XPS-Q8

Universal High-Performance
Motion Controller/Driver

(&%)
Mewport « Motion Controller / Driver = Model xps

&CT16| £ REMCTE CONTRgY -

Sum s

Tcl Manual
V1.3.X

For Motion, Think Newport

XPS-Q8

Tcl Manual

Preface

NOTE

Tcl/Tk has been distributed freely for over 10 years and is now used in thousands
of applications by companies and individuals worldwide. You are free to use it
however you wish, even in commercial applications.

Confidentiality & Proprietary Rights

Reservation of Title

The Newport Programs and all materials furnished or produced in connection with them
("Related Materials") contain trade secrets of Newport and are for use only in the
manner expressly permitted. Newport claims and reserves all rights and benefits
afforded under law in the Programs provided by Newport Corporation.

Newport shall retain full ownership of Intellectual Property Rights in and to all
development, process, align or assembly technologies developed and other derivative
work that may be developed by Newport. Customer shall not challenge, or cause any
third party to challenge, the rights of Newport.

Preservation of Secrecy and Confidentiality and Restrictions to Access

Customer shall protect the Newport Programs and Related Materials as trade secrets of
Newport, and shall devote its best efforts to ensure that all its personnel protect the
Newport Programs as trade secrets of Newport Corporation. Customer shall not at any
time disclose Newport's trade secrets to any other person, firm, organization, or
employee that does not need (consistent with Customer's right of use hereunder) to
obtain access to the Newport Programs and Related Materials. These restrictions shall
not apply to information (1) generally known to the public or obtainable from public
sources; (2) readily apparent from the keyboard operations, visual display, or output
reports of the Programs; (3) previously in the possession of Customer or subsequently
developed or acquired without reliance on the Newport Programs; or (4) approved by
Newport for release without restriction.

©2014 Newport Corporation
1791 Deere Ave.

Irvine, CA 92606, USA
(949) 863-3144

EDHO0307En1031 — 05/14

QD Newport.

Experienca | Sobutions

http://www.tcl.tk/software/tcltk
http://www.tcl.tk/software/tcltk/license_terms.txt
http://www.tcl.tk/software/tcltk/license_terms.txt

XPS-Q8 Tcl Manual
Table of Contents

o (] £ oL TSRO ii

Confidentiality & Proprietary RIghtS..........cccoviiiiiiiiiice e ii

1.0 TCP/IP COMMUNICALION......ccuiiiiiiiiieiie et 1

2.0 Tool Command LangUAgE...........cccurierrurrerriiaieseesieeie e siee e siee e sreenneas 2

2.1 INEFOAUCTION .ottt b bbb bbbttt e b et nb s 2

2.2 Tcl scripting 1anguage fEALUIEScovieiieeeece st annenees 2

2.2.1 “Hello, World!” eXample ..o 2

2.2.2 VArADIES ..o e b 3

2.2.3 Command SUDSEITULION.......c.veiiiiiciiecesie e 3

2.2.4 Math EXPIeSSIONS.oiuiiuiitietieieie sttt sttt st bt sttt st see b b sbeebe s e 4

2.2.5 Backslash SUDSTITULIONccueiiiiiiie e 4

2.2.6 Grouping with Braces and Double QUOLES............cccervrvrvieeieriere e 5

2.26.1 Square Brackets DO NOt GrOUD........coerverererinieie e 6

2.26.2 Grouping before SUDSEIULIONccocoviiiiinie e, 6

2.2.6.3 Grouping Math Expressions with Braces...........ccoeceverererinnnn. 7

2.2.64 More Substitution EXamplesccccereiiieiinineceieneneins 7

2.2.7 PIOCEAUIES.....coeiteietiite ettt ettt bbbttt b et sb e et b e et sbe e ebe e 7

2.2.8 A Factorial EXAMPIEcooveeiiie s 8

2.2.9 More about Variables.........ccviiiiiiiie e 9

2291 Funny Variable Names............ccocovvvviiiinin, 10

2.29.2 The unset CoMMANG.........ccoevviireiniiee e 10

2.2.9.3 Using info exists to check whether a variable exists................ 11

2.2.10 More about Math EXPreSSIONSccceiieiiiriieiiesiese st 11

2.2.11 COMIMEINES vttt sttt ettt sttt e bbbttt s e renn e sr b b en s 12

2.2.12 Substitution and Grouping SUMMAIYccccocererereneneneeie e 12

2.2.13 FINE POINES ..ottt bbbt sbe bbb 13

2.3 RETEIEINCE ..ottt bbb et et b e re e 14

2.3.1 Backslash SEQUENCESccecverieieiirisie e ere s 14

2.3.2 ArithmetiC OPEratOrScceeeeieeie ettt bbb 14

3.0 Tcl Script EXecution at BOOT.........ccccoveveeieiiiiice e 15

QD Newport.

Experienca | Sobutions

iii EDHO0307En1031 — 05/14

XPS-Q8 Tcl Manual
4.0 Principle of a Tcl Script Redirection to a telnet Session............c..cccue.... 16
A 101 T [UTox (o] USROS USROS 16
4.2 “Hello World I” EXAMPIEoooiii et sttt st ene e 17

4.2.1 TClSCrIPt @XaMPIE ..o b e 17

4.2.2 TClSCIIPL EXECULIONviitiitiiietieee ettt e 17

4.2.3 Tcl sCript eXeCUtioN FESUIL........oveiiiiieiie et 18

5.0 Example of a Tcl Script Redirection to a telnet Sessioncccc....... 19
6.0 Proposed Function for Error Handling..........cccccevevveveiicniecc e 20
7.0 Examples of TCl Programs..........cccoeiiiiiinninie e 23
7.1 Using analog 1/O fOr MOIONc.coiiiieiecec et ere e 23
0 0 R @ o) T U 1 4 o 23

712 DESCIIPLIONuiiiiieite sttt bbbttt sb e bbb ens 23

T 13 TCECOUB...ceiicee e ettt ne s 23

7.2 Using Digital 1/O fOr MOLIONoiviiiiiic ettt sre e 26
72,1 CONTIQUIALION ...veiiiie ettt 26

7.2.2 DESCIIPLIONeiieiiiite sttt et b bbbt b e b bbb b ens 26

723 TCECOUR ettt ettt bbb 26

A T T (@ R 1) OSSO U PSP PPOPRPRPR 29
731 DESCIIPLIONuiiiiieite sttt et bbbttt b e bbb bt ens 29

732 TCECOUR. ittt et ettt ne e 29

7.4 Gathering With MOLIONccicieiic et sre e 31
TAL CONFIQUIALION ..ottt bbb 31

742 DESCIIPLIONeiiiieite sttt et bbbttt b e b bbbt ens 31

TA3 TCHCOUR ettt ettt na s 31

7.5 EXternal Qathering.... ..ottt 34
751 CoNFIQUIALION ..ottt bbb 34

ST B 1= To) 1) o] o S 34

753 TCECOUR. ettt ettt et na s 34

7.6 POSITION COMPAIE. .. ettt ettt ettt st bbbt et ab e e e sb e s besbe et e e e e neesbesbesbesbeebeene e 37
7.6.1 CONFIQUIALION ..ottt bbb 37

LT 1= To) 1) o] o 37

T.8.3 TCHCOUR. ...t b e bbb 37

7.7 IMASEr-SIAVE IMOE........eieiiietieeee ettt bbbttt e e bbb b s 39
5 R 01T o1 o1 14 o 39

A 1= 103 1) o] o 39

T.7.3 TCL COUE ..ottt e ettt sttt ne st 39

78S N oo o 113 SRS 42
S TS R O o o U 1 4 o 42

7.8.2 DESCIIPLIONeiieiiiite sttt bbbttt sb e bbb 42

T.8.3 TCL COUR ..ottt sttt sttt ettt sttt e et st ne et 42

QD Newport.

EDHO0307En1031 — 05/14

XPS-Q8 Tcl Manual

7.9 J0gging and Gatheringcouoiiiiiiiiiie bbb 44
7.9.1 CoNFIQUIALION ...viiiie sttt bbb 44
AR B 1= To) 1) o] o 44
7.9.3 TCHCOUR. ..ttt be e e 44
7.10 ANalog POSItION TrACKING ...c.eoeiiiieitiiteiie et 49
0 0 8 o o V] = 1 o] 49
0 0 TSt o] o] 49
7.00.3 TCL COUE .ecvtiteieiesieiiee sttt sttt sttt bbbttt be st ne bt ne et 49
7.11 Backlash COmMPENSALION.........ccuiiiiiiiieie bbb 51
0 S R o T 1] = 1 o] 51
0 TSt o] o] 51
% 0 T O o o L TSSOSO 51
7.12 Timer Event and Global Variables ... 53
0 5 R o o V] = 1 o] 53
7.12.2 DESCIIPIION ettt ettt st sb e bbb 53
T.12.3 TCL COUE .icvtiieieieeie ettt sttt sttt sttt bbbt sttt e bt ne et 53
7.13 Tcl Script With INPUL ATQUMENTScvviieiereieice ettt se e sne e 56
7131 CONFIGUIALION ... bbb 56
7.13.2 DESCIIPIION ettt ettt sb e bbb e 56
7133 TCL COUR «.veieicieite ettt sttt bbbttt bttt 57
SEIVICE FOIM .ttt 59

QD Newport.
s St v EDHO0307En1031 — 05/14

XPS-Q8 Tcl Manual

QD Newport.

Experienca | Sobutions

EDHO0307En1031 — 05/14 2

XPS-Q8 Tcl Manual

XPS
Universal High-Performance
Motion Controller/Driver

NOTE

This manual describes how to use Tcl scripts with the XPS-Q8 Controller. Several
Tcl script examples have been provided to help illustrate key features of the XPS-

Q8.

The Tcl drivers for the XPS-Q8 Controller have been developed for Tcl 8.4.19
interpreter and includes all XPS-Q8 functions.

For detailed Tcl documentation and support refer to the official tcl/tk tutorial:
http://www.tcl.tk

1.0 TCP/IP Communication

XPS is based on a 10/100/1000 Base-T Ethernet communication link with TCP/IP
protocol and uses a website approach for software tools and an FTP server for file
transfers. This makes the XPS controller mostly independent from the user’s operating
system.. When networked, Unix, Linux or Windows users can access the same
controller remotely from any place in the world. The full software feature set of the
XPS is then available for code development, file transfer or general diagnostics.

The XPS firmware has been developed with a completely object-oriented approach.
providing powerful, multi-parameter Function’s (commands) in a more self-consistent
and intuitive way than old-style mnemonic commands.

QD Newport.

Experienca | Sobutions

1 EDHO0307En1031 — 05/14

XPS-Q8

Tcl Manual

2.0 Tool Command Language

2.1

2.2

221

Introduction

Tcl is short for Tool Command Language. Tcl commands perform a variety of
functions, such as: output a string, compute a math expression, or display a widget. Tcl
casts everything into the mold of a command, even programming constructs like
variable assignments and procedure definitions. Tcl requires a minimal amount of
syntax to properly invoke commands, leaving the remainder of the work to command
implementation.

The basic syntax of a Tcl command is:
command argl arg2 arg3 ...

The command is either the name of a built-in command or a Tcl procedure. White
space (i.e., spaces or tabs) is used to separate the command name from command
arguments, and a new line (i.e., the end of line character) or semicolon is used to
terminate a command. Tcl does not interpret arguments respective to commands, other
than to perform grouping. This allows multiple words to be used in a single
argument. Tcl also performs substitution, which is used with programming
variables and nested command calls. The behavior of the Tcl command processor can
be summarized in three basic steps:

e Argument grouping.
e Value substitution of nested commands, variables, and backslash escapes.
e Command invocation. It is up to the command to interpret its arguments.

NOTE
The Tcl gets from stdio command is not supported.

Tcl scripting language features

“Hello, World!” example
puts stdout {Hello, World'}

= Hello, World!

In this example, the command is puts, which takes two arguments: an /O stream
identifier and a string. puts writes the string to the 1/0 stream along with a trailing
newline character.

There are two points to emphasize:

e Arguments are interpreted by the command. In the example, stdout is used to
identify the standard output stream. The use of stdout as a name is a convention
employed by puts and other I/O commands. Also, stderr is used to identify
the standard error output, and stdin is used to identify the standard error input.

e Curly braces are used to group words together into a single argument. The puts
command receives Hello, World! as itssecond argument.

The braces are not part of the value.

The braces are required syntax for the interpreter, and they get stripped off before the
value is passed to the command. Braces group all characters, including newlines and
nested braces, until a matching brace is found. Tcl also uses double quotes for grouping.
Grouping arguments will be described in more detail later.

EDHO0307En1031 — 05/14

QD Newport.

Experienca | Sobutions
2

XPS-Q8

Tcl Manual

QD Newport.

Experienca | Sobutions

2.2.2

2.2.3

Variables
The set command is used to assign a value to a variable. It requires two arguments:

The first is the name of the variable, and the second is the value. Variable names can be
any length, and case is recognized. In fact, you can use any character in a variable
name.

NOTE
It is not necessary to declare Tcl variables before you use them.

The interpreter will create the variable when it is assigned a value.

The value of a variable is obtained later with the dollar-sign syntax, as illustrated in
Example 1-2.

Example 1-2: Tcl variables.
set var 5

=5
set b $var

=5
The second set command assigns to variable b the value of variable var.

The use of the dollar sign is our first example of substitution. You might guess that the
second set command substitutes the value of var for $var to obtain a new
command.

setb5

The actual implementation of substitution is more efficient, which is important when the
value is large.

Command Substitution

The second form of substitution is command substitution. A nested command is
delimited by square brackets, [J. The Tcl interpreter takes everything between the
brackets and evaluates it as a command. Rewriting the outer command by replacing the
square brackets and everything between them with the result of the nested command.
This is similar to the use of backquotes in other shells, except that it has the additional
advantage of supporting arbitrary nesting of commands.

Example 1-3: Command substitution.
set len [string length foobar]

= 6

In Example 1-3, the nested command is:
string length foobar

This command returns the length of the string Foobar. The nested command runs first.
Then, command substitution causes the outer command to be rewritten as if it were:
set len 6

If there are several cases of command substitution within a single command, the
interpreter processes them from left to right. As each right bracket is encountered, the
command it delimits is evaluated. This results in a sensible ordering in which nested
commands are evaluated first so that their result can be passed as arguments to the outer
command.

3 EDHO0307En1031 — 05/14

XPS-Q8

Tcl Manual

224

2.2.5

Math Expressions

The Tcl interpreter itself does not evaluate math expressions. Tcl just performs
grouping, substitutions and command invocations. The expr command must be used
to parse and evaluate math expressions.

Example 1-4: Simple arithmetic.
expr7.2/4

= 1.8

The math syntax supported by expr is the same as the C expression syntax. The expr
command deals with integer, floating point, and boolean values. Logical operations
return either O (false) or 1 (true). Integer values are promoted to floating point values as
needed. Octal values are indicated by a leading zero (e.g., 033 is 27 decimal).
Hexadecimal values are indicated by a leading Ox. Scientific notation for floating point
numbers is also supported. A summary of the operator precedence is provided on page
20.

You can include variable references and nested commands in math expressions.

The following example uses expr to add the value of x to the length of the string
foobar. As a result of the innermost command substitution, the expr command sees
6 + 7,and len gets the value 13:

Example 1-5: Nested commands.

setx 7

set len [expr [string length foobar] + $x]
= 13

The expression evaluator supports a number of built-in math functions. Example 1-6
computes the value of pi:

Example 1-6: Built-in math functions.
set pi [expr 2*asin(1.0)]
= 3.1415926535897931

The implementation of expr is careful to preserve accurate numeric values and avoid
conversions between numbers and strings. However, you can make expr operate more
efficiently by grouping the entire expression in curly braces. The explanation has to do
with the byte code compiler that Tcl uses internally, the effects of which are explained
in more detail on page 15. For now, you should be aware that these expressions are all
valid and run a bit faster than the examples shown above:

Example 1-7: Grouping expressions with braces.
expr {7.2 / 4%}
set len [expr {[string length foobar] + $x}]
set pi [expr {2*asin(1.0)}]

Backslash Substitution

The final type of substitution done by the Tcl interpreter is backslash
substitution. This is used to quote characters that have special meaning to the
interpreter. For example, you can specify a literal dollar sign, brace, or bracket by
quoting it with a backslash. As a rule, however, if you find yourself using a lot of
backslashes, there is probably a simpler way to achieve the effect you are striving

for. In particular, the Iist command will do quoting for you automatically. In
Example 1-8 backslash is used to get a literal $:

EDHO0307En1031 — 05/14

QD Newport.

Experienca | Sobutions

XPS-Q8

Tcl Manual

QD Newport.

Experienca | Sobutions

2.2.6

Example 1-8: Quoting special characters with backslash.
set dollar \$foo

= $foo
set x $dollar

= $foo
Only a single round of interpretation is done.

The second set command in the example above illustrates an important property of
Tcl. The value of dol lar does not affect the substitution performed in the assignment
to x. In other words, the Tcl parser does not care about the value of a variable when it
does the substitution. In the example, the value of x and dol lar is the string $foo.
In general, you do not have to worry about the value of variables until you use eval.

You can also use backslash sequences to specify characters with their Unicode,
hexadecimal, or octal value:

set escape \u001b

set escape \Ox1b

set escape \033

The value of variable escape is the ASCII ESC character, which has character code
27. The table on page 20 summarizes backslash substitutions.

A common use of backslashes is to continue long commands on multiple lines. This is
necessary because a newline terminates a command. The backslash in the next example
is required; otherwise the expr command gets terminated by the newline after the plus
sign.

Example 1-9: Continuing long lines with backslashes.
set totalLength [expr [string length $one] +\
[string length $two]]

There are two fine points to consider when escaping newlines. First, if you are grouping
an argument as described in the next section, then you do not need to escape newlines;
the newlines are automatically a part of the group and will not terminate the command.
Second, a backslash as the last character in a line is converted into a space, and all the
white space at the beginning of the next line is replaced by this substitution. In other
words, the backslash-newline sequence also consumes all the leading white space on the
next line.

Grouping with Braces and Double Quotes

Double quotes and curly braces are used to group words together into one argument.
The difference between double quotes and curly braces is that quotes allow substitutions
to occur in the group, while curly braces prevent substitutions. This rule applies to
command, variable, and backslash substitutions.

Example 1-10: Grouping with double quotes vs. braces.
set s Hello

= Hello
puts stdout "The length of $s is [string length $s]."

= The length of Hello is 5.
puts stdout {The length of $s is [string length $s].}

= The length of $s is [string length $s].

In the second command of Example 1-10, the Tcl interpreter does variable and
command substitution on the second argument to puts. In the third command,
substitutions are prevented, so the string is printed as is. In practice, grouping with curly
braces is used when substitutions on the argument must be delayed until a later time (or
never at all). Examples include loops, conditional statements, and procedure

5 EDHO0307En1031 — 05/14

XPS-Q8

Tcl Manual

2.26.1

2.2.6.2

declarations. Double quotes are useful in simple cases like the puts command shown
previously.

Another common use of quotes is with the Format command. This is similar to the C
printf function. The first argument to format is a format specifier, which often
includes special characters like newlines, tabs, and spaces. The easiest way to specify
such characters is with backslash sequences (e.g., \n for newline and \'t for tab). The
backslashes must be substituted before the format command is called, so you need to
use quotes to group the format specifier.
puts [format "ltem: %s\t%5.3f" $name $value]

Here format is used to align a name and a value with a tab. The %s and %5.3F
indicate how the remaining arguments are to be formatted by the format command .

Note that the trailing \n usually found in a C printf call is not needed because
puts provides one for us.

Square Brackets Do Not Group

The square bracket syntax used for command substitution does not provide grouping.
Instead, a nested command is considered part of the current group. In the command
below, the double quotes group the last argument, and the nested command is just part
of that group.

puts stdout "The length of $s is [string length $s]."
If an argument is made up of a nested command, you do not need to group it with
double-quotes because the Tcl parser treats the whole nested command as part of the
group.

puts stdout [string length $s]
The following is a redundant use of double quotes:

puts stdout "[expr $x + $y]"

rouping bef bstituti
The Tcl parser makes a single pass through a command as it makes grouping decisions
and performs string substitutions. Grouping decisions are made before substitutions are
performed, which is an important property of Tcl. This means the values being
substituted will not affect grouping because the grouping decisions have already been
made.

The following example demonstrates how nested command substitution affects
grouping. A nested command is treated as an unbroken sequence of characters,
regardless of internal structure. It is included with the surrounding group of characters
when collecting arguments for the main command.

Example 1-11: Embedded command and variable substitution.
setx7;sety9
puts stdout $x+$y=[expr $x + $y]
= 7+9=16
In Example 1-11, the second argument to puts is:
$x+$y=[expr $x + $y]
The white space inside the nested command is ignored for the purposes of grouping the

argument. By the time Tcl encounters the left bracket, it has already done some variable
substitutions to obtain:

7+9=

When the left bracket is encountered, the interpreter calls itself recursively to evaluate
the nested command. Again, the $x and $y are substituted before calling expr.
Finally, the result of expr is substituted for everything from the left bracket to the
right bracket. The puts command gets the following as the second argument:

7+9=16

EDHO0307En1031 — 05/14

QD Newport.

Experienca | Sobutions

XPS-Q8

Tcl Manual

QD Newport.

Experienca | Sobutions

2.2.6.3

2.2.6.4

2.2.7

Grouping before substitution.

The point of this example is to show how the grouping decision for puts’s second
argument is made, before the command substitution is done. Even if the result of the
nested command contained spaces or other special characters, they would be ignored for
the purposes of grouping the arguments to the outer command. Grouping and variable
substitution interact the same as with grouping and command substitution. Spaces or
special characters in variable values do not affect grouping decisions because these
decisions are made before the variable values are substituted.

If you want the output to look more readable as in the example, with spaces around the

+ and =, then you must use double quotes to explicitly group the argument to puts:
puts stdout "$x + $y = [expr $x + $y]"

The double quotes are used for grouping in this case to allow the variable and command

substitution on the argument for puts.

Grouping Math Expressions with Braces

It turns out that expr performs its own substitutions inside curly braces. This is
explained in more detail on page 15. This effectively means that you can write
commands as listed below and still have substitutions on the variables in the expression
occur:

puts stdout "$x + $y = [expr {$x + $y}]"
bstituti |

If you have several substitutions without white space between them, you can avoid

grouping with quotes. The following command concat applied to variables a, b, and
¢ will concatenate them:

set concat ab$c

Again, if you want to add spaces, you’ll need to use quotes:
set concat "$a $b $c"

In general, you can place a bracketed command or variable reference anywhere. The
following computes a command name:
[findCommand $x] arg arg

Procedures

Tcl uses the proc command to define procedures. Once defined, a Tcl procedure is
used just like any of other built-in Tcl command. The basic syntax to define a procedure
is:

proc name arglist body

The first argument is the name of the procedure being defined. The second argument is
a list of parameters used by the procedure. The third argument is a command body
that is one or more Tcl commands. The procedure hame is case sensitive, and in fact it
can contain any character. Procedure names and variable names do not conflict with
each other. As a convention, this guide begins procedure names with uppercase letters
and variable names with lowercase letters. Adopting good programming conventions is
important as your Tcl scripts become larger.

Example 1-12: Defining a procedure.
proc Diag {a b} {
set ¢ [expr sqrt($a * $a + $b * $b)]
return $c

}
puts "The diagonal of a 3, 4 right triangle is [Diag 3 4]"

= The diagonal of a 3, 4 right triangle is 5.0

The Diag procedure defined in the above example computes the length of the
hypotenuse of a right triangle given the lengths of the legs. The sqrt function is one

7 EDHO0307En1031 — 05/14

XPS-Q8

Tcl Manual

2.2.8

of many math functions supported by the expr command. The variable c is local to
the procedure; it is defined only during execution of Diag. Variable scope is discussed
further in Section 7. It is not really necessary to use the variable ¢ in this example. The
procedure can also be written as:

proc Diag {a b} {

return [expr sqrt($a * $a + $b * $b)]

}

The return command is used to return the result of the procedure. The return
command is optional in this example because the Tcl interpreter returns the value of
the last command in the body as the value of the procedure. So, the procedure could be
reduced to:

proc Diag {a b} {

expr sqrt($a * $a + $b * $b)

}

Note the use of curly braces in the example. The curly brace at the end of the first line
starts the third argument to proc, which is the command body. In this case, the Tcl
interpreter sees the opening left brace, causing it to ignore newline characters and scan
the text until a matching right brace is found. Double quotes have the same
property. They group characters, including

newlines, until another double quote is found. The result of the grouping is such that the
third argument to proc is a sequence of commands. When they are evaluated later, the
embedded newlines will terminate each command.

The other crucial effect of placing the curly braces around the procedure body is to
delay any substitutions in the body, until the procedure is called. For example, the
variables a, b, and ¢ are not defined until the procedure is called, so we do not want to
do variable substitution at the time Diag is defined.

The proc command supports additional features such as having a variable number of
arguments and default values for arguments.

A Factorial Example

To reinforce what we have learned thus far, see the example below which uses a
while loop to compute the factorial function:

Example 1-13: Awhile loop to compute a factorial.
proc Factorial {x} {
seti 1; set product 1
while {$i <= $x} {
set product [expr $product * $i]
incr i
}

return $product

}

Factorial 10
= 3628800

The semicolon used on the second line is there to remind you that it is a command
terminator, just like the newline character. The while loop is used to multiply all
numbers from one to the value of x. The first argument to while is a boolean
expression, and the second argument is the command body to be executed.

The same math expression evaluator used by the expr command is used by whille
to evaluate the boolean expression. There is no need to explicitly use the expr
command in the first argument to while, even if you have a much more complex
expression.

The loop body and the procedure body are grouped with curly braces in the same way.
The opening curly brace must be on the same line as proc and whi le. If you want to

EDHO0307En1031 — 05/14

QD Newport.

Experienca | Sobutions

XPS-Q8

Tcl Manual

QD Newport.

Experienca | Sobutions

2.2.9

put opening curly braces on the line after a whille or an if statement, you must
escape the newline with a backslash:
while {$i < $x}\
{
set product ...

}

Always group expressions and command bodies with curly
braces.

Curly braces around the boolean expression are crucial because they delay variable
substitution until the whille command implementation tests the expression. The
following is an example that will result in is an infinite loop:

seti1; while $i<=10 {incr i}
The loop will run indefinitely.* The reason is that the Tcl interpreter will substitute for
$i before while is called, so whille gets a constant expression 1<=10 that
will always be true. You can avoid these kinds of errors by adopting a consistent coding
convention that groups expressions with curly braces:

set i 1; while {$i<=10} {incr i}

The incr command is used to increment the value of the loop variable . This is a
handy command that saves us from the longer command:
set i [expr $i + 1]
The incr command can take an additional argument, a positive or negative integer by
which to change the value of the variable. In this form, it is possible to eliminate the
loop variable i and just modify the parameter x. The loop body can be written like
this:
while {$x > 1} {
set product [expr $product * $x]
incr x -1
}
Example 1-14 shows another factorial, this time using a recursive definition. A
recursive function is one that calls itself to complete its work. Each recursive call
decrements X by one, until the value of x is equal to one, and then the recursion stops.

Example 1-14: A recursive definition of factorial.
proc Factorial {x} {
if {$x <= 1}{
return 1
}else{
return [expr $x * [Factorial [expr $x - 1]1]
}
}

More about Variables

The set command will return the value of a variable only if it is passed in single
argument. It treats that argument as a variable name and returns the current value of the
variable. The dollar-sign syntax used to get the value of a variable is really just an easy
way to use the set command. Example 1-15 shows a clever way to circumvent this
restriction by putting the name of one variable into another variable:

Example 1-15: Using set _to return a variable value.
set var {the value of var}

= the value of var
set name var

9 EDHO0307En1031 — 05/14

XPS-Q8

Tcl Manual

2291

2.29.2

= var
set name

= var
set $name

= the value of var

This is a somewhat tricky example. In the last command, $name gets substituted with
var. Then, the set command returns the value of var, which is the value of
var. Nested set commands provide another way to achieve a level of indirection.
The last set command above can be written as follows:

set [set name]
= the value of var

Using a variable to store the name of another variable may seem overly complex,
however, there are situations when it is very useful. There is even a special command,
upvar, that makes this sort of trick easier.

Funny Variable Names

The Tcl interpreter makes some assumptions about variable names that makes it easy to
embed variable references into other strings. By default, it will assume variable names
contain only letters, digits, and the underscore. The construct $foo.0 represents a
concatenation of the value of foo and the literal ““. 0.

If the variable reference is not delimited by punctuation or white space, then you can
use curly braces to explicitly delimit the variable name (e.g., ${x3}). You can also use
this to reference variables with funny characters in their name, although generally the
use of funny variable names is not ideal. If you find yourself using funny variable
names, or computing the names of variables, then you may want to use the upvar
command.

Example 1-16: Embedded variable references.
set foo filename
set object $foo.0

= Ffilename.o
set a AAA
set b abc${a}def

= abcAAAdef
set .0 yuk!
set x ${.o}y

= yukly

The unset Command

You can delete a variable with the unset command:
unset varName varName?2 ...

Any number of variable names can be passed to the unset command. However,
unset will raise an error if a variable is not already defined.

EDHO0307En1031 — 05/14

QD Newport.

Experienca | Sobutions

10

XPS-Q8

Tcl Manual

QD Newport.

Experienca | Sobutions

2.29.3

2.2.10

Using info exists

The existence of a variable can be tested with the info exists command. For
example, because incr requires that a variable exist, you might have to test for the
existence of the variable first.

Example 1-17: Using info_to determine if a variable exists.
if {![info exists foobar]} {
set foobar 0
}else {
incr foobar

More about Math Expressions

This section describes a few of the finer points about mathematics in Tcl scripts. In Tcl
7.6 and earlier versions math is not very efficient due to required conversions between
strings and numbers. The expr command must convert arguments from strings to
numbers. It then does computations with double precision floating point values. The
result is formatted into a string that have, by default, 12 significant digits. This number
can be changed by setting the tcl_precision variable to the number of significant
digits desired. Typically seventeen digits of precision are enough to insure that no
information is lost when converting back and forth between a string and an IEEE double
precision number:

Example 1-18: Controlling precision with tcl precision.
exprl1/3

= 0
expr1/3.0

= 0.333333333333
set tcl_precision 17

= 17
expr1/3.0
The trailing 1 is the IEEE rounding digit

= 0.33333333333333331

In Tcl 8.0 and later versions, the overhead of conversions is eliminated in most cases by
the built-in compiler. Nevertheless, Tcl was not designed to support math-intensive
applications. There is support for string comparisons by expr, so you can test string
values with 1f statements. You must use quotes so that expr knows that you are
doing a string comparison:

if {$answer =="yes"}{... }

However, the string compare and string equal commands are more
reliable because expr may do conversions on strings that look like numbers.
Expressions can include variable and command substitutions and still be grouped with
curly braces. This is because an argument to expr is subject to two rounds of
substitution: one by the Tcl interpreter, and a second by expr itself. Ordinarily this is
not a problem because math values do not contain the characters that are special to the
Tcl interpreter. The second round of substitutions is needed to support commands like
while and iT that use the expression evaluator internally.

Grouping expressions can make them run more efficiently.

You should always group expressions in curly braces and let expr take care of
command and variable substitutions. Otherwise, your values may suffer extra
conversions from numbers to strings and back to numbers. Not only is this process
slow, but the conversions can loose precision in certain circumstances. For example,
suppose X is computed from a math function:

11 EDHO0307En1031 — 05/14

XPS-Q8

Tcl Manual

2.2.11

2.2.12

set x [expr {sqrt(2.0)}]
At this point the value of x is a double-precision floating point value, just as you would
expect. If you do this:

set two [expr $x * $x]

then you may or may not get 2.0 as the result! This is because Tcl will substitute $x
and expr will concatenate all its arguments into one string, and then parse the
expression again. In contrast, if you do this:

set two [expr {$x * $x}]

then expr will do the substitutions, and it will be careful to preserve the floating point
value of x. The expression will be more accurate and run more efficiently because no
string conversions will be done. The story behind Tcl values is described in more detail
in Chapter 44 on C programming and Tcl.

Comments

Tcl uses the pound character, #, for comments. Unlike the convention used by many
other languages, the # must occur at the beginning of a command. A # that occurs
elsewhere is not treated as a comment. An easy trick to append a comment to the end of
a command is to precede the # with a semicolon to terminate the previous command:

Here are some parameters

set rate 7.0 ;# The interest rate

set months 60 ;# The loan term

One subtle effect to watch for is that a backslash effectively continues a comment line
onto the next line of the script. In addition, a semicolon inside a comment is not
significant. Only a newline terminates comments:

Here is the start of a Tcl comment \

and some more of it; still in the comment

A surprising property of Tcl comments is that curly braces inside comments are still
counted for the purposes of finding brace pairs. This inconvenient “feature” was
probably intended to keep the original Tcl parser simple. However, this means that the
following will not work as expected:
if {boolean expression1} {
if {boolean expression2} {
some commands

}

The previous sequence results in an extra left curly brace, and probably a complaint
about a missing closed brace at the end of your script! A good technique to comment
out large chunks of code is to put the code inside an 1 block that will never execute:
if {0} {
unused code here

}

Substitution and Grouping Summary

The following rules summarize the fundamental actions of grouping and substitution
that are performed by the Tcl interpreter before it invokes a command:

e Command arguments are separated by white space, unless arguments are grouped
with curly braces or double quotes as described below.

e Grouping with curly braces, { }, prevents substitutions. Braces nest. The
interpreter includes all characters between the matching left and right brace in the
group, including newlines, semicolons, and nested braces. The enclosing (i.e.,
outermost) braces are not included in the group’s value.

e Grouping with double quotes, , allows substitutions. The interpreter groups
everything until another double quote is found, including newlines and semicolons.
The enclosing quotes are not included in the group of characters. A double-quote
character can be included in the group by quoting it with a backslash, (e.g., \"").

EDHO0307En1031 — 05/14

QD Newport.

Experienca | Sobutions

12

XPS-Q8

Tcl Manual

QD Newport.

Experienca | Sobutions

2.2.13

e Grouping decisions are made before substitutions are performed, which means that
the values of variables or command results do not affect grouping.

e Adollar sign, $, causes variable substitution. VVariable names can be any length, and
are sensitive to case used. If variable references are embedded into other strings, or
if they include characters other than letters, digits, and the underscore, they can be
distinguished with the ${varname} syntax.

e Square brackets, [], cause command substitution. Everything between the
brackets is treated as a command, and everything including the brackets is replaced
with the result of the command. Nesting is allowed.

e The backslash character, \, is used to quote special characters. You can think of this
as another form of substitution in which the backslash and the next character or
group of characters is replaced with a new character.

e Substitutions can occur anywhere unless prevented by curly brace grouping. Part of
a group can be a constant string, and other parts can be the result of substitutions.
Even the command name can be affected by substitutions.

e A single round of substitutions is performed before a command is invoked. The
result of a substitution is not interpreted a second time. This rule is important if you
have a variable value or a command result that contains special characters such as
spaces, dollar signs, square brackets, or braces. Because only a single round of
substitution is done, you do not have to worry about special characters in values
causing extra substitutions.

Fine Points

< A common error is to forget a space between arguments when grouping with braces
or quotes. This is because white space is used as the separator, while the braces or
quotes only provide grouping. If you forget the space, you will get syntax errors about
unexpected characters after the closing brace or quote. The following is an error because
of the missing space between } and {:

if {$x > 1H{puts "x = $x"}

e A double quote is only used for grouping when it comes after white space. This
means you can include a double quote in the middle of a group without quoting it
with a backslash. This requires that curly braces or white space delimit the group.
Using this obscure feature is not recommended, but this is what it looks like:

set silly a"b

e When double quotes are used for grouping, the special effect of curly braces is
turned off. Substitutions occur everywhere inside a group formed with double
quotes.

set x xvalue
set y "foo {$x} bar"
= Too {xvalue} bar

o When double quotes are used for grouping and a nested command is encountered,
the nested command can use double quotes for grouping, also.

puts "results [format "%f %f" $x $y]"

e Spaces are not required around the square brackets used for command
substitution. For the purposes of grouping, the interpreter considers everything
between the square brackets as part of the current group. The following sets x to the
concatenation of two command results because there is no space between] and [.

set x [cmd1][cmd2]

e Newlines and semicolons are ignored when grouping with braces or double quotes.
They get included in the group of characters just like all the others. The following
sets X to a string that contains newlines:

set x "This is line one.

13 EDHO0307En1031 — 05/14

XPS-Q8 Tcl Manual

This is line two.
This is line three."

e During command substitution, newlines and semicolons are significant as
command terminators. If you have a long command that is nested in square brackets,
put a backslash before the newline if you want to continue the command on another
line.

e A dollar sign followed by something other than a letter, digit, underscore, or left
parenthesis is treated as a literal dollar sign. The following sets x to the single
character $.

setx$
2.3 Reference

2.3.1 Backslash Sequences

\a Bell. (0x7)

\b Backspace. (0x8)

\f Form feed. (0xc)

\n Newline. (0xa)

\r Carriage return. (0Oxd)

\t Tab. (0x9)

\v Vertical tab. (0xb)

\<newlines CQViet;?]Iaacsept:fehewlme and the leading white space on the next line

\\ Backslash. (*\")

\ooo Octal specification of character code. 1, 2, or 3 digits.

\xhh Hexadecimal specification of character code. 1 or 2 digits.
Hexadecimal specification of a 16-bit Unicode character value. 4

\uhhhh hex digits.

Replaced with literal c if ¢ is not one of the cases listed above. In

\c particular, \$, \", \{, \}, \], and \[are used to obtain these characters.

2.3.2 Arithmetic Operators

-~ Unary minus, bitwise NOT, logical NOT.
*1 % Multiply, divide, remainder.

+ - Add, subtract.
<< >> Left shift, right shift.

<><=>= | Comparison: less, greater, less or equal, greater or equal.
=== Equal, not equal.

& Bitwise AND.

A Bitwise XOR.

| Bitwise OR.
&& Logical AND.

[| Logical OR.
X?y:z If x then y else z.

QD Newport.

Experienca | Sobutions

EDHO0307En1031 — 05/14 14

XPS-Q8

Tcl Manual

3.0 Tcl Script Execution at Boot

QD Newport.

Experienca | Sobutions

A Tcl boot script is a program that starts automatically after the controller boot
sequence. It is defined in the system.ini configuration file under the GENERAL section.
[GENERAL]
BootScriptFileName = testarg.tcl
BootScriptArguments = argl, arg2, arg3, arg4, arg5
BootScriptFileName is the file name of the Tcl script. This file must be stored in the
.MAdmin\Public\Scripts folder of the XPS controller.

BootScriptArguments defines the list of arguments of the Tcl script. The separator
between two arguments is the comma.
Example:

A Tcl boot script could for instance contain the initialization and home search of all
motion groups. Once the controller finishes booting, the motion groups will
automatically initialize and home.

15 EDHO0307En1031 — 05/14

XPS-Q8

Tcl Manual

4.0 Principle of a Tcl Script Redirection to a telnet Session

4.1

Opening a Telnet session is a convenient and easy way to observe Tcl Script responses,
as well as pass information to and from the XPS controller.

Introduction

Telnet is a network protocol used on the Internet or local area networks to provide a
bidirectional interactive text-oriented communications tool using a virtual terminal
connection. User data is interspersed in-band with telnet control information in an 8-bit
byte oriented data connection over the Transmission Control Protocol (TCP). This is a
useful common protocol used to dialog with a remote machine.

A telnet connection is opened with any valid login, which can be administrator,
anonymous, or whatever other logins are configured.

- For windows users, click Start -> Run -> then type telnet + IP address (IP address is
the controller address you are connecting to) as below:

= Run @

=== Typethe name of a program, folder, document, or Internet
resaurce, and Windows will open it faryou,

Open: telnet 192,168.33.234 -

B This task will be created with administrative privileges.

[OK H Cancel || Browse... |

- The telnet window is opened, type login (here login and password are
“Administrator™):

gﬁ Telnet 192.168.33.233

QMX Meutrino C(localhost)» Cttyp@l>

login: Administrator
Password:

- An arrow appears which indicates that the telnet connection is ready for
communication.

- Several telnet session window can be opened concurrently.

EDHO0307En1031 — 05/14

QD Newport.

Experienca | Sobutions

16

http://en.wikipedia.org/wiki/Network_protocol
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Local_Area_Network
http://en.wikipedia.org/wiki/Text_terminal
http://en.wikipedia.org/wiki/In-band_signaling
http://en.wikipedia.org/wiki/Byte_oriented
http://en.wikipedia.org/wiki/Transmission_Control_Protocol

XPS-Q8

Tcl Manual

QD Newport.

Experienca | Sobutions

4.2

421

422

“Hello world " Example

Tcl script example
The following Tcl script example shows how to display a message in a telnet window.

Set channel’s name to be used for telnet.

In this example we assume it is passed to the script as the
First argument, if not specified output to stdio.

Open the channel for read mode and get its id,

this is the id that will be passed to puts function.
if {$tcl_argv(0) = 0} {

set telnetOut [open *"/dev/$tcl_argv(0)" r+]

} else {

set telnetOut stdout

b

display hello world message

puts $telnetOut ""Hello world !*

Force transfer to channel’s output buffer
flush $telnetOut

Tcl script execution
When you open a telnet session you can see the channel’s identifier as shown below:

] Telnet 192.168.33.233 Channel identifier

QMR Heutrino (localhost) {ttypd;

login: Administrator
Password:

The channel identifier will be used as argument for the function called from Terminal to
execute the Tcl script:

SYSTEM STAGE CONTROLLER CONFIGURATION FRONT PANEL TERMINAL TUNING FUNCTIONALTESTS DOCUMENTATION

QD Rlewport.

Function argument(s) : TCLScriptExecute
j Execute a TCL script from a TCL file

PositionerTimeFlasherDisable
PositionerTimeFlasherEnable char TCLFileName[250] oK

Function list

PositionerTimeFlasherGet

PositionerTimeFlasherSet [TCLScript.tel =] _Edi Cancel
PositionerUserTravellimitsGet

PositionerlUserTravellimitsSet char TaskName[250]

PositionerWarningFollowingErrorGet \Tc\Task

PositionerWarningFollowingErrorSet

Reboot cl ParametersList[250]
RestartApplication ‘ttpr

SingleAxisSlaveModeDisable
SingleAxisSlaveModeEnable
SingleAxisSlaveParametersGet
SingleAxisSlaveParametersSet
TCLScriptExecuteAndWait

TCLScriptkill
TimerGet
TimerSet
NOTE : Some commands can tzke a long time &
blank scraen or s HTTE 404 errar, check your

TCLScriptExecuteWithPriority :1

ute, so ifyou've gota
client time-aut,

Command history list Clear History ‘ TCL Generator Gathering Display

[commons [z

Q> Riewport. & spectra-Physics Solutions to: Make, Manage and Measure Light™
o Fe=p ==

17 EDHO0307En1031 — 05/14

XPS-Q8 Tcl Manual

4.2.3 Tcl script execution result
The Tcl script execution result is shown on the opened telnet session window:

gﬂ Telnet 192168.33.233

QHE Meutrino (localhost) {(ttypl>

login: Administrator
FPazsword:
% Hello world *

QD Newport.

Experienca | Sobutions

EDHO0307En1031 — 05/14 18

XPS-Q8 Tcl Manual

5.0 Example of a Tcl Script Redirection to a telnet Session

The following example shows the redirection of a Tcl script to a telnet session the telnet
window displays the results of the Tcl execution (gets the library and the firmware
version).

Set channel’s name to be used for telnet.
In this example we assume it is passed to the script as the
First argument, if not specified output to stdio.
Open the channel for read mode and get its id,
this is the id that will be passed to puts function.
if {$tcl_argv(0) = 0} {
set telnetOut [open "/dev/$tcl_argv(0)" r+]
} else {
set telnetOut stdout
3
Get library version
set code [catch "GetLibraryVersion strVersion']
it {$code 1= 0} {
ErrorStringGet $socketlD $code strError
puts $telnetOut "GetLibraryVersion Not OK => error = $code : $strError"
Force transfer to channel’s output buffer
flush $telnetOut
} else {
puts $telnetOut "Library Version = $strVersion”
Force transfer to channel’s output buffer
flush $telnetOut
3
Open socket
set TimeOut 60
set code [catch "OpenConnection $TimeOut socketlID'"]
it {$code 1= 0} {
puts $telnetOut "OpenConnection failed => $code"
Force transfer to channel’s output buffer
flush $telnetOut
} else {
Get firmware version
set code [catch "FirmwareVersionGet $socketlID strVersion']
it {$code 1= 0} {
ErrorStringGet $socketlD $code strError

puts $telnetOut "FirmwareVersionGet Not OK => error = $code :
$strError"

Force transfer to channel’s output buffer
flush $telnetOut

} else {
puts $telnetOut "Firmware Version = $strVersion"
Force transfer to channel’s output buffer
flush $telnetOut

3

Close TCP socket

set code [catch "TCP_CloseSocket $socketlID'"]

}

QD Newport.

Experienca | Sobutions

19 EDHO0307En1031 — 05/14

XPS-Q8 Tcl Manual

6.0 Proposed Function for Error Handling

For convenient error debugging and safe program execution, the response (errors) of
each XPS command should be read and tested. To do this, a procedure to “display error
and close” can be used. This procedure is defined at the beginning of Tcl scripts. Users
simply have to call this procedure after each API. This allows for a significant reduction
of code when many APIs are used.

HHHHHHHH AR R

Display error and close procedure

HHHHHHHH AR R

proc DisplayErrorAndClose {socketlD code APIName telnetOut} {

Set global variable
global tcl_argv

If error occurred other than Timeout error
if {$code 1= -2} {
Error => Get error description
set code2 [catch "ErrorStringGet $socketlD $code strError']

If error occurred with the APl ErrorStringGet
it {$code2 1= 0} {

Display APl name, error code and

ErrorStringGet error code

in the telnet window when using APIs

TCLScriptExecute or

TCLScriptExecuteAndWait

puts $telnetOut "$APIName ERROR => $code /

ErrorStringGet ERROR => $code2"

Force transfer to channel’s output buffer
flush $telnetOut

in the web terminal when using API

TCLScriptExecuteAndWait

set tcl_argv(0) "$APIName ERROR => $code"
} else {

Display APl name, number and description

of the error

in the telnet window when using APls

#TCLScriptExecute or

TCLScriptExecuteAndWait

puts $telnetOut "$APIName ERROR => $code :

$strError

Force transfer to channel’s output
buffer
flush $telnetOut

in the web terminal when using API
TCLScriptExecuteAndWait
set tcl_argv(0) "$APIName ERROR => $code : $strError"
3
} else {

Display Timeout error

QD Newport.

Experienca | Sobutions

EDHO0307En1031 — 05/14 20

XPS-Q8 Tcl Manual

in the telnet window when using APIs

TCLScriptExecuteAndWait or

TCLScriptExecuteAndWait

puts $telnetOut "$APIName ERROR => $code : TCP timeout"

Force transfer to channel’s output buffer
flush $telnetOut

in the web terminal when using API
TclScriptExecuteAndWait
set tcl_argv(0) "$APIName ERROR => $code : TCP timeout"

3
Close TCP socket
set code2 [catch "TCP_CloseSocket $socketlID'"]
return

}

B B B G I R

Main process

e

Set channel’s name to be used for telnet.

In this example we assume it is passed to the script as the
First argument, if not specified output to stdio.

Open the channel for read mode and get its id,

this is the id that will be passed to puts function.

if {$tcl_argv(0) = 0} {

set telnetOut [open "/dev/$tcl_argv(0)" r+]

} else {

set telnetOut stdout

}

Open socket

set TimeOut 60

set groupName *'SingleAxisl"

set code [catch "OpenConnection $TimeOut socketlID'"]

if {$code 1= 0} {

puts $telnetOut "OpenConnection failed => $code"

Force transfer to channel’s output buffer

flush $telnetOut

} else {
Get firmware version
set code [catch "Grouplnitialize $socketlD $groupName']
if {$code = 0} {

Get error description

DisplayErrorAndClose $socketlID $code "Grouplnitialize"
$telnetOut

}

Close TCP socket
set code [catch "TCP_CloseSocket $socketlID'"]
it {$code 1= 0} {
puts $telnetOut "TCP socket $socketlID failed => $code"
Force transfer to channel’s output buffer
flush $telnetOut

}

QD Newport.

Experienca | Sobutions

21 EDHO0307En1031 — 05/14

XPS-Q8

Tcl Manual

This way of error management is also used with Tcl scripts that get generated by the Tcl
generator, see Terminal of the XPS web interface. The procedure for displaying errors
and closing the TCP connection is as described above. The DisplayErrorAndClose
procedure can be used for each API in which the following code is used:

Operation

set ErrorCode [catch "Grouplnitialize $socketlID S™]

Error management

ifT {$ErrorCode !'= 0} {
DisplayErrorAndClose $socketlD $code "Grouplnitialize"
return

}

If an error occurs, the script returns the first error found, and indicates the APl name
that generated the error. Providing the error number as well as corresponding
description. The execution of the script is stopped.

For instance, if we ask an initialized group to initialize again, the example code above
returns the following error:

=] Telnet 192.168.33.233

QNE MNeutrino (localhost)> C(ttyp@l>

: Administrator

% GroupInitialize ERROR => -22 : Error —22 : Mot allowed action

EDHO0307En1031 — 05/14

QD Newport.

Experienca | Sobutions

22

XPS-Q8

Tcl Manual

7.0 Examples of Tcl Programs

QD Newport.

Experienca | Sobutions

7.1

7.1.1

7.1.2

7.13

Please refer to the XPS Programmer’s Manual for the list of XPS API’s that are used
with Tcl.

Using analog 1/0 for motion

Configuration

Group type Number Group name Positioner name
XY 1 alignstation al!gnstat!on.mlddle and
alignstation.base

Description

This example opens a TCP connection, kills the XY group, then initializes and homes
the group. Five relative moves of 1 unit each are commanded to the group. Then, the
value of the GP102 analog input is read in a continuous loop and sent to the redirected
stdout (refer to Section 4, Principle of a Tcl script redirection to a telnet session) as
long as the voltage of the analog input is greater than 0.2 volt. While above 0.2 volts,
absolute moves are commanded to both axes: the X positioner moves correspond to the
voltage value of the analog input, and the Y positioner moves correspond to the
opposite of the voltage value of the analog input. When the GPIO2 input voltage is
equal to or less han the limit of 0.2 volt, the final move and display occurs. Finally the
program ends by closing the socket.

If the voltage is less than 0.2 volt during the first reading, the program goes directly to
the end without displaying the 1/0 value or absolute moves of the XY group.

Please see the Section 6, Proposed function for error handling for the code of the
procedure DisplayErrorAndClose.

Tcl code

Set channel’s name to be used for telnet.

In this example we assume it is passed to the script as the
First argument, if not specified output to stdio.

Open the channel for read mode and get its id,

this is the id that will be passed to puts function.

if {$tcl_argv(0) = 0} {

set telnetOut [open "/dev/$tcl_argv(0)" r+]

} else {

set telnetOut stdout

}

Initialization

set TimeOut 60

set group "alignstation"

set axisl "alignstation.middle"
set axis2 "alignstation.base"
set analogin "GP102_ADC1"

Open socket

set code [catch "OpenConnection $TimeOut socketlID'"]
it {$code 1= 0} {

puts $telnetOut ""OpenConnection failed => $code"

Force transfer to channel’s output buffer

flush $telnetOut

23 EDHO0307En1031 — 05/14

XPS-Q8

Tcl Manual

} else {

Kill group

set code [catch "GroupKill $socketlD $group™]

it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code ‘‘GroupKill" $telnetOut
return

Initialize group

set code [catch "Grouplnitialize $socketlD $group']

it {$code 1= 0} {

DisplayErrorAndClose $socketlID $code "Grouplnitialize” $telnetOut
return

}

Home group

set code [catch "GroupHomeSearch $socketlD $group']

if {$code 1= 0} {

DisplayErrorAndClose $socketlID $code '‘GroupHomeSearch™ $telnetOut
return

}

Move group with 5 relative units

for { set var 0 } { $var <= 5 } { incr var } {
set code [catch "GroupMoveRelative

$socketID $group 1 1]

it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
“GroupMoveRelative” $telnetOut
return

}

Get analog value

set code [catch "GPIOAnalogGet $socketlD $analogin voltage']

if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "GPIOAnalogGet™ $telnetOut
return

}

Test if voltage is greater than 0.2 volt
while { $voltage >= 0.2 } {

Get analog value
set code [catch "GPI10AnalogGet
$socketID $analogin voltage™]
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
“GPI10AnalogGet” $telnetOut
return
}
set movel $voltage
set move2 [expr { $voltage * -1 }]
puts $telnetOut "$analogin: $voltage volt(s)"
Force transfer to channel’s output buffer

EDHO0307En1031 — 05/14

QD Newport.

24 Experienca | Sobutions

XPS-Q8 Tcl Manual

flush $telnetOut

puts $telnetOut " move axisl: $movel"
flush $telnetOut
puts $telnetOut " move axis2: $move2"

flush $telnetOut

Move axis 1
set code [catch "GroupMoveAbsolute $socketlID
$axisl $movel”]
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
“GroupMoveAbsolute” $telnetOut
return
3
Move axis 2
set code [catch "GroupMoveAbsolute $socketlD
$axis2 $move2]
if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
“GroupMoveAbsolute” $telnetOut

return

Wait 1 second and close socket
after 1000
puts $telnetOut "End of program"

Force transfer to channel’s output buffer
flush $telnetOut

TCP_CloseSocket $socketlD

This is what gets displayed on a Telnet window. In this example the input voltage of
GPIO2 decreases from 2.4 Vto 0 V.

EB Telnet 192.168.33.233

GQNE MNeutrino {(localhost?> <{ttyp@d)

login: Administrator
Password:
5 GPIO2._ADC1: 2.433972041232 volt(s)
move axisl: 2.433972041232
move axisZ: —2.433972841232
GFI02.ADC1: 2.968264684283 volt(s)
move axisl: 2_868264684283
move axis2: -2 _ 068264684283
GPIO2 _ADC1: 1.97897827272 voltis)
move axisl: 1_.97897827272
move axisZ: —1.97897827272
GPIO2.ADC1: 1.878122236786 volt{s)
move axiszl: 1.8Y8122236706
move axis2: —1.870122236706
GFI02 . ADC1: 1.39678174527 volt<{s>
move axisl: 1.37678194527
move axiszZ: —1.39678174527
GPI02.ADC1: B.8525817651954 volt<{s>
move axizl: B_8525017651954
move axisZ: —@A.8525817651754
GFI02.ADC1: -B.3987318982117 volt(s)
move axisl: —@A.3987318982117
move axisZ: B.3987310982119
End of program

QD Newport.

Experience | Solutions

25 EDHO0307En1031 — 05/14

XPS-Q8 Tcl Manual

7.2 Using Digital 1/0 for Motion

7.2.1 Configuration

Group type Number Group name Positioner name
XY 1 alignstation al!gnstat!on.mlddle and
alignstation.base

7.2.2 Description

This example opens a TCP connection, kills the XY group, then initializes and homes
the group. Five relative moves of 1 unit each are commanded to the group. Then, the
value of the GPIO1 digital input is read in a continuous loop and sent to the redirected
stdout as long as the value of the input is not 255 (Refer to Section 4, Principle of a
Tcl script redirection to a telnet session). When the value of the digital GPIO1 input is
equal to 1, absolute moves are commanded to both axes: the X positioner moves to the
absolute position 1 and the Y positioner moves to the absolute position -1. When the
value of 255 is obtained, the last display occurs. Finally, the program ends by closing
the socket. If the GPIO1 input value is 255 during the first reading, the program goes to
the end without displaying the digital input value.

Please see the Section 6, Proposed function for error handling.

7.2.3 Tcl Code

Set channel’s name to be used for telnet.

In this example we assume it iIs passed to the script as the
First argument, If not specified output to stdio.

Open the channel for read mode and get its id,

this is the id that will be passed to puts function.

it {$tcl_argv(0) = 0} {

set telnetOut [open *"/dev/$tcl_argv(0)" r+]

} else {

set telnetOut stdout

}

Initialization

set TimeOut 60

set group "alignstation

set axisl "alignstation.middle"
set axis2 "alignstation.base"
set digitalin "GP101.DI"

Open socket
set code [catch "OpenConnection $TimeOut socketlID'"]
if {$code 1= 0} {
puts $telnetOut "OpenConnection failed => $code"
Force transfer to channel’s output buffer
flush $telnetOut
} else {
Kill group
set code [catch "GroupKill $socketID $group™]
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "GroupKill" $telnetOut
return

QD Newport.

Experienca | Sobutions

EDHO0307En1031 — 05/14 26

XPS-Q8

Tcl Manual

QD Newport.

Experienca | Sobutions

Initialize group

set code [catch "Grouplnitialize $socketlD $group']

it {$code 1= 0} {

DisplayErrorAndClose $socketlID $code "Grouplnitialize"™ $telnetOut
return

Home group

set code [catch "GroupHomeSearch $socketlD $group']

it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "'GroupHomeSearch™ $telnetOut
return

Move group with 5 relative units
for { set var 0 } { $var <= 5 } { incr var } {
set code [catch "GroupMoveRelative $socketlD
$group 1 17]
if {$code 1= 0} {

DisplayErrorAndClose $socketlID $code ‘‘GroupMoveRelative"
$telnetOut

return

Get digital value

set code [catch "GPIODigitalGet $socketID $digitalin value']

it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "GPIODigitalGet" $telnetOut
return

Test i1f value of GPI01.DIl is different from 255
while { $value = 255 } {

Get digital value
set code [catch "GPIODigitalGet $socketlD
digitalin value]
if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
"GPIODigitalGet" $telnetOut
return
3
puts $telnetOut "$digitalin: $value™
flush $telnetOut
if { $value == 1 } {

puts $telnetOut " move axisl: 1"
flush $telnetOut
puts $telnetOut " move axis2: -1"

flush $telnetOut

Move axis 1

set code [catch "GroupMoveAbsolute $socketlD
$axisl 1]

if {$code 1= 0} {

27 EDHO0307En1031 — 05/14

XPS-Q8

Tcl Manual

DisplayErrorAndClose $socketlID $code
"'GroupMoveAbsolute" $telnetOut

return

Move axis 2
set code [catch "GroupMoveAbsolute $socketlID
$axis2 -1"]

it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
"'"GroupMoveAbsolute" $telnetOut
return

3

} else {
after 100

b
after 1000

Wait 1 second and close socket
after 1000
puts $telnetOut "End of program"

Force transfer to channel’s output buffer
flush $telnetOut

TCP_CloseSocket $socketlID

This is what gets displayed on the telnet window. See Section 4, Principle of a Tcl
script redirection to a telnet session for details about telnet connections:

ﬂ Telnet 192.168.33.233

QME Meutrino <localhost) <{ttyp@)>

login: Administrator
Password:
¢ GPIOL.DI: 15
GPIO1_DI: 15

?

End of program

EDHO0307En1031 — 05/14

Q> Newport.

Experiencs | Soistions
28

XPS-Q8 Tcl Manual

7.3 GPIO1 Test

7.3.1 Description

This example opens a TCP connection. It sets the value to 255 to the mask and the
output GPI0O1.DO, then gets this output value and assigns it to the variable OA. The
program sets the value of 255 to the mask and the value of 0 to the output GP101.DO,
then gets this output value and assigns it to variable OB. It sets the value of 63 to the
mask and the value of 255 to the output GPIO1.DO, then gets this output value and
assigns it to the variable OC. After the settings, the program tests the value of the
variables OA, OB and OC. Finally, the program ends by closing the socket.

Please see the sections:
4 Principle of a Tcl script redirection to a telnet session.
6 Proposed function for error handling.

7.3.2 Tcl Code
Set channel’s name to be used for telnet.
In this example we assume it iIs passed to the script as the
First argument, If not specified output to stdio.
Open the channel for read mode and get its id,
this is the id that will be passed to puts function.
it {$tcl_argv(0) = 0} {
set telnetOut [open "/dev/$tcl_argv(0)" r+]
} else {
set telnetOut stdout

}

Initialization
set TimeOut 120
set output '"GPI01.DO™
set input "GPI10O1.DI"
Open TCP socket
set code [catch "OpenConnection $TimeOut socketlID'"]
it {$code 1= 0} {
puts $telnetOut "OpenConnection failed => $code"
Force transfer to channel’s output buffer
flush $telnetOut
} else {
Set output of GPIO1l to 255
set code [catch "GPIODigitalSet $socketlD $output 255 255'"]
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "GPIODigitalSet” $telnetOut
return
3
Get value of output of GPIO1 and store it in OA
set code [catch "GPIODigitalGet $socketlID $output OA™]
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "GPIODigitalGet” $telnetOut
return
} else {
puts $telnetOut "OA = $OA"
Force transfer to channel’s output buffer
flush $telnetOut

}

QD Newport.
s St 29 EDHO0307En1031 — 05/14

XPS-Q8

Tcl Manual

Set output of GPIO1l to O
set code [catch "GPIODigitalSet $socketlD $output 255 0]
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "'GPIODigitalSet" $telnetOut
return
3
Get value of output of GPIO1 and store it in OB
set code [catch "GPIODigitalGet $socketlD $output OB']
it {$code 1= 0} {
DisplayErrorAndClose $socketlD $code "'GPIODigitalGet" $telnetOut
return
} else {
puts $telnetOut OB = $0B"
Force transfer to channel’s output buffer
flush $telnetOut
¥
Set output of GPIO1l to 63 (mask value)
set code [catch "GPIODigitalSet $socketlD $output 63 255'"]
if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "GPIODigitalSet” $telnetOut
return
¥
Get value of output of GPIO1 and store it in OC
set code [catch "GPIODigitalGet $socketlD $output OC]
if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "GPIODigitalGet” $telnetOut
return
} else {
puts $telnetOut "OC = $0OC"
Force transfer to channel’s output buffer
flush $telnetOut
3
Test if OA = 255 and OB = 0O
if {$OA == 255 & $0B == 0} {
puts $telnetOut "Digital outputs OK"
Force transfer to channel’s output buffer
flush $telnetOut
Test 1f OC = 63
if {$0C == 63} {
puts $telnetOut "Mask OK"
Force transfer to channel’s output buffer
flush $telnetOut
} else {
puts $telnetOut "Problem with Mask™
Force transfer to channel’s output buffer
flush $telnetOut

}

} else {
puts $telnetOut "Problem with digital outputs™

Force transfer to channel’s output buffer
flush $telnetOut

3

Close socket

TCP_CloseSocket $socketlD

EDHO0307En1031 — 05/14

QD Newport.

Experienca | Sobutions

30

XPS-Q8 Tcl Manual

This is what gets displayed on a telnet window for the above example.

gﬂ Telnet192.168.33.232

QNX MNeutrino (localhost? <ttypld)

login: Administrator
Password:
S 0Op = 255

3
Digital outputs OK
Mask OK

8
6

7.4 Gathering with motion

7.4.1 Configuration

Group type Number Group name Positioner name
Singleaxis 1 SINGLE_AXIS SINGLE_AXIS.MY_STAGE

7.4.2 Description

This example opens a TCP connection, Kills the single axis group, then initializes and
homes the group. The program then configures the parameters for the gathering (data to
be collected: setpoint and current position). It then defines an action (GatheringRun) to
an event (SGamma.MotionStart). When the positioner moves from 0 to 50, the data is
gathered (with a divisor equal to 100, data is collected every 100" servo cycle, or every
10 ms). At the end, the gathering is stopped and saved in a text file (Gathering.dat in
Admin/Public directory of the controller). Finally, the program ends by closing the
socket.

Please see sections:
4 Principle of a Tcl script redirection to a telnet session.
6 Proposed function for error handling.

743 Tcl Code

Set channel’s name to be used for telnet.

In this example we assume it is passed to the script as the
First argument, if not specified output to stdio.

Open the channel for read mode and get its id,

this is the id that will be passed to puts function.

if {$tcl_argv(0) = 0} {

set telnetOut [open *"/dev/$tcl_argv(0)" r+]

} else {
set telnetOut stdout

}

Initialization

set TimeOut 60

set Group "SINGLE_AXIS"

set Positioner "SINGLE_AXIS.MY_STAGE"

set Typel "SINGLE_AXIS.MY_STAGE.SetpointPosition"
set Type2 "SINGLE_AXIS_MY_STAGE.CurrentPosition™
set Event "SGamma.MotionStart'

set Action "GatheringRun'

QD Newport.

bores s 31 EDH0307En1031 — 05/14

XPS-Q8

Tcl Manual

set Displacement 50
set NbPoints 1000
set Div 100
set code 0O
Open TCP socket
set code [catch "OpenConnection $TimeOut socketlID'"]
if {$code 1= 0} {
puts $telnetOut "OpenConnection failed => $code"
Force transfer to channel’s output buffer
flush $telnetOut
} else {
Kill group
set code [catch "GroupKill $socketID $Group™]
if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "'GroupKill" $telnetOut
return

Initialize group
set code [catch "Grouplnitialize $socketlD $Group']
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "Grouplnitialize"
$telnetOut

return

Home group
set code [catch "GroupHomeSearch $socketID $Group']
it {$code 1= 0} {
DisplayErrorAndClose $socketlD $code "GroupHomeSearch"
$telnetOut

return

Configure gathering parameters

set code [catch "GatheringConfigurationSet $socketID $Typel
$Type2™]

if {$code 1= 0} {

DisplayErrorAndClose $socketlID $code "GatheringConfigurationSet"
$telnetOut

return

Add an event
set code [catch "EventAdd $socketlD $Positioner $Event O
$Action $NbPoints $Div 0]
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "EventAdd" $telnetOut
return

Move positioner
set code [catch "GroupMoveRelative $socketlD $Group $Displacement']
if {$code 1= 0} {

EDHO0307En1031 — 05/14

QD Newport.

32 Experienca | Sobutions

XPS-Q8

Tcl Manual

QD Newport.

DisplayErrorAndClose $socketlID $code ''GroupMoveRelative"
$telnetOut

return

Stop gathering and save data
set code [catch "GatheringStopAndSave $socketlID'"]
iT {$code !'= 0} {

DisplayErrorAndClose $socketlID $code '"GatheringStopAndSave"
$telnetOut

return

}

Close TCP socket
set code [catch "TCP_CloseSocket $socketlID'"]

When pressing the Gathering display button of the terminal window of the XPS web
site interface, the following data is displayed:

2 Graphic - Windows Internet Explorer - O]
t] http://192.168.33.233/form/ Graph.html

Comment
Curve color Gain Offset Curve designation Unit
Magenta |w 1.0 0.0| |SINGLE_AXIS.MY_STAGE.SetpointPosition w | units
Blue - 1.0 0.0| |SINGLE_AXIS.MY_STAGE.CurrentPosition * | units
Rad - 1.0 0.0{ [None | no unit
Green - 1.0 0.0| |None w | no unit
Cyan - 1.0 0.0| |None w | no unit
50
45
40
32
20
25
20
15
io
3
-0
0,2 0.4 0,6 0,8 1.1 1.3 1,5 1.7 1.2 2,1
(seconds)
Ma | 100.0]
Min | -LDD.Dl | Defined range | | Auto range
Java Runtime Envirenment El gl
m Nm @Sp?ﬂi‘?hphﬂzt'if Solutions to: Make, Manage and Measure Lights™

33 EDHO0307En1031 — 05/14

XPS-Q8

Tcl Manual

7.5

7.5.1

7.5.2

7.5.3

External gathering

Configuration

Group type Number Group name Positioner name
Singleaxis 1 SINGLE_AXIS SINGLE_AXIS.MY_STAGE
Description

This example opens a TCP connection, kills the single axis group, then initializes and
homes the group. The program then configures the parameters for the external gathering
(data to be collected: ExternalLatchPosition and GPIO2.ADC1 value). It defines an
action (ExternalGatheringRun) to an event (Immediate). Each time the trigger in
receives a signal, the data is gathered (with a divisor equal to 1, gathering takes place
every signal on the trigger input). Every second, the current number of gathered data
points is displayed. At the end, the external gathering is stopped and saved in a text file
(ExternalGathering.dat in Admin/Public directory of the controller). Finally, the

program ends by closing the socket.
Please see Section 6, Proposed function for error handling.

Tcl Code

Set channel’s name to be used for telnet.

In this example we assume it iIs passed to the script as the

First argument, if not specified output to stdio.
Open the channel for read mode and get its id,
this is the id that will be passed to puts function.
if {$tcl_argv(0) = 0} {
set telnetOut [open */dev/$tcl_argv(0)" r+]
} else {
set telnetOut stdout
b
Initialization
set TimeOut 60
set Group "'SINGLE_AXI1S™
set Positioner "SINGLE_AXIS.MY_STAGE"
set Typel "SINGLE_AXIS.MY_STAGE.ExternallLatchPosition"
set Type2 "GPI102.ADC1"
set Event "Immediate"
set Action "ExternalGatheringRun'
set NbPoints 20
set Div 1
set Current O
set code 0O
Open TCP socket
set code [catch "OpenConnection $TimeOut socketlID'"]
if {$code 1= 0} {
puts $telnetOut "OpenConnection failed => $code"
Force transfer to channel’s output buffer
flush $telnetOut
} else {
Kill group
set code [catch "GroupKill $socketID $Group™]
if {$code 1= 0} {

EDHO0307En1031 — 05/14

34

QD Newport.

Experienca | Sobutions

XPS-Q8 Tcl Manual

DisplayErrorAndClose $socketlID $code "GroupKill™ $telnetOut
return

}

Initialize group
set code [catch "Grouplnitialize $socketlD $Group']
if {$code 1= 0} {
DisplayErrorAndClose $socketlD $code "Grouplnitialize"
$telnetOut

return

Home group
set code [catch "GroupHomeSearch $socketID $Group']
if {$code 1= 0} {
DisplayErrorAndClose $socketlD $code "GroupHomeSearch'
$telnetOut

return

}

Configure gathering parameters

set code [catch "GatheringExternalConfigurationSet $socketID $Typel
$Type2™]

if {$code 1= 0} {
DisplayErrorAndClose $socketlD $code '‘GatheringExternalConfigurationSet"
$telnetOut

return

Add an event

set code [catch "EventAdd $socketID $Positioner $Event 0 $Action
$NbPoints $Div 0]

it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "EventAdd"” $telnetOut
return

Push on TRIG IN button..

puts $telnetOut "External gathering"

Force transfer to channel’s output buffer
flush $telnetOut

Wait end of external gathering
while {$Current < $NbPoints} {

Get current acquired point number

set code [catch "GatheringExternalCurrentNumberGet $socketlD
Current Max'"]

if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
""GatheringExternalCurrentNumberGet"” $telnetOut

return

} else {
puts $telnetOut "current number: $Current"
Force transfer to channel’s output buffer
flush $telnetOut

QD Newport.

Experienca | Sobutions

35 EDHO0307En1031 — 05/14

XPS-Q8

Tcl Manual

after 1000

}

Stop external gathering and save data

set code [catch "GatheringExternalStopAndSave $socketlID™]

if {$code 1= 0} {

DisplayErrorAndClose $socketlID $code
""GatheringExternal StopAndSave" $telnetOut

return

b
Close TCP socket

set code [catch "TCP_CloseSocket $socketlID'"]

}

This is what gets displayed in a Telnet window for the above example and when the
trigger in receives a signal every second. For details about Telnet connections, see

Section 4 Principle of a Tcl script redirection to a telnet session:

current
current
current
current
current
current
current
current
current
current

numbher:
number:
numbher:
numbher:
numbher:
numbher:
numbher:
numbher:
numbher:
numbher:

Iﬂ Telnet 192.168.33.233

QME Meutrino <localhost)> C(ttyp@l>

login: Administrator
Pazzword:
% External gathering

a
i |
4
2
1A
11
12
13
17
28

EDHO0307En1031 — 05/14

36

Q> Newport.

Experienca | Sobutions

XPS-Q8 Tcl Manual

7.6 Position Compare

7.6.1 Configuration

Group type Number Group name Positioner name
Singleaxis 1 SINGLE_AXIS SINGLE_AXIS.MY_STAGE

7.6.2 Description

This example opens a TCP connection, kills the single axis group, then initializes and
homes the group. With an absolute move, the positioner moves to the start position —15.
Then, the program configures the parameters for the position compare (enabled from -
10 to +10 with step position of 1 unit). It enables the position compare functionality and
executes a relative move of 25 (final position will be —15+25 = +10). During this move,
between the positions —10 and +10, pulses are sent by the trigger output for each 1 unit
incremental position. The position compare mode is then disabled and the program ends
by closing the socket.

Please see the sections:
4 Principle of a Tcl script redirection to a telnet session.
6 Proposed function for error handling.

7.6.3 Tcl Code

Set channel’s name to be used for telnet.

In this example we assume it is passed to the script as the
First argument, If not specified output to stdio.

Open the channel for read mode and get its id,

this is the id that will be passed to puts function.

it {$tcl_argv(0) = 0} {

set telnetOut [open "/dev/$tcl_argv(0)" r+]

} else {
set telnetOut stdout

}

Initialization

set TimeOut 60

set Group "SINGLE_AXIS"

set Positioner "SINGLE_AXIS.MY_STAGE"

set StartPosition -15

set Displacement 25

set MinPos -10

set MaxPos 10

set StepPos 1

set code O

Open TCP socket

set code [catch "OpenConnection $TimeOut socketlID'"]

it {$code 1= 0} {
puts $telnetOut "OpenConnection failed => $code"
Force transfer to channel’s output buffer
flush $telnetOut

} else {
Kill group
set code [catch "GroupKill $socketID $Group']
if {$code 1= 0} {

QD Newport.
s St 37 EDHO0307En1031 — 05/14

XPS-Q8

Tcl Manual

DisplayErrorAndClose $socketlID $code "GroupKill™
return

b

Initialize group

set code [catch "Grouplnitialize $socketlD $Group']

if {$code 1= 0} {
DisplayErrorAndClose $socketlD $code "Grouplnitialize"
return

b

Home group

set code [catch "GroupHomeSearch $socketlID $Group™]

if {$code 1= 0} {

DisplayErrorAndClose $socketlD $code 'GroupHomeSearch'
$telnetOut

return
3
Move positioner to start position

set code [catch "GroupMoveAbsolute $socketlD $Group
$StartPosition™]

it {$code 1= 0} {

DisplayErrorAndClose $socketlID $code ‘‘GroupMoveAbsolute"
$telnetOut

return
¥
Set position compare parameters

set code [catch "PositionerPositionCompareSet $socketlD $Positioner
$MinPos $MaxPos $StepPos™]

if {$code 1= 0} {

DisplayErrorAndClose $socketlID $code
“"PositionerPositionCompareSet"” $telnetOut

return

Enable position compare mode

set code [catch "PositionerPositionCompareEnable $socketlD
$Positioner™]

if {$code = 0} {
DisplayErrorAndClose $socketlID $code
“"PositionerPositionCompareEnable™ $telnetOut

return

}

Move positioner
set code [catch "GroupMoveRelative $socketlD $Group $Displacement']
if {$code = 0} {
DisplayErrorAndClose $socketlD $code "GroupMoveRelative'
$telnetOut
return
}
Disable position compare mode

set code [catch "PositionerPositionCompareDisable $socketlID
$Positioner™]

it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
"PositionerPositionCompareDisable" $telnetOut

return

EDHO0307En1031 — 05/14

QD Newport.

38 Experienca | Sobutions

XPS-Q8 Tcl Manual
3
Close TCP socket
set code [catch "TCP_CloseSocket $socketlID'"]
b
7.7 Master-Slave Mode
7.7.1 Configuration
Group type Number Group name Positioner name
Single axis 1 SINGLE_AXIS SINGLE_AXIS.MY_STAGE
XY 1 XY XY.Xand XY.Y
7.7.2 Description
This example opens a TCP connection, kills the Singles Axis group and the XY group.
The program then initializes and homes the groups. It sets the parameters for the master
slave mode (slave: single axis group, master: X positioner from XY group). Then, it
enables the master slave mode and executes a relative move of 20 units with the master
positioner. At the same time, the slave positioner executes the same move as the master.
The master slave mode is then disabled and the program ends by closing the socket.
Please see the sections:
4 Principle of a Tcl script redirection to a telnet session.
6 Proposed function for error handling.
7.7.3 TCL Code

QD Newport.

Experienca | Sobutions

Set channel’s name to be used for telnet.
In this example we assume it iIs passed to the script as the
First argument, If not specified output to stdio.
Open the channel for read mode and get its id,
this is the id that will be passed to puts function.
it {$tcl_argv(0) = 0} {
set telnetOut [open "/dev/$tcl_argv(0)" r+]
} else {
set telnetOut stdout
3
Initialization
set TimeOut 60
set SlaveGroup "SINGLE_AXIS"
set XYGroup "XY"
set MasterPositioner "XY.X"
set MasterRatio 1
set code 0O
set Displacement 20
Open TCP socket
set code [catch "OpenConnection $TimeOut socketlID'"]
if {$code 1= 0} {
puts stdout 'OpenConnection failed => $code"
} else {
Kill single axis group
set code [catch "GroupKill $socketlD $SlaveGroup']
if {$code = 0} {
DisplayErrorAndClose $socketlID $code '"'Single axis GroupKill"

39 EDHO0307En1031 — 05/14

XPS-Q8 Tcl Manual

return

Initialize single axis group
set code [catch "Grouplnitialize $socketID $SlaveGroup']
if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code '"Single axis
Grouplnitialize" $telnetOut
return

Home single axis group
set code [catch "GroupHomeSearch $socketID $SlaveGroup']
if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code '"'Single axis
GroupHomeSearch" $telnetOut
return

Kill XY group
set code [catch "GroupKill $socketlD $XYGroup']
if {$code 1= 0} {

DisplayErrorAndClose $socketlID $code XY GroupKill"
$telnetOut

return

Initialize XY group
set code [catch "Grouplnitialize $socketlD $XYGroup']
if {$code = 0} {

DisplayErrorAndClose $socketlID $code XY Grouplnitialize"
$telnetOut

return

Home XY group
set code [catch "GroupHomeSearch $socketlD $XYGroup']
if {$code = 0} {

DisplayErrorAndClose $socketlID $code ""XY GroupHomeSearch™
$telnetOut

return

Set slave (single axis group) with its master
(positioner from any group : XY here)

set code [catch "SingleAxisSlaveParametersSet $socketlD $SlaveGroup
$MasterPositioner $MasterRatio']

if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
""SingleAxisSlaveParametersSet"” $telnetOut
return

Enable master-slave mode (group must be ready)
set code [catch "SingleAxisSlaveModeEnable $socketlID $SlaveGroup™]
if {$code 1= 0} {

QD Newport.
EDHO307En1031 — 05/14 0 e marviel

XPS-Q8 Tcl Manual

DisplayErrorAndClose $socketlID $code
""SingleAxisSlaveModeEnable" $telnetOut

return

Move master positioner
(the slave must follow the master in relation to a ratio)

set code [catch "GroupMoveRelative $socketlD $MasterPositioner
$Displacement™]

if {$code 1= 0} {
DisplayErrorAndClose $socketlD $code "GroupMoveRelative'
$telnetOut

return

Disable master-slave mode
set code [catch "SingleAxisSlaveModeDisable $socketlID $SlaveGroup']
if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
""SingleAxisSlaveModeDisable" $telnetOut

return

Close TCP socket
set code [catch "TCP_CloseSocket $socketlID'"]

QD Newport.

Experienca | Sobutions

41 EDHO0307En1031 — 05/14

XPS-Q8 Tcl Manual

7.8 Jogging

7.8.1 Configuration
Group type Number Group name Positioner name
XY 1 XY XY.X and XY.Y

7.8.2 Description

This example opens a TCP connection, kills the XY group, then initializes and homes
the group. It enables the jog mode and sets the parameters to move a positioner in the
positive direction with a velocity of 10 units/s for 1.5 seconds. Then, during the 2 next
seconds, the positioner moves in the reverse direction with a velocity of -20 units/s, and
finally stops (velocity set to 0). The jog functionality is then disabled and the program
ends by closing the socket.

Please see the sections:
4 Principle of a Tcl script redirection to a telnet session.
6 Proposed function for error handling.

7.8.3 TCL code
Set channel’s name to be used for telnet.
In this example we assume it is passed to the script as the
First argument, If not specified output to stdio.
Open the channel for read mode and get its id,
this is the id that will be passed to puts function.
it {$tcl_argv(0) = 0} {
set telnetOut [open "/dev/$tcl_argv(0)" r+]
} else {
set telnetOut stdout
3
Initialization
set TimeOut 60
set Group "XY"
set Positioner "XY.X"
set Velocityl 10
set Velocity2 -20
set Acceleration 80
set code O
Open TCP socket
set code [catch "OpenConnection $TimeOut socketlID'"]
if {$code 1= 0} {
puts $telnetOut "OpenConnection failed => $code"
Force transfer to channel’s output buffer
flush $telnetOut
} else {
Kill group
set code [catch "GroupKill $socketlD $Group™]
if {$code = 0} {
DisplayErrorAndClose $socketlID $code "GroupKill™ $telnetOut

return

Initialize group

QD Newport.

Experienca | Sobutions

EDHO0307En1031 — 05/14 42

XPS-Q8 Tcl Manual

set code [catch "Grouplnitialize $socketlD $Group']
if {$code = 0} {
DisplayErrorAndClose $socketlID $code "Grouplnitialize"
$telnetOut

return

Home group
set code [catch "GroupHomeSearch $socketID $Group']
if {$code 1= 0} {
DisplayErrorAndClose $socketlD $code "GroupHomeSearch"
$telnetOut

return

Enable jog mode (group must be ready)
set code [catch "GroupJogModeEnable $socketID $Group']
if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "GroupJogModeEnable™
$telnetOut

return

Set jog parameters to move a positioner => constant velocity is
not null

set code [catch "GroupJogParametersSet $socketlD $Positioner
$Velocityl $Acceleration’]
if {$code = 0} {
DisplayErrorAndClose $socketlD $code 'GroupJogParametersSet"
$telnetOut
return

Wait 3 seconds
after 3000

Set jog parameters to move the positioner in the reverse sense
=> constant velocity is not null

set code [catch "GroupJogParametersSet $socketlD $Positioner
$Velocity2 $Acceleration’]

it {$code 1= 0} {
DisplayErrorAndClose $socketlD $code ‘‘GroupJogParametersSet"
$telnetOut

return

Wait 3 seconds
after 3000

Set jog parameters to stop a positioner => constant velocity is
null

set code [catch "GroupJogParametersSet $socketlD $Positioner O
$Acceleration™]
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code ‘‘GroupJogParametersSet"
$telnetOut

QD Newport.

Experienca | Sobutions

43 EDHO0307En1031 — 05/14

XPS-Q8

Tcl Manual

7.9

7.9.1

7.9.2

7.9.3

return

Disable jog mode
(constant velocity must be null on all positioners from group)
set code [catch "GroupJogModeDisable $socketID $Group']
if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code 'GroupJogModeDisable™
$telnetOut

return

}

Close TCP socket
set code [catch "TCP_CloseSocket $socketlID]

Jogging and Gathering

Configuration

Group type Number Group name Positioner name
XY 1 XY XY.X_VP and XY.Y_VP
Description

This example opens a TCP connection, kills the XY group, then initializes and homes.
The program then configures the parameters for gathering (data to be collected: setpoint
position, current position, setpoint velocity and setpoint acceleration). It displays the
maximum acquisition per type of data that can be collected (max total data
acquisition/number of data types = 1000000/4 = 250000). It defines an action
(GatheringRun) to an event (Immediate). When the jog mode is enabled, it changes the
jog speed and acceleration. At the end, the jog mode is disabled, the gathering is
stopped and saved in a text file (Gathering.dat in Admin/Public directory of the
controller). Finally, the program ends by closing the socket.

Please see the sections:
4 Principle of a Tcl script redirection to a telnet session.
6 Proposed function for error handling.

Tcl Code

Set channel’s name to be used for telnet.

In this example we assume it is passed to the script as the
First argument, if not specified output to stdio.

Open the channel for read mode and get its id,

this is the id that will be passed to puts function.
if {$tcl_argv(0) = 0} {

set telnetOut [open "/dev/$tcl_argv(0)" r+]

} else {

set telnetOut stdout

3

Initialization

set TimeOut 120

set Moteur "XY"

set Mot "XY.X"

set A "XY.X.SetpointPosition"

set B "XY._X.CurrentPosition"

EDHO0307En1031 — 05/14

QD Newport.

Experienca | Sobutions

44

XPS-Q8 Tcl Manual

set C "XY.X.SetpointVelocity"
set D "XY.X.SetpointAcceleration"
set Event "Immediate"
set Action "‘GatheringRun"
set Num O
Open TCP socket
set code [catch "OpenConnection $TimeOut socketlID"]
if {$code 1= 0} {
puts $telnetOut "OpenConnection failed => $code"
Force transfer to channel’s output buffer
flush $telnetOut
} else {
Kill group
set code [catch "GroupKill $socketID $Moteur']
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code " $telnetOut
return

Initialize group
set code [catch "Grouplnitialize $socketID $Moteur']
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "Grouplnitialize"
$telnetOut
return

Home group
set code [catch "GroupHomeSearch $socketID $Moteur']
it {$code 1= 0} {
DisplayErrorAndClose $socketlD $code "GroupHomeSearch"
$telnetOut
return

Set gathering parameters
set code [catch "GatheringConfigurationSet $socketID $A $B $C $D"]
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
""GatheringConfigurationSet" $telnetOut
return

Get gathering parameters
set code [catch "GatheringConfigurationGet $socketID J']
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
""GatheringConfigurationGet"” $telnetOut
return
} else {
puts $telnetOut "Data types to be gathered: $J"
Force transfer to channel’s output buffer
flush $telnetOut

QD Newport.

Experienca | Sobutions

45 EDHO0307En1031 — 05/14

XPS-Q8 Tcl Manual

Get gathering current acquired point number
set code [catch "GatheringCurrentNumberGet $socketID Num Max']
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
"GatheringCurrentNumberGet"” $telnetOut

return
} else {
puts $telnetOut "Maximum possible number of acquisition
per type of data: $Max"
Force transfer to channel’s output buffer
flush $telnetOut

Add an event
set code [catch "EventAdd $socketlD $Mot $Event O $Action 20000 10
0]
if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "EventAdd"” $telnetOut

return

Enable jog mode
set code [catch "GroupJogModeEnable $socketID $Moteur']
if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "GroupJogModeEnable™
$telnetOut

return

Wait 2 seconds

after 2000

puts $telnetOut "Jog moves and data acquisition™
Force transfer to channel’s output buffer
flush $telnetOut

Set jog parameters to move both positioners in the positive

direction

set code [catch "GroupJogParametersSet $socketlD $Moteur 5 50 5
50"]

if {$code 1= 0} {

DisplayErrorAndClose $socketlID $code '‘GroupJogParametersSet"
$telnetOut

return

}

puts $telnetOut " X and Y positioners going in positive
direction during 500 msec"

flush $telnetOut

puts $telnetOut " X and Y positioners speed = 5 / Acceleration =
50"

flush $telnetOut

Wait 500 milliseconds

after 500

Set jog parameters to move both positioners,

the First iIn the positive direction, the second in the
negative

QD Newport.

Experienca | Sobutions

EDHO0307En1031 — 05/14 46

XPS-Q8

Tcl Manual

QD Newport.

Experienca | Sobutions

50"

sec

sec"

50"]

sec"

sec"

50"]

set code [catch "GroupJogParametersSet $socketID $Moteur 10 50 -10

if {$code '= 0} {

DisplayErrorAndClose $socketlID $code
$telnetOut

return

b
puts $telnetOut "

flush $telnetOut
puts $telnetOut "

flush $telnetOut
puts $telnetOut "
flush $telnetOut
puts $telnetOut "
flush $telnetOut
Wait 2 seconds
after 2000

X positioner going

Y positioner going

X positioner speed

Y positioner speed

"GroupJogParametersSet"

in positive direction during 2

in negative direction during 2

= 10 / Acceleration = 50"

= -10 / Acceleration = 50"

Set jog parameters to move both positioners in the reverse

sense

set code [catch "GroupJogParametersSet $socketID $Moteur -10 50 20

if {$code 1= 0} {

DisplayErrorAndClose $socketlID $code
$telnetOut

return

b
puts $telnetOut "

flush $telnetOut
puts $telnetOut "

flush $telnetOut
puts $telnetOut "
flush $telnetOut
puts $telnetOut **
flush $telnetOut
Wait 2 seconds
after 2000

X positioner going

Y positioner going

X positioner speed

Y positioner speed

"'GroupJogParametersSet"

in negative direction during 2

in positive direction during 2

= -10 / Acceleration = 50"

= 20 / Acceleration = 50"

Set jog parameters to move both positioners in the negative

direction

set code [catch "GroupJogParametersSet $socketlD $Moteur -5 50 -5

it {$code 1= 0} {

DisplayErrorAndClose $socketlID $code '‘GroupJogParametersSet"
$telnetOut

return

}

puts $telnetOut "X and Y positioners going in negative direction during
500 msec"

flush $telnetOut

puts $telnetOut "X and positioner speed = -5 / Acceleration = 50"

flush $telnetOut

Wait 500 milliseconds

after 500

47

EDHO0307En1031 — 05/14

XPS-Q8 Tcl Manual

Set jog parameters to stop the positioners => constant

velocities are null

set code [catch "GroupJogParametersSet $socketlD $Moteur O 50 O
50"]

it {$code 1= 0} {

DisplayErrorAndClose $socketlID $code
"'GroupJogParametersSet"$telnetOut

return

}

puts $telnetOut " X and Y positioners stopped"

flush $telnetOut

puts $telnetOut " X and Y positioner speed = 0 / Acceleration = 50"

flush $telnetOut

Wait 500 milliseconds

after 500

Disable jog mode

set code [catch "GroupJogModeDisable $socketID $Moteur']

if {$code 1= 0} {

DisplayErrorAndClose $socketlID $code ‘‘GroupJogModeDisable™
$telnetOut

return

}

Stop gathering and save data

set code [catch "GatheringStopAndSave $socketlID']

if {$code 1= 0} {

DisplayErrorAndClose $socketlID $code 'GatheringStopAndSave'
$telnetOut

return

}

Close socket

puts $telnetOut "End of program"

flush $telnetOut

TCP_CloseSocket $socketlD

This is what gets displayed on a Telnet window for the above example. For details
about Telnet connections, see Section 4, Principle of a Tcl script redirection to a telnet
session.

&= Telnet 192.168.33.233 -0 X

QNX Neutrino (localhost? (ttypH>

login: Administrator
Password:
S Data types to be gathered: XY_.H_.SetpointPosition;RY.R.CurrentPosition;RY.HX.Set
pointUelocity;EY.H.SetpointAcceleration
Maximum possihle number of acguisition per type of data: 250088
Jog moves and data acguisition
£ and Y positioners going in positive direction during 580 msec
and Y positioners speed = 5 / Acceleration = 5
positioner going in positive direction during 2 sec
positioner going in negative direction during 2 sec
¥ positioner speed = 18 ~ Acceleration = 5@
Y positioner speed = —-18 ~ Acceleration = 5A
positioner going in negative direction during 2 sec
positioner going in positive direction during 2 sec
¥ positioner speed = —18 ~ Acceleration =5
Y positioner speed = 28 ~ Acceleration = 5@
and ¥ positioners going in negative direction during 580 msec
¥ and positioner speed = -5 ~ Acceleration =
and ¥ positioners stopped
¥ and Y positioner speed = B ~/ Acceleration = 58
of program

Q> Newport.

Experience | Solutions

EDHO0307En1031 — 05/14 48

XPS-Q8 Tcl Manual
7.10 Analog Position Tracking
7.10.1 Configuration
Group type Number Group name Positioner name
XY 1 XY XY.X and XY.Y
7.10.2 Description
This example opens a TCP connection, kills the XY group, then initializes and homes
the group. It sets the parameters for the position analog tracking functionality
(positioner, analog input, offset, scale, velocity and acceleration) and enables the analog
tracking mode. The mode gets activated for 20 seconds. During this time, the stage
position follows the voltage of the analog input GPIO2.ADC1. Then, the analog
tracking mode gets disabled and the program ends by closing the socket.
Please see the sections:
4 Principle of a Tcl script redirection to a telnet session.
6 Proposed function for error handling.
7.10.3 TCL Code
Set channel’s name to be used for telnet.
In this example we assume it iIs passed to the script as the
First argument, if not specified output to stdio.
Open the channel for read mode and get its id,
this is the id that will be passed to puts function.
if {$tcl_argv(0) = 0} {
set telnetOut [open *"/dev/$tcl_argv(0)" r+]
} else {
set telnetOut stdout
b
Initialization
set TimeOut 60
set Group XY™
set Positioner "XY.X"
set Analoglnput "GPI102.ADC1"
set Offset O
set Scale 1
set Velocity 20
set Acceleration 80
set TrackingType "‘Position"
set code 0O
Open TCP socket
set code [catch "OpenConnection $TimeOut socketlID'"]
if {$code 1= 0} {
puts stdout 'OpenConnection failed => $code"
} else {
Kill group
set code [catch "GroupKill $socketID $Group']
if {$code = 0} {
DisplayErrorAndClose $socketlID $code "GroupKill™ $telnetOut
return
b
QD Newport.

Experienca | Sobutions

49 EDHO0307En1031 — 05/14

XPS-Q8 Tcl Manual

Initialize group
set code [catch "Grouplnitialize $socketlD $Group']
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "Grouplnitialize"
$telnetOut

return

}

Home group

set code [catch "GroupHomeSearch $socketID $Group']

if {$code 1= 0} {
DisplayErrorAndClose $socketlD $code "GroupHomeSearch"

$telnetOut

return

}

Set analog tracking parameters

set code [catch "PositionerAnalogTrackingPositionParametersSet
$socketlD $Positioner $Analoglnput $0ffset
$Scale $Velocity $Acceleration’™]

it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
"PositionerAnalogTrackingPositionParametersSet" $telnetOut
return

3

Enable analog position tracking mode (group must be ready)

set code [catch "GroupAnalogTrackingModeEnable $socketlID $Group
$TrackingType™]

it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
""GroupAnalogTrackingModeEnable™ $telnetOut
return

}

Change the amplitude of GP102.ADC1 analog input during 20 seconds
after 20000
Disable analog position tracking mode
set code [catch "GroupAnalogTrackingModeDisable $socketID $Group']
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
"'GroupAnalogTrackingModeDisable" $telnetOut
return
3
Close TCP socket
puts $telnetOut "End of program®
flush $telnetOut
set code [catch "TCP_CloseSocket $socketlID'"]

QO Newport.
EDHO0307En1031 — 05/14 50 s St

XPS-Q8 Tcl Manual
7.11 Backlash Compensation
7.11.1 Configuration
Group type Number Group name Positioner name
Single axis 1 SINGLE_AXIS SINGLE_AXIS.MY_STAGE
7.11.2 Description
This example opens a TCP connection and kills the single axis group. It enables the
backlash compensation capability (for this the controller must be in the not initialized
state). The group then is initialized and homed. The value of the backlash compensation
is set to 0.1. The positioner executes relative moves with the backlash compensation.
Finally, the backlash compensation is disabled and the program ends by closing the
socket.
CAUTION
o The HomeSearchSequenceType in the stages.ini file must not be
set as CurrentPositionAsHome.
e The Backlash parameter in the stages.ini file must be greater than
zero.
e To apply any modifications of the stages.ini, the controller must
be rebooted after the modification is made.
Please see the sections:
4 Principle of a Tcl script redirection to a telnet session.
6 Proposed function for error handling.
7113 TCL Code

QD Newport.

Experienca | Sobutions

Set channel’s name to be used for telnet.

In this example we assume it is passed to the script as the
First argument, if not specified output to stdio.

Open the channel for read mode and get its id,

this is the id that will be passed to puts function.

if {$tcl_argv(0) = 0} {

set telnetOut [open "/dev/$tcl_argv(0)" r+]

} else {

set telnetOut stdout

}

Initialization

set TimeOut 60

set Group "SINGLE_AXIS"

set Positioner "SINGLE_AXIS.MY_STAGE"

set Backlashvalue 0.1

set Displacement 10

set code O

Open TCP socket

set code [catch "OpenConnection $TimeOut socketlID'"]

it {$code 1= 0} {
puts stdout "OpenConnection failed => $code"
flush $telnetOut

} else {

51 EDHO0307En1031 — 05/14

XPS-Q8 Tcl Manual

Kill group

set code [catch "GroupKill $socketID $Group™]

it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "GroupKill"
return

Enable backlach compensation
HAHHHHH BRI R R R R R R R R R R R R R

CAUTION :
Group must be “not initialized” and Backlash>0 in the
“stages.ini” file

bbb e e L e G L e e e e s s L
set code [catch "PositionerBacklashEnable $socketlD $Positioner']
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
"PositionerBacklashEnable" $telnetOut

return
3
Initialize group
set code [catch "Grouplnitialize $socketlD $Group']
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "Grouplnitialize"
$telnetOut

return
¥
Home group
set code [catch "GroupHomeSearch $socketID $Group']
it {$code 1= 0} {

DisplayErrorAndClose $socketlD $code "GroupHomeSearch"
$telnetOut

return
}
Modify Backlash value
Caution : Backlash > 0 in the file “stages.ini”

set code [catch "PositionerBacklashSet $socketlD $Positioner
$Backlashvalue™]

if {$code 1= 0} {

DisplayErrorAndClose $socketlD $code ‘‘PositionerBacklashSet"
$telnetOut

return
}
Move group in positive direction
set code [catch "GroupMoveRelative $socketlD $Group $Displacement']
if {$code = 0} {
DisplayErrorAndClose $socketlD $code "GroupMoveRelative'
$telnetOut

return
}
Move group in negative direction

set code [catch "GroupMoveRelative $socketID $Group -
$Displacement™]

it {$code 1= 0} {

QO Newport.
EDHO0307En1031 — 05/14 52 s St

XPS-Q8

Tcl Manual

QD Newport.

Experienca | Sobutions

7.12

7121

7122

7.12.3

DisplayErrorAndClose $socketlD $code "GroupMoveRelative'
$telnetOut

return
3
Disable Backlash (if you want to do trajectory, jogging or
tracking)
CAUTION : to enable backlash, you must call “GroupKill” or
“KillAll” to come back in “not initialized” status
set code [catch "PositionerBacklashDisable $socketID $Positioner']
if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code
"PositionerBacklashDisable"™ $telnetOut
return
}
Close TCP socket
puts $telnetOut "End of program"
flush $telnetOut
set code [catch "TCP_CloseSocket $socketlID'"]

}

Timer Event and Global Variables

Configuration

Group type Number Group name Positioner name
Single axis 1 SINGLE_AXIS SINGLE_AXIS.MY_STAGE
Description

The script StartScript.tcl opens a TCP connection, configures a timer and uses this timer
as an event. The action, in relation to this timer event, executes a second Tcl script
named MyScript.tcl. The StartScript.tcl script sets a global variable and closes the
socket.

The timer is a permanent event. The frequency of the timer is set by the divisor, in this
example 20000, which means that the second Tcl script gets executed every 20000
servo loop or every 2 seconds (divisor/servo loop rate = 20000/10000 = 2 seconds).

The script MyScript.tcl reads the global variable, increments it as long as the variable is
below 10. When the global variable is equal to 10, the second script deletes the timer
event and finally, the program ends by closing the socket.

Please see the sections:
4 Principle of a Tcl script redirection to a telnet session.
6 Proposed function for error handling.

TCL Code

StartScript.tcl

Set channel’s name to be used for telnet.

In this example we assume it iIs passed to the script as the
First argument, if not specified output to stdio.

Open the channel for read mode and get its id,

this is the id that will be passed to puts function.

if {$tcl_argv(0) = 0} {

set telnetOut [open */dev/$tcl_argv(0)" r+]

} else {

set telnetOut stdout

}

53 EDHO0307En1031 — 05/14

XPS-Q8

Tcl Manual

Initialization
set TCPTimeOut 60
set code 0O
set ISRPeriodSec 0.0001
set Positioner "SINGLE_AXIS.MY_STAGE"
set TimerName "Timerl"
set TimerPeriodSec 2
set EvtParam O
set Action "ExecuteTCLScript"
set TCLFile "MyScript.tcl”
set TCLTask "MyTask"
set GlobalVarNumber 1
set Value 5
Open TCP socket
set code [catch "OpenConnection $TCPTimeOut socketlID'"]
it {$code 1= 0} {
puts $telnetOut "OpenConnection failed => $code"
flush $telnetOut
} else {
Calculate divisor (periods are in seconds)
set Divisor [expr {$TimerPeriodSec / $ISRPeriodSec}]
puts $telnetOut "Divisor: $Divisor"
flush $telnetOut
set Divisor [expr {int($Divisor)}]
puts $telnetOut "Divisor troncated in integer: $Divisor"
flush $telnetOut
Configure a timer
set code [catch "TimerSet $socketlID $TimerName $Divisor']
if {$code = 0} {
DisplayErrorAndClose $socketlID $code "TimerSet"” $telnetOut
return
} else {
puts $telnetOut "Timer set"
flush $telnetOut
3
Add timer event with an action that allows to execute
“MyScript.tcl”
set code [catch "EventAdd $socketlD $Positioner $TimerName
$EvtParam $Action $TCLFile $TCLTask $tcl_argv(0)']
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "EventAdd"™ $telnetOut
return
3
Set global variable
set code [catch "GlobalArraySet $socketlID $GlobalVarNumber $Value']
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "GlobalArraySet"
$telnetOut
return
3
close TCP socket
set code [catch "TCP_CloseSocket $socketlID'"]

EDHO0307En1031 — 05/14

QD Newport.

Experienca | Sobutions

54

XPS-Q8

Tcl Manual

QD Newport.

Experienca | Sobutions

MyScript.tcl
Set channel’s name to be used for telnet.
In this example we assume it is passed to the script as the
First argument, if not specified output to stdio.
Open the channel for read mode and get its id,
this is the id that will be passed to puts function.
if {$tcl_argv(0) = 0} {
set telnetOut [open */dev/$tcl_argv(0)" r+]
} else {
set telnetOut stdout
b

Initialization
set TCPTimeOut 60
set code 0O
set GlobalVarNumber 1
set ReadValue 0O
set NewValue O
set END 10
set Positioner "SINGLE_AXIS.MY_STAGE"
set EventName "Timerl"
set EventPara O
Open TCP socket
set code [catch "OpenConnection $TCPTimeOut socketlID]
if {$code 1= 0} {
puts "OpenConnection failed => $code"
} else {
Read global variable
set code [catch "GlobalArrayGet $socketlD $GlobalVarNumber ReadValue’]
if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "GlobalArrayGet” $telnetOut
return
} else {
puts $telnetOut "Read value: $ReadValue"
flush $telnetOut

}

if {$ReadValue < $END} {
Increment global variable
set NewValue [expr {$ReadValue + 1}]
Set global variable to a new value
set code [catch "GlobalArraySet $socketlID $GlobalVarNumb $NewValue']
if {$code = 0} {
DisplayErrorAndClose $socketlID $code "GlobalArraySet” $telnetOut
return
} else {
puts $telnetOut "New value: $NewValue'
flush $telnetOut
3
} else {

Delete timer event

set code [catch "EventRemove $socketlD $Positioner $EventName
$EventPara']

if {$code 1= 0} {

55 EDHO0307En1031 — 05/14

XPS-Q8 Tcl Manual

DisplayErrorAndClose $socketlD $code "EventRemove™ $telnetOut
return
} else {
puts $telnetOut "Timer event deleted"
flush $telnetOut

}

close TCP socket
set code [catch "TCP_CloseSocket $socketlID'"]

This is what gets displayed on a Telnet window for the above example. For details
about Telnet connections, see Section 4, Principle of a Tcl script redirection to a telnet
session :

lﬂ Telnet 192.168.33.233

QHE Heutrino (localhost) {ttyp@>

login: Adminisztrator
Password:

¢ Divisor: 200688.08
Divizor troncated in integer: 20000
Timer set

Read value: 5

Mew value: b

Read value: b

Mew value: 7

Read value: 7

Mew value: 8

Read value: 8

Mew value: 9

Read value: 9

Mew value: 18

Read value: 18

Timer event deleted

7.13 Tcl Script with Input Arguments

7.13.1 Configuration

Group type Number Group name Positioner name
Singleaxis 1 SINGLE_AXIS SINGLE_AXIS.MY_STAGE

7.13.2 Description

This example opens a TCP connection, kills the single axis group, then initializes and
homes the group. The program reads the three required input arguments: the start
position, the end position, and the number of cycles for moving from the target position
to the end position. When the user enters the arguments 10, -10 and 3 via the web site
interface, the positioner moves from —10 to +10 three times. Then, the program ends by
closing the socket.

QS Newport.
EDHO0307En1031 — 05/14 56 - rranker

XPS-Q8 Tcl Manual

Function argument(s) : TCLScriptExecute
Execute a TCL script from a TCL file

char TCLFileName[250] oK

| ArgumentsEX.tcl _~| Edit Cancel
char TaskName[250]

[taski g
char ParametersList[250] g

|ttypo, 10, -10, 3

Please see the sections:
4 Principle of a Tcl script redirection to a telnet session.
6 Proposed function for error handling.

7.13.3 TCL Code

Set channel’s name to be used for telnet.

In this example we assume it iIs passed to the script as the
First argument, If not specified output to stdio.

Open the channel for read mode and get its id,

this is the id that will be passed to puts function.

it {$tcl_argv(0) = 0} {

set telnetOut [open "/dev/$tcl_argv(0)" r+]

} else {

set telnetOut stdout

}

Initialization
set TimeOut 20
set code 0O
set group "'SINGLE_AXI1S™
Open TCP socket
set code [catch "OpenConnection $TimeOut socketlID'"]
it {$code 1= 0} {
puts $telnetOut "OpenConnection failed => $code"
flush $telnetOut
} else {
Recover the input arguments entered by the user
In this case argument O is used for Telnet channel identifier
if {$tcl_argc == 4} {
set startpos $tcl_argv(l)
set endpos $tcl_argv(2)
set cycles $tcl_argv(3)
} else {
puts $telnetOut "Wrong number of parameters, argument
1, 2 and 3 are needed"
flush $telnetOut
set code [catch "TCP_CloseSocket $socketlID'"]
return

Kill group

set code [catch "GroupKill $socketlD $group']

if {$code = 0} {
DisplayErrorAndClose $socketlID $code "GroupKill™ $telnetOut
return

QD Newport.

Experienca | Sobutions

57 EDHO0307En1031 — 05/14

XPS-Q8 Tcl Manual

3
Initialize group
set code [catch "Grouplnitialize $socketlD $group']
it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code "Grouplnitialize"
$telnetOut

return
¥
Home group
set code [catch "GroupHomeSearch $socketID $group']
it {$code 1= 0} {
DisplayErrorAndClose $socketlD $code "GroupHomeSearch"
$telnetOut

return

}

Loop until the number of cycles

for { set 1 0} {($1 < $cycles) } {incr i} {
Move group to start position

set code [catch "GroupMoveAbsolute $socketlD $group
$startpos™]

it {$code 1= 0} {
DisplayErrorAndClose $socketlID $code ‘‘GroupMoveAbsolute"

$telnetOut
return
b
Move group to end position
set code [catch "GroupMoveAbsolute $socketlD $group $endpos']
if {$code 1= 0} {
DisplayErrorAndClose $socketlID $code ‘‘GroupMoveAbsolute"
$telnetOut
return
b
b

Close TCP socket
set code [catch "TCP_CloseSocket $socketlID"]

QD Newport.
EDHO307En1031 — 05/14 58 e marviel

XPS-Q8

Tcl Manual

Service Form

Your Local Representative
Tel.:

Fax:

Name: Return authorization #:
Company: (Please obtain prior to return of item)
Address: Date:

Country: Phone Number:

P.O. Number: Fax Number:

Item(s) Being Returned:

Model#: Serial #:

Description:

Reasons of return of goods (please list any specific problems):

QD Newport.

Experienca | Sobutions

59

EDHO0307En1031 — 05/14

Newport.

Visit Newport Online at:

www.newport.com

North America & Asia
Newport Corporation
1791 Deere Ave.

Irvine, CA 92606, USA

Sales
Tel.: (800) 222-6440
e-mail: sales@newport.com

Technical Support
Tel.: (800) 222-6440
e-mail: tech@newport.com

Service, RMAs & Returns
Tel.: (800) 222-6440
e-mail: service@newport.com

Europe

MICRO-CONTROLE Spectra-Physics S.A.S
9, rue du Bois Sauvage

91055 Evry CEDEX

France

Sales
Tel.: +33 (0)1.60.91.68.68
e-mail: france@newport.com

Technical Support
e-mail: tech_europe@newport.com

Service & Returns
Tel.: +33 (0)2.38.40.51.55

	Newport Website
	XPS-Q8 - Tcl Manual
	Preface
	Table of Contents
	1.0 TCP/IP Communication
	2.0 Tool Command Language
	2.1 Introduction
	2.2 Tcl scripting language features
	2.2.1 “Hello, World!” example
	2.2.2 Variables
	2.2.3 Command Substitution
	2.2.4 Math Expressions
	2.2.5 Backslash Substitution
	2.2.6 Grouping with Braces and Double Quotes
	2.2.6.1 Square Brackets Do Not Group
	2.2.6.2 Grouping before Substitution
	2.2.6.3 Grouping Math Expressions with Braces
	2.2.6.4 More Substitution Examples

	2.2.7 Procedures
	2.2.8 A Factorial Example
	2.2.9 More about Variables
	2.2.9.1 Funny Variable Names
	2.2.9.2 The unset Command
	2.2.9.3 Using info exists to check whether a variable exists

	2.2.10 More about Math Expressions
	2.2.11 Comments
	2.2.12 Substitution and Grouping Summary
	2.2.13 Fine Points

	2.3 Reference
	2.3.1 Backslash Sequences
	2.3.2 Arithmetic Operators

	3.0 Tcl Script Execution at Boot
	4.0 Principle of a Tcl Script Redirection to a telnet Session
	4.1 Introduction
	4.2 “Hello world !” Example
	4.2.1 Tcl script example
	4.2.2 Tcl script execution
	4.2.3 Tcl script execution result

	5.0 Example of a Tcl Script Redirection to a telnet Session
	6.0 Proposed Function for Error Handling
	7.0 Examples of Tcl Programs
	7.1 Using analog I/O for motion
	7.1.1 Configuration
	7.1.2 Description
	7.1.3 Tcl code

	7.2 Using Digital I/O for Motion
	7.2.1 Configuration
	7.2.2 Description
	7.2.3 Tcl Code

	7.3 GPIO1 Test
	7.3.1 Description
	7.3.2 Tcl Code

	7.4 Gathering with motion
	7.4.1 Configuration
	7.4.2 Description
	7.4.3 Tcl Code

	7.5 External gathering
	7.5.1 Configuration
	7.5.2 Description
	7.5.3 Tcl Code

	7.6 Position Compare
	7.6.1 Configuration
	7.6.2 Description
	7.6.3 Tcl Code

	7.7 Master-Slave Mode
	7.7.1 Configuration
	7.7.2 Description
	7.7.3 TCL Code

	7.8 Jogging
	7.8.1 Configuration
	7.8.2 Description
	7.8.3 TCL code

	7.9 Jogging and Gathering
	7.9.1 Configuration
	7.9.2 Description
	7.9.3 Tcl Code

	7.10 Analog Position Tracking
	7.10.1 Configuration
	7.10.2 Description
	7.10.3 TCL Code

	7.11 Backlash Compensation
	7.11.1 Configuration
	7.11.2 Description
	7.11.3 TCL Code

	7.12 Timer Event and Global Variables
	7.12.1 Configuration
	7.12.2 Description
	7.12.3 TCL Code

	7.13 Tcl Script with Input Arguments
	7.13.1 Configuration
	7.13.2 Description
	7.13.3 TCL Code

	Service Form
	Contact Us

