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Application Note 13 

 
Swept Wavelength Testing: 

Characterizing the Tuning Linearity of Tunable Laser Sources 
 

 
In a swept-wavelength measurement system, the wavelength of a tunable laser source (TLS) is swept 
continuously at a constant rate throughout the desired tuning range, while the device under test 
(DUT) is monitored simultaneously for its wavelength-dependent optical properties.  Given an ideal 
continuously tunable laser – one that does not exhibit any discontinuities in wavelength, or sudden 
changes in direction – you can calculate the instantaneous wavelength and relate each wavelength 
point to data from the DUT.  Because the wavelength is computed by using the sweep speed and 
elapsed time from the beginning of the sweep, the measured tuning linearity of the laser has a direct 
impact on the wavelength accuracy.   

In this application note, we will first define the tuning linearity, then discuss how to measure the 
tuning linearity of a TLS, and finally show measured results.  

 
For more information of the swept wavelength technique, please refer to New Focus Application Notes 10 & 11: 

Application Note 10:  Swept Wavelength Testing: Saving Time and Bring Real-Time Process Control to the 
Manufacturing Environment. 
Application Note 11:  Swept Wavelength Testing: Insights into Swept-Wavelength Characterization of Passive 
Fiber-Optic Components. 

 
 
Definition of Tuning Linearity 
In general, there are two means of expressing spectral-domain information.  One is the wavelength, 
λ, often expressed in [nm] or [µm], and the other is the frequency, ν, commonly denoted in [THz] or 
[GHz].  The relation between wavelength and frequency is 

ν
c=λ ,  where c is the speed of light.  The 

principles of tuning linearity described in this application note can be applied to both the wavelength 
and frequency of the TLS. 

The tuning linearity of continuously tunable lasers is a parameter that specifies the error in the tuning 
speed.  It can be defined in two ways:  1) as a function of tuning-speed deviation [nm/s], and 2) as a 
function of wavelength deviation [pm].   

The momentary tuning speed deviation (∆∆∆∆V) from the average tuning speed can be expressed as: 

meann VVV −=∆ .  The mean or average tuning speed, Vmean, is given by: 
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wavelength interval, and tn - tn-1 is the time interval between these two measured points.  The tuning 
linearity error is therefore expressed in percentage as: %100

V
VV

mean

meann ×− .   

The tuning speed can also be expressed as a function of optical frequency.  In this case, the 
wavelength λ is exchanged for the frequency ν of the TLS. It is important to note that the tuning 
linearity in terms of wavelength is not linearly related to the tuning linearity in terms of frequency, 
because of their inverse relationship: 

ν
c=λ . 

Another way to express tuning linearity is as a function of the momentary wavelength deviation 
(∆λ∆λ∆λ∆λ) from the expected momentary wavelength, which is derived from the average tuning speed, 
Vmean.  The momentary wavelength can be determined by integrating the tuning speed as follows: 

∫ +∂= startn tV λλ .  Thus, the momentary wavelength deviation is defined as ( ) mean0nnn Vtt ×−−= λλ∆ . 
 
Characterization of the Tuning Linearity 
There are two distinct approaches for characterizing the tuning linearity.  The first one, the etalon 
method, is based on time intervals between the peaks of transmitted light from an etalon.  This 
method characterizes the full tuning range, but the resolution depends on the etalon and the interval 
counter. 

The second method, the heterodyne method, is based on heterodyning the tunable laser with another 
non-tuning (constant-wavelength) laser.  The heterodyne technique has the advantage of providing 
high-resolution measurements, but is limited to only a few GHz tuning range due to the bandwidth 
limitation of the particular detector used. (Note: a 1-GHz range in laser frequency is equivalent to 
approximately 8pm in wavelength, if the wavelength is around 1550nm).   

Since the results derived from the heterodyne method are limited to a relatively small range of 
wavelengths — compared to the entire tuning range of the TLS — it is easy to misinterpret the data 
when it is compared to the data from the etalon method, which covers the full tuning range of TLS.  
Further information on the heterodyne technique is provided in Appendix A.1. 
 
The Etalon Method 
An etalon is a Fabry-Perot interferometer (also known as Fabry-Perot filter), wherein two highly 
reflective mirrors are placed parallel to each other with a separation L, as shown in Figure 1.
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Figure 1.   A Fabry-Perot etalon. 
 

The input light beam enters the etalon’s first mirror at right angles to its surface.  The etalon’s output is that 
part of the beam transmitted through the second mirror.  The transmission function of the etalon can be 

expressed as: ( )
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ν , where A denotes the absorption loss of each mirror, R 

denotes the reflectivity of each mirror, and n denotes the refractive index of the material between mirrors.  
The transmission is shown in Figure 2 as a function of laser frequency v for various values of R.  The 
transmission function is periodic with respect to laser’s frequency (Note: it is not periodic with respect to 
wavelength), and has an optical frequency interval called Free Spectral Range (FSR), given by: 

nL2
cFSR = , 

expressed in [Hz]. 
 

 
Figure 2.  The transmission function of an etalon with A = 0 and n = 1. 

   

Using the swept-wavelength method, and scanning the laser’s wavelength while measuring the transmission 
output of the etalon, you can measure a time interval corresponding to one FSR of the etalon.  Using this 
time-interval measurement, you can further determine momentary tuning speed in [nm/s] of the laser, 
simply by converting the known frequency interval to a wavelength interval and then dividing it by the 
measured time-interval. 

A block diagram of a typical tuning linearity measurement using an etalon is shown in Figure 3.  The 
principle is to monitor a periodic signal generated from an etalon by scanning the wavelength (or frequency) 
of a TLS.  In our example, we use a New Focus Model 6528-LN tunable laser, that has an output power of 1 
dBm, and scans from 1520 to 1620nm.  The etalon can be either a fiber patch cord with flat, PC connectors 
on each end, or a Mach-Zehnder (MZ) or Michaelson interferometer with Faraday Rotator Mirrors (FRM).  
Appendix A.2 provides more information on Mach-Zehnder and Michaelson interferometers. 
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Figure 3.   Block diagram for tuning linearity measurement using an etalon. 

 

When the laser light is transmitted though the etalon, the measured optical throughput is periodic with a 
period corresponding to the FSR of etalon.  In this case, the FSR of the etalon is 118 MHz (or 0.94 pm).  
The FSR of the etalon is constant over the entire tuning range.  A New Focus Model 2011 photoreceiver 
detects this periodic transmission function as the laser is tuned.  The electrical sine-to-square converter 
transforms the sinusoidal signal into a 5V clock signal.  The time interval for each FSR of the etalon is 
collected by a time interval counter, such as a National Instruments MIO-16 board, or by digitizing the data 
and then analyzing the etalon signal.  Figure 4 shows the etalon signal, measured by the photoreceiver, and 
the squared, clock signal, which drives the time interval counter.  The data was taken at both 100nm/s and 
1nm/s tuning speeds, shown in the top and bottom plots, respectively. 
 

 
 

Figure 4.   Etalon tuning examples with a New Focus Model 6528-LN tunable laser.  These graphs 
represent the etalon signal and the squared, “clock” signal that drives the time interval counter. 

 
Figure 5 shows four graphs associated with the tuning linearity of the New Focus Model 6528-LN tunable 
laser.  The data is transformed through calculations of both tuning speed and wavelength deviation for their 
corresponding horizontal and vertical axes.  The top two graphs were taken at 100 nm/s tuning speed 
whereas the bottom two graphs were taken at 1 nm/s tuning speed.  The 1st and the 3rd graphs present the 
momentary tuning speed (Vn). The 2nd and the 4th graphs show the momentary wavelength deviation (∆λ) 
from the wavelength, as derived from the mean speed.   

The tuning linearity for the 100 nm/s tuning speed case (derived from its tuning speed deviation, in graphs 1 
and 3 below) is about %2

100
2 ≈± , whereas it appears to be around %4.29

0625.1
3125.0 ≈±  for the 1 nm/s tuning speed 

case. Note that the tuning speed (comparing the 1 nm/s and 100 nm/s cases) affects the tuning-speed 
deviation (or tuning speed error), however, the tuning speed seems not to significantly affect the wavelength 
deviation. 
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Figure 5.   Tuning linearity of the New Focus Model 6528-LN tunable laser. The momentary tuning 
speed (Vn) is shown in graphs 1 and 3, and the momentary wavelength deviation (∆λ∆λ∆λ∆λ) is shown in 
graphs 2 and 4.  

 
 
 

Tuning Linearity Error and FSR 
Figure 6 shows the tuning linearity of the New Focus Model 6528-LN TLS at 100 nm/s, as a function of the 
FSR of the etalon.  In general, momentary tuning speed variations are averaged over the duration (or width) 
of one FSR.  A large FSR (in frequency) may result in too few data points with respect to the tuning speed. 
This tends to average (or “smooth out”) the momentary tuning speed deviations. A small FSR (in frequency) 
might produce variations caused by fast fluctuations in the natural linewidth of the TLS, which is not related 
to the tuning linearity. It is suggested that the FSR of an etalon be just adequate to achieve enough 
resolution for measuring the tuning linearity of TLS.  Generally, solid glass etalons are preferred, where 
FSR > 3GHz is sufficient. Fiber etalons are suggested for shorter FSR’s. 
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Figure 6.   Tuning linearity error versus the FSR of the etalon. 

 
Summary: 
In this application note, we discussed the tuning linearity of swept-wavelength lasers.  Measuring the tuning 
linearity of a TLS in a swept-wavelength system is very important since it determines the wavelength 
accuracy, and therefore, the accuracy associated with the measured wavelength-dependent properties of the 
DUT.  The etalon approach was discussed in detail and an example was presented using the New Focus 
Model 6528-LN TLS and an etalon with a FSR of 118 MHz. Some items to keep in mind are: 

1) The etalon method has the advantage of measuring the full tuning range.  The resolution depends on 
the size of the FSR, which should be two times the linewidth of the TLS.  A practical limitation is the 
processing power of the data acquisition and analysis system. 

2) The heterodyne method has the advantage of inherently high resolution, which is limited by the 
combined linewidths of the two lasers.  Practical limitations of the detector bandwidth limit the tuning 
range to only a few GHz in frequency. 

3) The proper expression for tuning linearity depends on the application.  The expression in terms of 
wavelength is desirable if it is intended to describe the wavelength at any given time. 

4) The tuning linearity in terms of wavelength deviation is not typically dependent upon the tuning speed.  
However, the tuning linearity in terms of tuning-speed deviation does vary with the TLS’s tuning 
speed (shown in Figure 5). 



 

Appendix 
 
A.1   The Heterodyne Method 
The heterodyne method, as a special case of coherent detection, has been used in industry for improving  
receiver sensitivity by mixing the incoming signal with another “local oscillator” signal.  In this 
example, a New Focus Model 6328 laser with wavelength fixed at 1550 nm was used as the so-called 
local oscillator laser.  The Model 6328 laser has a known linewidth of 15MHz over 50 ms interval.  This 
laser was mixed through a 50/50 fiber splitter with a New Focus Model 6528 tunable laser, which was 
swept at 1 nm/s tuning speed.  The mixed signal (or beat) was detected by a New Focus 12-GHz 
photoreceiver (Model 1544).  The resulting frequency was analyzed with an Agilent 53310A 
Modulation Domain Analyzer.  A block diagram of the heterodyne method for measuring tuning 
linearity is shown in Figure A-1. 
In general, the beat signal is the difference between the momentary frequencies of the two lasers.  The 
beat frequency variation is a direct representation of the tuning speed.  The advantage of this method is 
its high resolution, which is limited by the linewidth of the lasers.  The disadvantages are 1) it requires 
an accurate time interval analyzer such as an Agilent 53310A and 2) it can only measure a very small 
section of the laser’s tuning range, which is limited by the bandwidth of the detector.  In this case, the 
tuning range of the New Focus 6528 TLS was limited to 2.5GHz (or 20pm in wavelength) of the Agilent 
53310A Modulation Domain Analyzer. 
 
 
 
 
 
 
 
  
 
 

Figure A-1.   Block diagram of h
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Figure A-2.   Tuning-speed deviation measured with the heterodyne method. 
 
 
 

 
 

Figure A-3.  Wavelength deviation measured with the heterodyne method. 
 
 
A.2   Michaelson and Mach-Zehnder interferometers 
Etalon references are easily made in a Mach-Zehnder configuration with two 2x1 splitters and a polarization 
controller in one of the delay lines, or in a Michaelson configuration with one 2x2 splitter and two Faraday 
rotator mirrors (as shown in Figure A-4).  The latter does not need a polarization controller.  The path-length 
difference defines the Free Spectral Range (FSR).  As a rule of thumb, a path difference of 1 meter has a 
FSR of 0.8pm for a Mach-Zehnder, or 0.4pm for a Michaelson configuration. A FSR larger than 20pm is 
difficult to set up due to the requirement of an accurate path-length difference (implying a fiber length 
difference of less than 70mm).  Solid or air-spaced etalons are preferred in these cases. 

It is important to use APC connectors to eliminate etalon effects for both Mach-Zehnder and Michaelson 
interferometers.  Note that etalon effects can add up to 0.2dB of amplitude uncertainty. 
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Fig A-4.   Examples of fiber interferometers. 
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