Configuration register (see ZZ command)
7. Motor type (see QM command)
8. Desired Velocity (see VA command)
9. Desired Acceleration (see AC command)
10. Closed-Loop interval (see CL command)
11. Deadband (see DB command)
12. Following Error (see FE command)
13. Units (see SN commands)
14. Hardware Configuration (see ZH command)

Example XX (Purge all user settings)

See Also *RCL
ZH

Description Hardware configuration set.

Syntax xxZHnn

Remarks This command is used to set the hardware configuration of an axis.

The real-time status of hardware travel limit signals can be monitored using the PH command.

If hardware travel limit checking is disabled then MT (Find Limit) command is NOT allowed.

If the following error checking is disabled then the FE command setting is effectively ignored.

NOTE: When controlling a standard open-loop Picomotor positioner (1) set ‘Units’ option to ‘Steps’ and (2) disable ‘Travel Limit Checking.’

NOTE: The Travel Limit Checking feature should be disabled when controlling the 8410 rotary positioner.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
<tr>
<td>nn</td>
<td>see table below</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Enable hardware travel limit checking</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Disable hardware travel limit checking</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Enable following error checking</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Disable following error checking</td>
</tr>
</tbody>
</table>

Example 2ZH1 (disable motor 2 hardware travel checking)

See Also ZH?, CL, FE, MT, DB, PH
ZH?

Description Hardware configuration query.

Syntax xxZH?

Remarks This command is used to query the hardware configuration for an axis.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>1 to 2</td>
<td>Axis number</td>
</tr>
</tbody>
</table>

Response

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>see table below</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Enable hardware travel limit checking</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Disable hardware travel limit checking</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Enable following error checking</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Disable following error checking</td>
</tr>
</tbody>
</table>

Example

2ZH?
2

(reply; 2 decimal is equal to 10 in binary. This means bit #1 is set and bit #0 is cleared. This implies that the controller is commanded to check for hardware travel limits, but following error checking is disabled.)

See Also ZH, CL, FE, MT, DB, PH
ZZ

Description
Configuration register set

Syntax
ZZ nn

Remarks
This command is used to configure the default behavior of some of the controller’s features. It is typically followed with an SM (Save to Memory) command.

<table>
<thead>
<tr>
<th>Bit#</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*0</td>
<td>0</td>
<td>Perform auto motor detection. Check and set motor type automatically when commanded to move.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Do not perform auto motor detection on move</td>
</tr>
<tr>
<td>*1</td>
<td>0</td>
<td>Do not scan for motors connected to controllers upon reboot (Performs ‘MC’ command upon power-up, reset or reboot)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Scan for motors connected to controller upon power-up or reset</td>
</tr>
</tbody>
</table>

Example:
ZZ 1; SM (Disable automatic motor check and save to memory)
ZZ 3; SM (Disable motor check on move, check motors on system reset)

See Also
*RCL, MC

ZZ?

Description
Configuration register query.

Syntax
ZZ?

Remarks
This command is used to query the configuration register setting.

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn</td>
<td>Integer</td>
<td>Configuration register.</td>
</tr>
</tbody>
</table>

Example:
ZZ? (Get configuration register settings)
1 (Returns 1; bit-0=1 & bit-1=0; means auto motor detection on move is disabled)

See Also
ZZ
ETHERNET RELATED COMMANDS

GATEWAY

Description: Default gateway address set.

Syntax: GATEWAY address

Remarks: This command is used to set the Ethernet default gateway address. In order for this setting to take effect, please set the controller to Static IP mode (IPMODE), save (SM) this parameter in the controller’s non-volatile memory, and reset (RS) the controller.

NOTE: Send this command via USB interface as Ethernet communication may become unstable during Ethernet settings configuration. While connected via USB, use the Picomotor application software to send commands (Go to ‘Terminal’ tab).

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>nn1.nn2.nn3.nn4</td>
<td>Gateway address. (Example: 192.168.10.101)</td>
</tr>
</tbody>
</table>

Example:
- IPMODE 0 (Set to static IP mode)
- GATEWAY 192.168.10.101 (Set gateway address)
- NETMASK 192.168.255.0 (Set Netmask address)
- IPADDR 192.168.1.101 (Set IP address)
- SM; RS (Save and reset system)

See Also: IPMODE, SM, RS

GATEWAY?

Description: Default gateway address query.

Syntax: GATEWAY?

Remarks: This command is used to query the default gateway address

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>nn1.nn2.nn3.nn4</td>
<td>Gateway address. (Example: 192.168.10.101)</td>
</tr>
</tbody>
</table>

Example:
- GATEWAY? (Get gateway address)
 192.168.10.101 (Returns 192.168.10.101; gateway address)

See Also: IPMODE, GATEWAY
HOSTNAME

Description Hostname set.
Syntax HOSTNAME name
Remarks This command is used to set the controller’s hostname. A hostname is a label or nickname assigned to a device connected to a computer network and is used to identify the device in various forms of communication. This feature enables users to assign the controller a more easily identifiable name, perhaps linked to its actual function in an application (e.g., TIPTILT, MIRROR-2). This command is more common with Ethernet but can also be used with USB communication.

NOTE: Send this command via USB interface as Ethernet communication may become unstable during Ethernet settings configuration. While connected via USB, use the Picomotor application software to send commands (Go to ‘Terminal’ tab).

The default hostname for the controller is 8743-CL-serialnum, where serialnum is the controller’s serial number. The hostname can have a maximum of 15 alphanumeric characters and hyphen (“-”) character. The first character in the hostname cannot be a hyphen (“-”). Issue Save (SM) and Reset (RS) commands to controller for this parameter to take affect.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>string</td>
<td>Hostname</td>
</tr>
</tbody>
</table>

Example:
HOSTNAME TIPTILT-1;SM;RS Set hostname, save, and reset system
HOSTNAME? Get hostname
TIPTILT-1 Returns “TIPTILT-1”; hostname

See Also IPMODE, SM, RS

HOSTNAME?

Description Hostname query.
Syntax HOSTNAME?
Remarks This command is used to query the controller’s hostname

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>string</td>
<td>Hostname</td>
</tr>
</tbody>
</table>

Example:
HOSTNAME? Get hostname
TIPTILT-1 Returns “TIPTILT-1”; hostname

See Also IPMODE
IPADDR

Description
IP address set.

Syntax
`IPADDR address`

Remarks
This command is used to set the controller’s internet protocol (IP) address. An IP address consists of four numbers, each of which contains one to three digits, with a single dot (.) separating each number or set of digits. Each of the four numbers can range from 0 to 255.

In order for this setting to take effect, please set the controller to Static IP mode, save (SM) this parameter in the controller’s non-volatile memory, and reset (RS) the controller to take affect.

NOTE: Send this command via USB interface as Ethernet communication may become unstable during Ethernet settings configuration. While connected via USB, use the Picomotor application software to send commands (Go to ‘Terminal’ tab).

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>nn1.nn2.nn3.nn4</td>
<td>IP address. (Example. 192.168.1.101) $nn1,nn2,nn3,nn4$ can be numbers between 0 and 255.</td>
</tr>
</tbody>
</table>

Example:
IPMODE 0
GATEWAY 192.168.10.101
NETMASK 192.168.255.0
IPADDR 192.168.1.101
SM; RS

See Also
IPMODE, SM, RS

IPADDR?

Description
IP address query.

Syntax
`IPADDR?`

Remarks
This command is used to query the controller’s IP address.

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>nn1.nn2.nn3.nn4</td>
<td>IP address. (Example. 192.168.1.101) $nn1,nn2,nn3,nn4$ can be numbers between 0 and 255.</td>
</tr>
</tbody>
</table>

Example:
IPADDR 192.168.1.101;SM;RS
IPADDR?
192.168.1.101

See Also
IPMODE, IPADDR, SM, RS
IPMODE

Description
IP mode set command.

Syntax
`IPMODE nn`

Remarks
This command is used to set the controller’s IP mode. In order for this setting to take effect, please save this setting in the controller’s non-volatile memory and reset the controller.

As the name implies, Static IP addresses are the same every time you connect. Dynamic IP addresses may change each time you connect to the Internet. Dynamic IP addresses are the normal customer access method used by most ISPs or Service Providers and this is the default IP mode for this product.

Having a static IP address for your dedicated server means an IP address will be assigned to your server (controller) only once and that IP address will belong to your dedicated server forever. A static IP address will be given out to your dedicated server so that every time it logs in it will be using the same IP address for all of its sessions.

NOTE: Send this command via USB interface as Ethernet communication may become unstable during Ethernet settings configuration. While connected via USB, use the Picomotor application software to send commands (Go to ‘Terminal’ tab).

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn</td>
<td>0</td>
<td>Static IP</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>DHCP (default)</td>
</tr>
</tbody>
</table>

Example:
IPMODE 0
GATEWAY 192.168.10.101
NETMASK 192.168.255.0
IPADDR 192.168.1.101
SM; RS
(Set to static IP mode)
(Set gateway address)
(Set Netmask address)
(Set IP address)
(Save and reset system)

See Also
IPMODE?, IPADDR, SM, RS
IPMODE?

Description
IP mode query.

Syntax
`IPMODE?`

Remarks
This command is used to query the controller’s IP mode.

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>nn</code></td>
<td>Integer</td>
<td>IP mode</td>
</tr>
</tbody>
</table>

Example:
IPMODE?
1
(Get IP mode)
(Returns 1; in DHCP mode)

See Also
IPMODE

MACADDR?

Description
MAC address query.

Syntax
`MACADDR?`

Remarks
This command is used to query the controller’s MAC address.

A Media Access Control address (MAC address) is a unique identifier assigned to network interfaces for communications on the physical network segment. MAC addresses are used for numerous network technologies and most IEEE 802 network technologies, including Ethernet. Logically, MAC addresses are used in the Media Access Control protocol sub-layer of the OSI reference model.

<table>
<thead>
<tr>
<th>Response</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| `address` | `nn1,nn2` | MAC address. (Example.5827809, 20)
`nn1` is Newport’s unique identifier (0x58ECE1);
`nn2` is controller’s unique identifier |

Example:
MACADDR?
5827809, 20
(Get MAC address)
(Returns 5827809, 20; MAC address)

See Also
HOSTNAME
NETMASK

Description Network mask address set.

Syntax NETMASK address

Remarks This command is used to set the controller’s network mask address. In order for this setting to take effect, please set the controller to Static IP mode, save this parameter in the controller’s non-volatile memory, and reset the controller.

A netmask is a 32-bit mask used to divide an IP address into subnets and specify the networks available hosts. In a netmask, two bits are always automatically assigned. For example, in 255.255.225.0, "0" is the assigned network address; and in 255.255.255.255, "255" is the assigned broadcast address. The 0 and 255 are always assigned and cannot be used.

NOTE: Send this command via USB interface as Ethernet communication may become unstable during Ethernet settings configuration. While connected via USB, use the Picomotor application software to send commands (Go to ‘Terminal’ tab).

<table>
<thead>
<tr>
<th>Argument</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>nn1.nn2.nn3.nn4</td>
<td>Network mask address. (Example. 192.168.255.0)</td>
</tr>
</tbody>
</table>

Example:

IPMODE 0 (Set to static IP mode)
GATEWAY 192.168.10.101 (Set gateway address)
NETMASK 192.168.255.0 (Set Netmask address)
IPADDR 192.168.1.101 (Set IP address)
SM; RS (Save and reset system)

See Also NETMASK?, IPMODE, IPADDR, SM, RS

NETMASK?

Description Network mask address query.

Syntax NETMASK?

Remarks This command is used to query the controller’s network mask address.

Response Value Description

| address | nn1.nn2.nn3.nn4 | Network mask address. (Example. 192.168.255.0) |

Example:

NETMASK ? (Get Netmask)
192.168.255.0 (Returns 192.168.255.0; Netmask)

See Also NETMASK
7 Appendix

7.1 Non Axis-Specific Error Messages

0, NO ERROR DETECTED
There are no error messages in the error buffer.

3, OVER TEMPERATURE SHUTDOWN
The temperature inside the controller has exceeded 85°C. Under this condition, the controller automatically stops any motion that is in progress and changes the status LED color to solid RED. When the temperature goes below 75°C, the controller changes the status LED color to solid GREEN. Motion related commands can once again be issued in this state.

6, COMMAND DOES NOT EXIST
The command sent to the controller is invalid. Please check the command syntax.

7, PARAMETER OUT OF RANGE
The parameter sent along with a command is out of range.

9, AXIS NUMBER OUT OF RANGE
The axis number specified is out of range.

10, EEPROM WRITE FAILED
Unable to save the controller’s settings in its non-volatile memory.

11, EEPROM READ FAILED
Unable to restore the controller’s settings from its non-volatile memory.

37, AXIS NUMBER MISSING
The command sent to the controller requires an axis number prefix. Please check the command syntax.

38, COMMAND PARAMETER MISSING
The command sent to the controller requires a valid parameter. Please check the command syntax.
46, RS-485 ETX FAULT DETECTED
A slave controller can generate this error message if the command received by it is incomplete; the number of bytes transmitted by a master controller do not match the number of bytes received by the slave controller.
A master controller can generate this error message if the response received by it is incomplete; the number of bytes transmitted by a slave controller do not match the number of bytes received by the master controller.

NOTE: Check for (a) improper RS-485 cable connection, (b) controller address conflict, or (c) prohibited multiple master configuration.

47, RS-485 CRC FAULT DETECTED
A slave controller can generate this cyclical redundancy check (CRC) error message if a checksum verification of the command received by it does not match the checksum computed by master controller.
A master controller can generate this cyclical redundancy check (CRC) error message if a checksum verification of the response received by it does not match the checksum computed by slave controller.

NOTE: Check for (a) improper RS-485 cable connection, (b) controller address conflict, or (c) prohibited multiple master configuration.

48, CONTROLLER NUMBER OUT OF RANGE
The controller number prefix is out of range.

49, SCAN IN PROGRESS
This error message is generated if “SC” or “SC?” commands are received by a controller while a scan is already in progress.

7.2 Axis-Specific Error Messages
Where (“x” = 1 to 2)

x00, MOTOR TYPE NOT DEFINED
A motion command has been issued to the controller before specifying a motor type. Enable auto motor detection by setting bit# 0 in configuration register to 0 (refer ZZ command) or set valid motor type (refer QM command).

x01, PARAMETER OUT OF RANGE
The parameter sent along with a command is out of range.

x03, FOLLOWING ERROR THRESHOLD EXCEEDED
According to the encoder count monitor, the following error exceeds the maximum following (tracking) error threshold setting.
x04, **POSITIVE HARDWARE LIMIT DETECTED**
The motion in progress has been stopped because the controller detected positive direction hardware travel limit crossing.

NOTE: When controlling a standard open-loop Picomotor positioner (1) set ‘Units’ option to ‘Steps’ and (2) disable ‘Travel Limit Checking.’

NOTE: The Travel Limit Checking feature should be disabled when controlling the 8410 rotary positioner.

x05, **NEGATIVE HARDWARE LIMIT DETECTED**
The motion in progress has been stopped because the controller detected negative direction hardware travel limit crossing.

NOTE: When controlling a standard open-loop Picomotor positioner (1) set ‘Units’ option to ‘Steps’ and (2) disable ‘Travel Limit Checking.’

NOTE: The Travel Limit Checking feature should be disabled when controlling the 8410 rotary positioner.

x08, **MOTOR NOT CONNECTED**
The controller has detected that there is no motor connected to the axis that is either being commanded to move or is already in motion.

x10, **MAXIMUM VELOCITY EXCEEDED**
The velocity parameter specified exceeds the maximum velocity rating for the connected motor.

x11, **MAXIMUM ACCELERATION EXCEEDED**
The acceleration parameter specified exceeds the maximum acceleration rating for the connected motor.

x14, **MOTION IN PROGRESS**
A new move is commanded while an axis is already moving.

x20, **HOMING ABORTED**
Homing process has been aborted. This is likely caused by either Abort (AB) or Stop (ST) command received or hardware travel limit detected.

x33, **MAX CLOSED LOOP ATTEMPTS EXCEEDED**
The controller has made more than 100 unsuccessful consecutive attempts to correct the position of the motion device, and was unable to bring the following error to within specified deadband setting.

x34, **FEEDBACK CONNECTOR REMOVED**
The feedback connector has been removed while a move is in progress. Properly fasten feedback connector to controller.
x35, TRAVEL LIMIT CHECKING DISABLED
The controller received “MT” command when hardware travel limit checking was disabled. Travel limit checking must be enabled (see ZH command) in order to perform Move to Limit (MT) command.
8 Maintenance and Service

8.1 Enclosure Cleaning

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are no user serviceable parts inside the Model 8743-CL Controller/Driver. Work performed by persons not authorized by New Focus will void the warranty.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before cleaning the enclosure of the 8743-CL Controller/Driver, the power cord must be disconnected from the wall socket and from the unit.</td>
</tr>
</tbody>
</table>

The source enclosure should only be cleaned with a mild soapy water solution applied to a damp lint-free cloth. Do not use an acetone or alcohol solution; this will damage the finish of the enclosure.

8.2 Technical Support

Information and advice about the operation of any New Focus product is available from our technical support engineers. For quickest response, ask for “Technical Support” and know the model and serial number for your product.

Hours: 8:00–5:00 PST, Monday through Friday (excluding holidays).

Toll Free: 1-866-NUFOCUS (1-866-683-6287)

(From the USA & Canada only)

Phone: (408) 284-6808

Support is also available by fax and email:

Fax: (408) 980-4300

Email: techsupport@newfocus.com

We typically respond to faxes and email within one business day.
8.3 Service

Your 8743-CL Controller/Driver has been designed to provide years of trouble-free operation. Virtually no maintenance is required except for ensuring that the unit is not damaged, contaminated, or used in an unsafe manner.

8.4 Obtaining Service

The 8743-CL Controller/Driver contains no user serviceable parts. To obtain information regarding factory service, contact New Focus or your New Focus representative. Please have the following information available:

1. Instrument model number (on the rear panel).
2. Instrument serial number (on rear panel or bottom of enclosure).
3. Description of the problem.

If the instrument is to be returned to New Focus, you will be given a Return Number, which you should reference in your shipping documents. Please fill out a copy of the service form, located on the following page, and have the information ready when contacting New Focus. Return the completed service form with the instrument.

8.5 Warranty

New Focus, a division of Newport Corp, guarantees its products to be free of defects for one year from the date of shipment. This is in lieu of all other guarantees, expressed or implied, and does not cover incidental or consequential loss.
8.6 Service Form

Name _______________________________ Return Authorization #__________________
(Please obtain RA# prior to return of item)

Company __
(Please obtain RA # prior to return of item)

Address ________________________________ ___ Date __________________________

Country _______________________ Phone Number _______________________________

P.O. Number ___________________ FAX Number _________________________________

Item(s) Being Returned:

Model # ______________________ Serial # __________________________

Description ___

Reason for return of goods (please list any specific problems):
