High-Performance Precision Rotation Stages

RV Series

Newport® USER’S MANUAL
Warranty

Newport Corporation warrants this product to be free from defects in material and workmanship for a period of 1 year from the date of shipment. If found to be defective during the warranty period, the product will either be repaired or replaced at Newport’s discretion.

To exercise this warranty, write or call your local Newport representative, or contact Newport headquarters in Irvine, California. You will be given prompt assistance and return instructions. Send the instrument, transportation prepaid, to the indicated service facility. Repairs will be made and the instrument returned, transportation prepaid. Repaired products are warranted for the balance of the original warranty period, or at least 90 days.

Limitation of Warranty

This warranty does not apply to defects resulting from modification or misuse of any product or part.

CAUTION

Warranty does not apply to damages resulting from:

• Incorrect usage:
 – Load on the stage greater than maximum specified load.
 – Carriage speed higher than specified speed.
 – Improper grounding.
 - Connectors must be properly secured.
 - When the load on the stage represents an electrical risk, it must be connected to ground.
 – Excessive or improper cantilever loads.
• Modification of the stage or any part thereof.

This warranty is in lieu of all other warranties, expressed or implied, including any implied warranty of merchantability or fitness for a particular use. Newport Corporation shall not be liable for any indirect, special, or consequential damages.

© 2018 by Newport Corporation, Irvine, CA. All rights reserved.

Original instructions.

No part of this document may be reproduced or copied without the prior written approval of Newport Corporation. This document is provided for information only, and product specifications are subject to change without notice. Any change will be reflected in future publishings.
Table of Contents

Warranty ..ii
EC Declaration of Conformity ..v
Definitions and Symbols ..vi
Warnings ..vii
Caution ..viii

1.0 — Introduction ...1

2.0 — Description ..2
 2.1 Design Details ...3

3.0 — Characteristics ..4
 3.1 Definitions ...4
 3.2 Mechanical Specifications ...5
 3.3 Load Specifications Definitions ..6
 3.4 Specifications for RV Stages with Vacuum Preparation ..7
 3.5 Load Specifications ..8
 3.6 Maximum Inertia Tables ...9
 3.7 Torque (Mz)/Speed ...10
 3.8 Working Reliability and Safety ..13
 3.9 Rotation Stage Weights ..13

4.0 — Drives and Motors ...14
 4.1 Stepper Drive Versions ...14
 4.2 DC-Servo Drive Versions ..15
 4.3 Sensor Position ..16
 4.4 Inhibition of Limit Switches ...16
 4.5 Feedback Signal Position ...17
 4.6 Pinouts ..18
 4.7 MCAB-3 Cable ...18

5.0 — Connection to Newport Controllers ..19
 5.1 Warnings on Controllers ..19
 5.2 Connection ..20
 5.3 Cables ..20

6.0 — Connection to Non-Newport Electronics ...21
 6.1 Connections ..21
RV Series

High-Performance Precision Rotation Stages

7.0 — Mounting
- 7.1 Horizontal Rotation Stages (Vertical Rotation Axis) 22
- 7.2 Vertical Rotation Stages (Horizontal Rotation Axis) 23

8.0 — Dimensions
- 8.1 RV120 to RV350 Rotations Stages .. 24
- 8.2 RV-HA & RV-HAT Versions ... 25

9.0 — Accessories: EQ120 & EQ180 Brackets .. 26

10.0 — Maintenance
- 10.1 Maintenance ... 28
- 10.2 Repair .. 28
- 10.3 Calibration ... 28

Service Form ... 29
EC Declaration of Conformity

RV Series

EU Declaration of Conformity
following Annex II-1A
of Directive 2006/42/EC on machinery

The manufacturer:
MICRO-CONTROLE Spectra-Physics,
9, rue du bois sauvage
F-91055 Evry FRANCE

Hereby declares that the machinery:

- Description: "RV"
- Function: High Performance Precision Rotation Stage
- Models: RV120/160/240/350/ CC(-F)/CCHL(-F)/HAT(-F)/HAHL(-F)/ HAHLT(-F)/ BPP(-F)/ BPE(-F)/ BPEV6(-F)

- the technical file of which was compiled by:
 Mr Hervé Le Cointe, Quality Director,
 MICRO-CONTROLE Spectra-Physics, Zone Industrielle - B.P.29
 F-45340 Beaune La Rolande France

- complies with all the relevant provisions of the Directive 2006/42/EC on machinery.
- complies with all the relevant provisions of the Directive 2014/30/EU relating to electromagnetic compatibility
- complies with all the relevant provisions of the Directive 2011/65/EU relating to RoHS2.

- was designed and built in accordance with the following harmonised standards:
 - NF EN 61320-1:2013 « Electrical equipment for measurement, control and laboratory use – EMC requirements – Part 1: General requirements »
 - NF EN 55011:2010/A1:2011 Class A

- was designed and built in accordance with the following other standards:
 - NF EN 61000-4-2
 - NF EN 61000-4-3
 - NF EN 61000-4-4
 - NF EN 61000-4-6

ORIGINAL DECLARATION

Done in Beaune La Rolande on 10 September 2018
Hervé Le Cointe
Quality Director

[Signature]
Definitions and Symbols

The following terms and symbols are used in this documentation and also appear on the product where safety-related issues occur.

General Warning or Caution

The exclamation symbol may appear in warning and caution tables in this document. This symbol designates an area where personal injury or damage to the equipment is possible.

The following are definitions of the Warnings, Cautions and Notes that may be used in this manual to call attention to important information regarding personal safety, safety and preservation of the equipment, or important tips.

WARNING

Warning indicates a potentially dangerous situation which can result in bodily harm or death.

CAUTION

Caution indicates a potentially hazardous situation which can result in damage to product or equipment.

NOTE

Note indicates additional information that must be considered by the user or operator.

European Union CE Mark

The presence of the CE Mark on Newport Corporation equipment means that it has been designed, tested and certified as complying with all applicable European Union (CE) regulations and recommendations.

Warnings and Cautions

ATTENTION

This stage is a Class A device. In a residential environment, this device can cause electromagnetic interference. In this case, suitable measures must be taken by the user.
Warnings

WARNING
The motion of objects of all types carries potential risks for operators. Ensure the protection of operators by prohibiting access to the dangerous area and by informing the personnel of the potential risks involved.

WARNING
Do not use this stage when its motor is emitting smoke or is unusually hot to the touch or is emitting any unusual odor or noise or is in any other abnormal state.
Stop using the stage immediately, switch off the motor power and then disconnect the electronics power supply.
After checking that smoke is no longer being emitted contact your Newport service facility and request repairs. Never attempt to repair the stage yourself as this can be dangerous.

WARNING
Make sure that this stage is not exposed to moisture and that liquid does not get into the stage.
Nevertheless, if any liquid has entered the stage, switch off the motor power and then disconnect the electronics from power supply.
Contact your Newport service facility and request repairs.

WARNING
Do not insert or drop objects into this stage, this may cause an electric shock, or lock the drive.
Do not use this stage if any foreign objects have entered the stage.
Switch off the motor power and then disconnect the electronics power supply.
Contact your Newport service facility for repairs.

WARNING
Do not place this stage in unstable locations such as on a wobbly table or sloping surface, where it may fall or tip over and cause injury.
If this stage has been dropped or the case has been damaged, switch off the motor power and then disconnect the electronics power supply.
Contact your Newport service facility and request repairs.

WARNING
Do not attempt to modify this stage; this may cause an electric shock or downgrade its performance.

WARNING
Do not exceed the usable depth indicated on the mounting holes (see section “Dimensions”). Longer screws can damage the mechanics or cause a short-circuit.
Cautions

CAUTION
Do not place this stage in a hostile environment such as X-Rays, hard UV,... or in any vacuum environment.

CAUTION
Do not place this stage in a location affected by dust, oil fumes, steam or high humidity. This may cause an electric shock.

CAUTION
Do not leave this stage in places subject to extremely high temperatures or low temperatures. This may cause an electric shock.
- Operating temperature: +10 to +35 °C
- Storage temperature: -10 to +40 °C (in its original packaging)

CAUTION
Do not move this stage if its motor power is on.
Make sure that the cable to the electronics is disconnected before moving the stage. Failure to do so may damage the cable and cause an electrical shock.

CAUTION
Be careful that the stage is not bumped when it is being carried. This may cause it to malfunction.

CAUTION
When handling this stage, always unplug the equipment from the power source for safety.

CAUTION
When the carriage is in its end-of-run position, it is strongly recommended not to go beyond this point as this may damage the stage mechanism.

CAUTION
Contact your Newport service facility to request cleaning and specification control every year.
1.0 Introduction

This manual provides operating instructions for the rotation stage that you have purchased in the RV Series:

- **Direct motor:**
 - RV-BPP
 - RV-BPE
 - RV-BPEV6
 - RV-CC
 - RV-CCHL
 - RV-HAT
 - RV120HAHL
 - RV-HAHLT

- **Folded motor:**
 - RV-BPP-F
 - RV-BPE-F
 - RV-BPEV6-F
 - RV-CC-F
 - RV-CCHL-F
 - RV-HAT-F
 - RV120HAHL-F
 - RV-HAHLT-F

NOTES

1) Vacuum compatible rotation stages to 10⁻⁶ hPa. In this case, max. speed and load capacity have to be divided by two.

2) Except RV120 model.

3) Only RV120 model.

Some rotation stages of the RV Series.
RECOMMENDATION

We recommend you read carefully the chapter “Connection to electronics” before using the RV Series rotation stage.

2.0 Description

The RV Series rotation stages provide high-precision angular positioning accuracy combined with high load capacity in a compact, annular design. We offer four stage sizes and nine drive configurations enabling a variety of operating conditions for optimizing load capacity, torque, speed, and resolution.

The RV Series stages are constructed of tool steel with the rotation accuracy ensured by a double row of preloaded ball bearings on hardened surfaces. This allows for high off-center loads within a reduced footprint. The single monolithic design offers improved stiffness without compromising dynamic performance characteristics. The largest member of the RV product families can bear up to 650 kg or rotate up to 80 °/s while maintaining eccentricity of less than 4 µm.

In standard, these stages are equipped with limit switches (limited to ±170°) for protecting the equipment, and a home position search device. A switch enables inhibiting the limit switches in order to use the rotation stage over 360° or more (except HAT, HAHL & HAHLT versions).

ATTENTION

Newport Corporation shall not be liable for any damage resulting from improper use of the RV Series Rotation Stages while limit switches are inhibited.

The drive is ensured by a worm and gear located on the rotation part of the stage. The worm/gear ratio is 1/90.

The position is measured by a 4000 cts/rev encoder placed on the motor shaft (except HAT, HAHL & HAHLT versions), without tachometer.

The HAT, HAHL & HAHLT (High Accuracy) versions are available in diameters from 120 up. These stages are equipped with an optical encoder fixed on the mobile core and the HAHLT version is equipped with a tachometer. They avail the best indexing accuracy characteristics. The travel is limited to ±170° (limit switches are not inhibited in this case).
At the end of the drive screw of the RV Series stages (side opposite motor), a hexagon socket is given for manual movement of the mobile core, using an “Allen” wrench.

ATTENTION

Do not attempt to move the mobile core manually with the rotation stage switched on.

For optimal performance, we recommend the use of our motion controllers.

The RV Series rotation stages are supplied with a 3-meter cable for connection to our motion controllers.

2.1 Design Details

<table>
<thead>
<tr>
<th>Base Material</th>
<th>Stainless Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearings</td>
<td>Double row ball bearings</td>
</tr>
<tr>
<td>Drive Mechanism</td>
<td>Ground worm gear with self compensating preload</td>
</tr>
<tr>
<td>Worm Gear Ratio</td>
<td>1/90</td>
</tr>
<tr>
<td>Feedback</td>
<td>Except for HAT, HAHL and HAHLT versions: Worm mounted rotary encoder, 4,000 cts/rev, Index pulse HAT, HAHL and HAHLT versions: Direct reading optical encoder on the rotating platen, 20 µm signal period</td>
</tr>
<tr>
<td>Limit Switches</td>
<td>Optical, at ±170°, can be disabled for continuous rotation (except HAT, HAHL and HAHLT versions)</td>
</tr>
<tr>
<td>Origin</td>
<td>Optical</td>
</tr>
<tr>
<td>Cable Length</td>
<td>3 m cable included</td>
</tr>
<tr>
<td>Vacuum Compatibility</td>
<td>Vacuum compatible versions are available up to 10⁻⁶ hPa using full-step motor, in this case, max. speed and load capacity have to be divided by two</td>
</tr>
<tr>
<td>MTBF</td>
<td>20,000 h</td>
</tr>
</tbody>
</table>

RV120 rotation stage mounted in a vertical configuration with an EQ120 to an (M-)ILS stage.
3.0 Characteristics

NOTE
Apart from the dimensions, the specifications of the rotation stages equipped with a folded motor are the same as those of the direct motor versions.

3.1 Definitions
Specifications of our products are established in reference to ISO 230 standard part II “Determination of accuracy and repeatability of positioning numerically controlled axes”.

This standard gives the definition of position uncertainty which depends on the 3 following parameters:

Absolute Accuracy
Difference between ideal position and real position.

Accuracy
Difference between ideal position and real position after the compensation of linear errors.

Linear errors include: cosine errors, inaccuracy of screw or linear scale pitch, angular deviation at the measuring point (Abbe error) and thermal expansion effects. All Newport motion electronics can compensate for linear errors.

The relation between absolute accuracy and on-axis accuracy is as follows:

\[
\text{Absolute Accuracy} = \text{Accuracy} + \text{Correction Factor} \times \text{Travel}
\]

Repeatability
Ability of a system to achieve a commanded position over many attempts.

Reversal Value (Hysteresis)
Difference between actual position values obtained for a given target position when approached from opposite directions.

Minimum Incremental Motion (MIM or Sensitivity)
The smallest increment of motion a device is capable of delivering consistently and reliably.

Resolution
The smallest increment that a motion device can theoretically move and/or detect. Resolution is not achievable, whereas MIM, is the real output of a motion system.

Eccentricity
Displacement of the geometric center of a rotation stage from the rotation axis in the plane defined by bearings.

Wobble
Tilt of rotation axis during rotation of a stage, measured on a reference surface.
The testing of accuracy, repeatability, and reversal error are made systematically with test equipment in controlled environment (20±1 °C). A linear cycle with 21 data points on the travel and 4 cycles in each direction gives a total of 168 points.

Guaranteed and Typical Specifications

Guaranteed maximum performance values are verified per Newport’s A167 metrology test procedure. For more information, please consult the metrology tutorial section in the Newport catalog or at www.newport.com

3.2 Mechanical Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Range (°)</td>
<td>360 continuous ±170</td>
<td>With disabled limits, except HA, HAHL & HAHLT versions</td>
</tr>
<tr>
<td>Minimum Incremental Motion (°)</td>
<td>0.001</td>
<td>Except HA, HAHL & HAHLT versions</td>
</tr>
<tr>
<td>Ha-AX (°)</td>
<td>0.0002</td>
<td>HAHL & HAHLT versions</td>
</tr>
<tr>
<td>Uni-directional Repeatability, Guaranteed (°)</td>
<td>0.002</td>
<td>Except HA, HAHL & HAHLT versions</td>
</tr>
<tr>
<td>Bi-directional Repeatability, Guaranteed (°)</td>
<td>0.004 or ±0.002</td>
<td>HAHL & HAHLT versions</td>
</tr>
<tr>
<td>Accuracy, Guaranteed (°)</td>
<td>0.01 or ±0.005</td>
<td>HAHL & HAHLT versions</td>
</tr>
<tr>
<td>Maximum Speed (°/s)</td>
<td>80</td>
<td>CC & HAHL & HAHLT versions</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>BPP motor option</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>CCHL, HAHL & HAHLT versions</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>BPE versions</td>
</tr>
<tr>
<td>Wobble, Guaranteed (µrad)</td>
<td>20 or ±10</td>
<td>RV120 & RV160</td>
</tr>
<tr>
<td></td>
<td>16 or ±10</td>
<td>RV240 & RV350</td>
</tr>
<tr>
<td>Eccentricity, Guaranteed (µm)</td>
<td>4 or ±2</td>
<td></td>
</tr>
</tbody>
</table>

1) For the definition of Typical and Guaranteed specifications see “Motion Basics Terminology & Standards” Tutorial at www.newport.com

2) To obtain arcsec units, divide µrad value by 4.8.

CAUTION

To reach specifications stated, stages must be fixed on a plane surface with a flatness of 5 µm.

NOTE

For vacuum compatible rotation stages to 10^{-6} hPa, the max. speeds have to be divided by two.
3.3 Load Specifications Definitions

Load Capacity (Cz)
This is the maximum load that a rotation stage can move. This value is given with the conditions of speed and acceleration specific to the stage. This value corresponds to a normal centered load on bearings. It further depends on the static load capacity of the plane.

Centered Load Capacity (Cz)
Direct centered load capacity with the specified speed and acceleration conditions. This value defines the vertical load capacity.

Off-center Load (Q)
This is the maximum cantilever load that the rotation stage can move:

\[Q \leq \frac{Cz}{1 + D/a} \]

D : Off-center distance.
a : Construction parameter.

WARNING
Off-center loads can generate high moments of inertia. Refer to the table of maximum allowed inertia (see Chapter 3.6) before using a rotation stage of the RV Series.

Angular Stiffness (kα)
This value is based on the stage construction. We specify the stiffness perpendicular to the rotation axis, to enable determining the distortion of the stage due to the torque generated by an off-center load.

Of the two values specified, the first corresponds to the stage fixed at 3 points at 120°, the second to a plane fixing with 5 points. In the second case, the quality of the fixing plane has an impact on the quality of displacement. In order to be compliant with the specifications stated for RV Series stages, the load-bearing surface must have a plane value of less than 5 µm.

Maximum Inertia
We specify the maximum value of the moment of inertia of the carried load, for each model of the RV Series stage. This value is expressed in kg.cm².

It is limited in order to avoid any risk of damage to the stage in the event of a sudden halt during a high speed rotation.

In each case, the specified value corresponds to the acceptable limit with the stage rotating at the maximum speed (see Chapter 3.6).

WARNING
The rotation of heavy loads and the high moments of inertia may cause the equipment to downgrade and carry risks for the operators.

NEVER EXCEED THE SPECIFIED INERTIA VALUES.
Torque (Mz)/Speed

The torque available on each rotation stage depends on the following:

- Kinematic chain.
- Motor.
- Use of the stage (speed).

In order to obtain the best performance from your RV Series rotation stage, see the stage use diagrams given below, for each version (see Chapter 3.7).

Specifications for RV Stages with Vacuum Preparation

NOTE

RV-BPE rotation stages are primarily designed for applications requiring the direct positioning accuracy to be maintained to within the stage’s mechanical resolution when power is switched off, such as operation in vacuum (10^6 hPa vacuum preparation on models RV-BPEV6 and RV-BPEV6-F).

In this case, specifications for speed (°/s), load capacity (Cz) and torque (Mz) have to be divided by two.
3.5 Load Specifications

<table>
<thead>
<tr>
<th></th>
<th>RV120</th>
<th>RV160</th>
<th>RV240</th>
<th>RV350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cz, Normal centered load capacity (N)</td>
<td>1800</td>
<td>2700</td>
<td>4000</td>
<td>6500</td>
</tr>
<tr>
<td>a, construction parameter (mm)</td>
<td>40</td>
<td>50</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>b (mm) except HAT, MAHL & HAHLT</td>
<td>53</td>
<td>57</td>
<td>59</td>
<td>73</td>
</tr>
<tr>
<td>kα, radial compliance (µrad/Nm)</td>
<td>1.5</td>
<td>0.6</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

For vacuum compatible rotation stages to 10^{-6} hPa, the load capacities have to be divided by two.

Horizontal Load Characteristics

where:

- Q_{H}: Off-center load,
- C_z: Normal centered load capacity on bearings
- D: Off-center distance in mm
- a: Construction parameter
- $k_α$: Angular stiffness

Example: Q_H at a distance D of 100 mm, for RV160 rotation stage.

$$Q_H = \frac{2700}{(1 + 100/50)} = 900 \text{ N}$$

Vertical Load Characteristics

where:

- Q_V: Off-center load,
- C_z: Normal centered load capacity on bearings
- D: Off-center distance in mm
- a: Construction parameter
- b: Construction parameter:
 - Distance between the top surface and the bearings center

Example: Q_V at a distance D of 100 mm, for RV160 rotation stage.

$$Q_V = \frac{2700}{2 \times (1 + 100/50)} = 450 \text{ N}$$

In this example, the load Q_V is placed at 43 mm (100 - 57) from the mounting plane of the stage.
3.6 Maximum Inertia Tables

The maximum moment of inertia of the load borne by the stage depends on the size of the rotation stage used and on its kinematic chain. The table below gives the maximum allowed values for each model in the standard range. The applicable limits are the same for direct motor versions and folded motor versions.

<table>
<thead>
<tr>
<th>Versions</th>
<th>RV120</th>
<th>RV160</th>
<th>RV240</th>
<th>RV350</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPP</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>BPE & BPEV6</td>
<td>70</td>
<td>100</td>
<td>150</td>
<td>220</td>
</tr>
<tr>
<td>CC</td>
<td>0.2</td>
<td>0.7</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td>CCHL</td>
<td>7</td>
<td>24</td>
<td>38</td>
<td>56</td>
</tr>
<tr>
<td>HAT</td>
<td>0.9</td>
<td>1</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>HAHL</td>
<td>7</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>HAHLT</td>
<td>–</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

This table specifies the maximum inertia value for each stage of the RV Series. This value represents the maximum kinetic energy that the rotation stage can absorb in the event of a sudden halt at the maximum speed. This inertia is also in agreement with the capability of the stage to accelerate from a halted state to the maximum speed in 250 ms.

The inertia is expressed in kg.m² and is given with respect to the rotation axis of the rotation stage (1 kg.m² is the inertia of a load of 1 kg placed at a distance of 1 m from the rotation axis).

Example of Inertia Value

A load of 20 kg must be placed at 240 mm from the rotation axis of the rotation stage. The corresponding inertia is:

\[20 \times 0.24 \times 0.24 = 1.152 \text{ kg.m}^2 \]

It is therefore possible to use the RV240CC rotation stage (Iz max. = 1.5 kg.m²) and to move a load up to 80 °/s.

Verification of Other Values

The maximum load capacity at 240 mm from the rotation axis of the RV240 rotation stage is:

\[Q_H = \frac{4000}{(1 + 240/70)} = 903 \text{ N} \approx 90 \text{ kg} \ (>20 \text{ kg}) \]

The maximum torque of the RV240 rotation stage is 13 N.m. At 240 mm, this torque represents a load of:

\[M_z = \frac{13}{0.24} = 54 \text{ N} \approx 5.4 \text{ kg} \ (<20 \text{ kg}) \]

In these conditions, the RV240 rotation stage can be used only in the horizontal position (where the rotation axis is vertical).
3.7 Torque (Mz)/Speed

RV120 Rotation Stages

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Mz max. (Nm)</th>
<th>V max. (°/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV120BPP</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>RV120BPE</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>RV120CC</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>RV120CCHL</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>RV120HAT</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>RV120HAHL</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

with:
Mz max. = Maximum torque
V max. = Maximum allowed speed

RV160 Rotation Stages

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Mz max. (Nm)</th>
<th>V max. (°/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV160BPP</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>RV160BPE</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>RV160CC</td>
<td>11</td>
<td>80</td>
</tr>
<tr>
<td>RV160CCHL</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>RV160HAT</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>RV160HAHLT</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

with:
Mz max. = Maximum torque
V max. = Maximum allowed speed
RV240 Rotation Stages

<table>
<thead>
<tr>
<th>MODEL</th>
<th>$M_{z_{\text{max}}}$ (Nm)</th>
<th>V_{max} (°/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV240BPP</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>RV240BPE</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>RV240CC</td>
<td>13</td>
<td>80</td>
</tr>
<tr>
<td>RV240CCCHL</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>RV240HAT</td>
<td>7</td>
<td>80</td>
</tr>
<tr>
<td>RV240HALT</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

with:

$M_{z_{\text{max}}}$ = Maximum torque
V_{max} = Maximum allowed speed
RV350 Rotation Stages

<table>
<thead>
<tr>
<th>MODEL</th>
<th>$M_{\text{z,\text{max}}}$ (Nm)</th>
<th>$V_{\text{\max}}$ (°/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV350BPP</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>RV350BPE</td>
<td>14</td>
<td>80</td>
</tr>
<tr>
<td>RV350CC</td>
<td>80</td>
<td>2</td>
</tr>
<tr>
<td>RV350CCHL</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>RV350HAT</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>RV350HAHLT</td>
<td>7</td>
<td>16</td>
</tr>
</tbody>
</table>

with:

$M_{\text{z,\text{max}}}$ = Maximum torque

$V_{\text{\max}}$ = Maximum allowed speed
3.8 Working Reliability and Safety

The optimum reliability of the components of the stage was ensured right from the initial design phases of the RV Series rotation stages. CETIM participated in this study and ensured the conformity of the approach used.

Several tests were conducted in order to guarantee the safety of working with a minimum level of maintenance.

Reliability Criteria

<table>
<thead>
<tr>
<th>Version</th>
<th>MTBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV-BPP</td>
<td>20,000 h</td>
</tr>
<tr>
<td>RV-CC</td>
<td>20,000 h</td>
</tr>
<tr>
<td>RV-HAT</td>
<td></td>
</tr>
<tr>
<td>RV-BPE</td>
<td></td>
</tr>
<tr>
<td>RV-CCHL</td>
<td>10,000 h</td>
</tr>
<tr>
<td>RV-HAHL</td>
<td></td>
</tr>
<tr>
<td>RV-HAHLT</td>
<td></td>
</tr>
</tbody>
</table>

ATTENTION

The MTBF values are given for conditions of use of our rotation stages in which the load and speed are in keeping with the specifications.

3.9 Rotation Stage Weights

Weights indicated into the below table are average values for rotation stages with a typical drive unit installed.

<table>
<thead>
<tr>
<th>Weight [lb (kg)]</th>
<th>Except HAT version</th>
<th>HAT version</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV120</td>
<td>14.3 (6.5)</td>
<td>17.6 (8.0)</td>
</tr>
<tr>
<td>RV160</td>
<td>19.0 (8.6)</td>
<td>24.2 (11.0)</td>
</tr>
<tr>
<td>RV240</td>
<td>35.3 (16.0)</td>
<td>41.9 (19.0)</td>
</tr>
<tr>
<td>RV350</td>
<td>57.5 (27.0)</td>
<td>72.8 (33.0)</td>
</tr>
<tr>
<td>3-meter MCAB-3 Cable</td>
<td>1.32 (0.6)</td>
<td></td>
</tr>
</tbody>
</table>

The weight variation between drive units is not very significant.
4.1 Stepper Drive Versions

Stepper motor-driven versions are available in 2 variations:

- One mini-step drive version (BPP) with 1/10-step per encoder count enabling high angular speed motions up to 20°/s.
- One full-step version (BPE) equipped with an additional step-down gear in order to obtain higher torque values. This version causes no motor heating in static position, and maintains the position, when the power is switched off. It is the recommended motor option for operation in a vacuum.

NOTE

RV-BPE rotation stages are primarily designed for applications requiring the direct positioning accuracy to be maintained to within the stage’s mechanical resolution when power is switched off, such as operation in vacuum (10⁻⁶ hPa vacuum preparation on models RV-BPEV6 and RV-BPEV6-F).

In this case, specifications for speed (°/s), load capacity (Cz) and torque (Mz) have to be divided by two.

Mini-Step Drive

Is used for stepper motors, when 1 pulse emitted by electronic corresponds to theoretical physical motion of a fraction of a full step of the motor.

For these rotation stages a mini-step equals 1/10 of a full step.

Full-Step Drive

Is used for stepper motors, when 1 pulse emitted by electronic corresponds to theoretical physical motion of 1 full step of the motor.

Stepper Motor Performance Specifications and Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Resolution (°)</th>
<th>Speed (°/s)</th>
<th>Angle by Step (°)</th>
<th>RMS Current per Phase (A)</th>
<th>Resistance (Ω)</th>
<th>Inductance (mH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV120 to RV350BPP</td>
<td>0.001</td>
<td>20</td>
<td>1.8</td>
<td>1.27</td>
<td>1.13</td>
<td>3.6</td>
</tr>
<tr>
<td>RV120BPE</td>
<td>0.001</td>
<td>2</td>
<td>1.8</td>
<td>0.71</td>
<td>1.65</td>
<td>3.2</td>
</tr>
<tr>
<td>RV120BPEV6</td>
<td>0.001</td>
<td>1</td>
<td>1.8</td>
<td>0.23</td>
<td>5.7</td>
<td>11.3</td>
</tr>
<tr>
<td>RV160 to 350BPE</td>
<td>0.001</td>
<td>2</td>
<td>1.8</td>
<td>1.27</td>
<td>1.13</td>
<td>3.6</td>
</tr>
</tbody>
</table>
Command Signals for the Stepper Motors

4.2 DC-Servo Drive Versions

DC-motor-driven stages are offered in four variations:

- Two high-speed DC-servo versions (CC and HAT) enabling speeds up to 80°/s. The CCHAT features a high-resolution direct reading encoder and tachometer for superior repeatability, position stability and speed regulation.

- Two high-torque DC-servo versions (CCHL and HAHLT) equipped with a step-down gear to provide superior torque and maximum inertia values. The HAHLT version features a high-resolution direct reading encoder and tachometer for superior repeatability, position stability and speed regulation.

DC-Motor Performance Specifications and Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Resolution (°)</th>
<th>Speed (°/s)</th>
<th>Nominal Voltage (V)</th>
<th>Max RMS Current (A)</th>
<th>Max. Peak Current (A)</th>
<th>Resistance (Ω)</th>
<th>Inductance (mH)</th>
<th>Tachometer Const. (V/krpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV120 to RV350CC</td>
<td>0.001</td>
<td>80</td>
<td>48</td>
<td>2</td>
<td>4</td>
<td>1.57</td>
<td>1.04</td>
<td>–</td>
</tr>
<tr>
<td>RV120HAT</td>
<td>0.0001</td>
<td>80</td>
<td>48</td>
<td>2</td>
<td>4</td>
<td>1.57</td>
<td>1.04</td>
<td>7 (±10%)</td>
</tr>
<tr>
<td>RV160HAT</td>
<td>0.000075</td>
<td>80</td>
<td>48</td>
<td>2</td>
<td>4</td>
<td>1.57</td>
<td>1.04</td>
<td>7 (±10%)</td>
</tr>
<tr>
<td>RV240HAT</td>
<td>0.00005</td>
<td>80</td>
<td>48</td>
<td>2</td>
<td>4</td>
<td>1.57</td>
<td>1.04</td>
<td>7 (±10%)</td>
</tr>
<tr>
<td>RV350HAT</td>
<td>0.000035</td>
<td>80</td>
<td>48</td>
<td>2</td>
<td>4</td>
<td>1.57</td>
<td>1.04</td>
<td>7 (±10%)</td>
</tr>
<tr>
<td>RV120CCHL</td>
<td>0.001</td>
<td>16</td>
<td>48</td>
<td>1.35</td>
<td>2.7</td>
<td>1.75</td>
<td>0.47</td>
<td>–</td>
</tr>
<tr>
<td>RV160 to RV350CCHL</td>
<td>0.001</td>
<td>16</td>
<td>48</td>
<td>2</td>
<td>4</td>
<td>1.57</td>
<td>1.04</td>
<td>–</td>
</tr>
<tr>
<td>RV120HAHL</td>
<td>0.0001</td>
<td>16</td>
<td>48</td>
<td>2</td>
<td>4</td>
<td>1.16</td>
<td>0.329</td>
<td>–</td>
</tr>
<tr>
<td>RV160HAHLT</td>
<td>0.000075</td>
<td>16</td>
<td>48</td>
<td>2</td>
<td>4</td>
<td>1.57</td>
<td>1.04</td>
<td>7 (±10%)</td>
</tr>
<tr>
<td>RV240HAHLT</td>
<td>0.00005</td>
<td>16</td>
<td>48</td>
<td>2</td>
<td>4</td>
<td>1.57</td>
<td>1.04</td>
<td>7 (±10%)</td>
</tr>
<tr>
<td>RV350HAHLT</td>
<td>0.000035</td>
<td>16</td>
<td>48</td>
<td>2</td>
<td>4</td>
<td>1.57</td>
<td>1.04</td>
<td>7 (±10%)</td>
</tr>
</tbody>
</table>
Command Signals for the DC-Motors

In the above drawings, + Motor signal is referred to – Motor signal, + Tachometer signal is referred to – Tachometer signal.

① When the stage moves in + Direction, the + Motor voltage is higher than – Motor voltage, and + Tachometer voltage is higher than – Tachometer voltage.

② When the stage moves in – Direction, the + Motor voltage is lower than – Motor voltage, and + Tachometer voltage is lower than – Tachometer voltage.

4.3 Sensor Position

End-of-Run and Mechanical Zero are 5 V open collector type.
The Index Pulse provides a repeatable Home Position at ±1 step.

CAUTION

“End-of-Run” and “Mechanical Zero” are active signals and should not be connected to any other source.

4.4 Inhibition of Limit Switches

In standard, except for HAT, HAHL & HAHLT versions, RV rotation stages are equipped with limit switches (limited to ±170°) for protecting the equipment. A switch enables inhibiting the limit switches in order to use the rotation stage over 360° or more.
4.5 Feedback Signal Position

The incremental sensor consists of an optical scale and an encoder head. When the carriage moves, the encoder head generates square signals in quadrature and sends to pins #19, #20, #23 and #24 of the SUB-D25 connector.

“Encoder” and “Index Pulse” are “differential pair” (type RS-422) type output signals. Using these signals permits a high immunity to noise. Emission circuits generally used by Newport are 26LS31 or MC3487. Reception circuits to use are 26LS32 or MC3486.
4.6 Pinouts

The pinout diagrams for the RV stage SUB-D25M connectors are shown below.

<table>
<thead>
<tr>
<th>Stepper Motor</th>
<th>DC-Motor</th>
<th>DC-Motor & Tachometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Phase 1</td>
<td>N.C.</td>
<td>+ Tachometer</td>
</tr>
<tr>
<td>+ Phase 1</td>
<td>N.C.</td>
<td>+ Tachometer</td>
</tr>
<tr>
<td>– Phase 1</td>
<td>N.C.</td>
<td>– Tachometer</td>
</tr>
<tr>
<td>+ Phase 2</td>
<td>+ Motor</td>
<td>+ Motor</td>
</tr>
<tr>
<td>+ Phase 2</td>
<td>+ Motor</td>
<td>+ Motor</td>
</tr>
<tr>
<td>– Phase 2</td>
<td>– Motor</td>
<td>– Motor</td>
</tr>
<tr>
<td>– Phase 2</td>
<td>– Motor</td>
<td>– Motor</td>
</tr>
<tr>
<td>N.C.</td>
<td>N.C.</td>
<td>N.C.</td>
</tr>
<tr>
<td>N.C.</td>
<td>N.C.</td>
<td>N.C.</td>
</tr>
<tr>
<td>N.C.</td>
<td>N.C.</td>
<td>N.C.</td>
</tr>
<tr>
<td>Mechanical Zero</td>
<td>Mechanical Zero</td>
<td>Mechanical Zero</td>
</tr>
<tr>
<td>Shield Ground</td>
<td>Shield Ground</td>
<td>Shield Ground</td>
</tr>
<tr>
<td>Index Pulse I</td>
<td>Index Pulse I</td>
<td>Index Pulse I</td>
</tr>
<tr>
<td>0 V</td>
<td>0 V</td>
<td>0 V</td>
</tr>
<tr>
<td>+ End-of-Run</td>
<td>+ End-of-Run</td>
<td>+ End-of-Run</td>
</tr>
<tr>
<td>– End-of-Run</td>
<td>– End-of-Run</td>
<td>– End-of-Run</td>
</tr>
<tr>
<td>Encoder Phase A</td>
<td>Encoder Phase A</td>
<td>Encoder Phase A</td>
</tr>
<tr>
<td>Encoder Phase B</td>
<td>Encoder Phase B</td>
<td>Encoder Phase B</td>
</tr>
<tr>
<td>+5 V</td>
<td>+5 V</td>
<td>+5 V</td>
</tr>
<tr>
<td>0 V</td>
<td>0 V</td>
<td>0 V</td>
</tr>
<tr>
<td>Encoder Phase /A</td>
<td>Encoder Phase /A</td>
<td>Encoder Phase /A</td>
</tr>
<tr>
<td>Encoder Phase /B</td>
<td>Encoder Phase /B</td>
<td>Encoder Phase /B</td>
</tr>
<tr>
<td>Index Pulse /I</td>
<td>Index Pulse /I</td>
<td>Index Pulse /I</td>
</tr>
</tbody>
</table>

4.7 MCAB-3 Cable

A 3-meter length MCAB-3 cable is supplied with each RV stage.
5.0 Connection to Newport Controllers

5.1 Warnings on Controllers
Controllers are intended for use by qualified personnel who recognize shock hazards and are familiar with safety precautions required to avoid possible injury. Read the controller user’s manual carefully before operating the instrument and pay attention to all written warnings and cautions.

WARNING

Disconnect the power plug under the following circumstances:

- If the power cord or any attached cables are frayed or damaged in any way.
- If the power plug is damaged in any way.
- If the unit is exposed to rain, excessive moisture, or liquids are spilled on the unit.
- If the unit has been dropped or the case is damaged.
- If you suspect service or repair is required.
- Whenever you clean the electronics unit.

CAUTION

To protect the unit from damage, be sure to:

- Keep all air vents free of dirt and dust.
- Keep all liquids away from the unit.
- Do not expose the unit to excessive moisture (85% humidity).
- Read this manual before using the unit for the first time.

WARNING

All attachment plug receptacles in the vicinity of this unit are to be of the grounding type and properly polarized.

Contact your electrician to check your receptacles.

WARNING

This product is equipped with a 3-wire grounding type plug.

Any interruption of the grounding connection can create an electric shock hazard.

If you are unable to insert the plug into your wall plug receptacle, contact your electrician to perform the necessary alterations to ensure that the green (green-yellow) wire is attached to earth ground.

WARNING

This product operates with voltages that can be lethal.

Pushing objects of any kind into cabinet slots or holes, or spilling any liquid on the product, may touch hazardous voltage points or short out parts.
5.2 Connection

There is a label on every stage indicating its part and serial numbers.

WARNING
Always turn the controller’s power OFF before connecting to a stage.

NOTE
These stages are ESP compatible. Enhanced System Performance is Newport’s exclusive technology that enables Newport ESP motion controllers to recognize the connected Newport ESP stage and upload the stage parameters. This ensures that the user can operate the motion system quickly and safely.

5.3 Cables

RV stages are delivered with MCAB-3 3-meter cables. These cables are equipped with a SUB-D25M connector for direct connection to Newport Controllers.

![Cable Diagram]

WARNING
This cable is shielded correctly. For a correct operation, make sure to lock connectors (ground continuity provided by the cable).

For applications where the standard 3-meter cable (MCAB-3) included with your stage is not adequate, Newport offers longer length cables designed to ensure the integrity of your positioning application.

These cables are specially shielded and terminated with Newport’s standard SUB-D25 connectors. They are available in 5-m (MCAB-5), 7-m (MCAB-7) or 10-m (MCAB-10) lengths.

WARNING
Keep the motor cables at a safe distance from other electrical cables in your environment to avoid potential cross talk.
6.0 Connection to Non-Newport Electronics

6.1 Connections

WARNING

Newport is not responsible for malfunction or damage of RV stages when with non-Newport controllers.

WARNING

Newport guarantees “CE” compliance of RV stages only if used with Newport cables and controllers.

It is the customer's responsibility to modify the cable and take care of sensor signal connections, when using the stage with non-Newport controllers.

- The Mechanical Zero logic signal is open collector type. It supports up to 30 V and 10 mA.
- The End-of-Run signal is open collector type with a 5.6 V protective Zener diode.

![Diagram of connections](image)
7.0 Mounting

WARNING
Before operating the RV rotation stage, you must fix it in one of the following ways:
• Directly on the rectified working surface.
• To another stage, directly or indirectly using an assembly interface.

The rotation stage must, under no circumstances, remain unfixed.

It is equally necessary to fix the object to be moved on the carriage.

CAUTION
The flatness of the working surface has a direct impact on the performance levels of the rotation stages.

The mounting interfaces of RV rotation stages are illustrated in the diagrams given at the end of this manual (see Chapter: “Dimensions”).

CAUTION
Do not use a fastener screw whose length exceeds the working depth values given in the diagrams. Otherwise, the internal components of the rotation stage may be damaged.

7.1 Horizontal Rotation Stages (Vertical Rotation Axis)

The RV rotation stage is fixed on a horizontal surface. The external flange has various holes provided for fastening.

The 3-point fastening method is recommended for mounting surfaces whose flatness need not be very accurate.

This fastening method guarantees a minimum constraint on the rotation stage, and consequently produces a better wobble.

This fastening method is not recommended when high levels of stiffness are required.

The 3-point fastening method uses 3 holes equidistant from each other at 120°, on the external flange.
The 5-point fastening method produces better results in terms of stiffness. This type of fastening requires a mounting surface whose flatness is extremely accurate in order to obtain the best positioning accuracy (wobble). For all RV stages, a flatness accuracy of 5 µm is required.

The 5-point fastening method uses 5 holes equidistant from each other, on the external flange.

7.2 Vertical Rotation Stages (Horizontal Rotation Axis)

The RV rotation stage is fixed on a vertical surface. The external flange has various holes provided for fastening.

This type of stage is fixed using the same fastening methods as for the horizontal rotation stage (3 or 5 fastening points). The same precautions are applicable as well.

ATTENTION

When using a connection angle, ensure that its stiffness is calculated in conformity with the required specifications of the geometry of the movement.

Contact Newport for high-accuracy mounting.
8.0 Dimensions

8.1 RV120 to RV350 Rotations Stages

RV Series, High-Performance Precision Rotation Stages

<table>
<thead>
<tr>
<th>Model</th>
<th>RV120</th>
<th>RV160</th>
<th>RV240</th>
<th>RV350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>6.02</td>
<td>7.38</td>
<td>9.84</td>
<td>14.65</td>
</tr>
<tr>
<td>Bore</td>
<td>M6</td>
<td>M5</td>
<td>M6</td>
<td>M8</td>
</tr>
<tr>
<td>Flange</td>
<td>60°</td>
<td>60°</td>
<td>60°</td>
<td>60°</td>
</tr>
<tr>
<td>Flange Angle</td>
<td>10°</td>
<td>10°</td>
<td>10°</td>
<td>10°</td>
</tr>
<tr>
<td>Flange Hole</td>
<td>8.94</td>
<td>9.04</td>
<td>9.07</td>
<td>14.58</td>
</tr>
<tr>
<td>Flange Hole Location</td>
<td>32</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Flange Hole Depth</td>
<td>90°</td>
<td>89°</td>
<td>90°</td>
<td>90°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>RV120</th>
<th>RV160</th>
<th>RV240</th>
<th>RV350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>11.61</td>
<td>14.92</td>
<td>19.34</td>
<td>29.65</td>
</tr>
<tr>
<td>Bore</td>
<td>M6</td>
<td>M5</td>
<td>M6</td>
<td>M8</td>
</tr>
<tr>
<td>Flange</td>
<td>60°</td>
<td>60°</td>
<td>60°</td>
<td>60°</td>
</tr>
<tr>
<td>Flange Hole</td>
<td>8.94</td>
<td>9.04</td>
<td>9.07</td>
<td>14.58</td>
</tr>
<tr>
<td>Flange Hole Location</td>
<td>32</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Flange Hole Depth</td>
<td>90°</td>
<td>89°</td>
<td>90°</td>
<td>90°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>RV120</th>
<th>RV160</th>
<th>RV240</th>
<th>RV350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>6.02</td>
<td>7.38</td>
<td>9.84</td>
<td>14.65</td>
</tr>
<tr>
<td>Bore</td>
<td>M6</td>
<td>M5</td>
<td>M6</td>
<td>M8</td>
</tr>
<tr>
<td>Flange</td>
<td>60°</td>
<td>60°</td>
<td>60°</td>
<td>60°</td>
</tr>
<tr>
<td>Flange Angle</td>
<td>10°</td>
<td>10°</td>
<td>10°</td>
<td>10°</td>
</tr>
<tr>
<td>Flange Hole</td>
<td>8.94</td>
<td>9.04</td>
<td>9.07</td>
<td>14.58</td>
</tr>
<tr>
<td>Flange Hole Location</td>
<td>32</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Flange Hole Depth</td>
<td>90°</td>
<td>89°</td>
<td>90°</td>
<td>90°</td>
</tr>
</tbody>
</table>

RV Series, Folded Motor

<table>
<thead>
<tr>
<th>Model</th>
<th>RV120</th>
<th>RV160</th>
<th>RV240</th>
<th>RV350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>11.61</td>
<td>14.92</td>
<td>19.34</td>
<td>29.65</td>
</tr>
<tr>
<td>Bore</td>
<td>M6</td>
<td>M5</td>
<td>M6</td>
<td>M8</td>
</tr>
<tr>
<td>Flange</td>
<td>60°</td>
<td>60°</td>
<td>60°</td>
<td>60°</td>
</tr>
<tr>
<td>Flange Hole</td>
<td>8.94</td>
<td>9.04</td>
<td>9.07</td>
<td>14.58</td>
</tr>
<tr>
<td>Flange Hole Location</td>
<td>32</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Flange Hole Depth</td>
<td>90°</td>
<td>89°</td>
<td>90°</td>
<td>90°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>RV120</th>
<th>RV160</th>
<th>RV240</th>
<th>RV350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>6.02</td>
<td>7.38</td>
<td>9.84</td>
<td>14.65</td>
</tr>
<tr>
<td>Bore</td>
<td>M6</td>
<td>M5</td>
<td>M6</td>
<td>M8</td>
</tr>
<tr>
<td>Flange</td>
<td>60°</td>
<td>60°</td>
<td>60°</td>
<td>60°</td>
</tr>
<tr>
<td>Flange Angle</td>
<td>10°</td>
<td>10°</td>
<td>10°</td>
<td>10°</td>
</tr>
<tr>
<td>Flange Hole</td>
<td>8.94</td>
<td>9.04</td>
<td>9.07</td>
<td>14.58</td>
</tr>
<tr>
<td>Flange Hole Location</td>
<td>32</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Flange Hole Depth</td>
<td>90°</td>
<td>89°</td>
<td>90°</td>
<td>90°</td>
</tr>
</tbody>
</table>

RV Series, Direct Motor

<table>
<thead>
<tr>
<th>Model</th>
<th>RV120</th>
<th>RV160</th>
<th>RV240</th>
<th>RV350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>11.61</td>
<td>14.92</td>
<td>19.34</td>
<td>29.65</td>
</tr>
<tr>
<td>Bore</td>
<td>M6</td>
<td>M5</td>
<td>M6</td>
<td>M8</td>
</tr>
<tr>
<td>Flange</td>
<td>60°</td>
<td>60°</td>
<td>60°</td>
<td>60°</td>
</tr>
<tr>
<td>Flange Hole</td>
<td>8.94</td>
<td>9.04</td>
<td>9.07</td>
<td>14.58</td>
</tr>
<tr>
<td>Flange Hole Location</td>
<td>32</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Flange Hole Depth</td>
<td>90°</td>
<td>89°</td>
<td>90°</td>
<td>90°</td>
</tr>
</tbody>
</table>
8.2 RV-HA & RV-HAT Versions

Rotation Stage, Direct Motor

<table>
<thead>
<tr>
<th>Model</th>
<th>L_1</th>
<th>M_1</th>
<th>L_2</th>
<th>M_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV120</td>
<td>11.87 (301.5)</td>
<td>13.84 (351.5)</td>
<td>1.79 (45.5)</td>
<td></td>
</tr>
<tr>
<td>RV160</td>
<td>12.36 (314)</td>
<td>14.06 (357)</td>
<td>2.13 (54)</td>
<td></td>
</tr>
<tr>
<td>RV240</td>
<td>13.35 (338)</td>
<td>15.04 (382)</td>
<td>2.89 (73.5)</td>
<td></td>
</tr>
<tr>
<td>RV350</td>
<td>14.37 (365)</td>
<td>16.06 (408)</td>
<td>4.13 (105)</td>
<td></td>
</tr>
</tbody>
</table>

Rotation Stage, Folded Motor

<table>
<thead>
<tr>
<th>Model</th>
<th>L_1</th>
<th>M_1</th>
<th>L_2</th>
<th>M_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV120</td>
<td>6.12 (155.5)</td>
<td>2.15 (54.5)</td>
<td>3.13 (79.5)</td>
<td></td>
</tr>
<tr>
<td>RV160</td>
<td>6.81 (173)</td>
<td>2.48 (63)</td>
<td>4.23 (107.5)</td>
<td></td>
</tr>
<tr>
<td>RV240</td>
<td>7.69 (195)</td>
<td>3.25 (82.5)</td>
<td>4.36 (110.5)</td>
<td></td>
</tr>
<tr>
<td>RV350</td>
<td>8.62 (219)</td>
<td>4.49 (114)</td>
<td>4.69 (114)</td>
<td></td>
</tr>
</tbody>
</table>

Model RV120

- M4 60° 3.44 (87.5) 24 (61) 6 60° 5.29 (134) 5 M5 1 7 17.5°
- M5 60° 4.72 (120) 28 (7) 6 60° 6.85 (174) 5 M5 1 7 25°
- M5 60° 7.28 (185) 28 (7) 6 60° 9.64 (245) 5 M6 1 10 30°
- M6 60° 11.61 (295) 28 (7) 12 30° 14.65 (372) 10 M8 2 10 10°
Newport’s EQ120 and EQ180 brackets (to order separately) are ideal for mounting our ILS or IMS Series of linear stages and RV80 to RV160 rotation stages for stable and stiff multi-axis positioning systems.

EQ180 bracket on an (M-)IMS stage, with an RV160 in vertical configuration.

Interface plate position of the EQ120 bracket

Interface plate position of the EQ180 bracket
RV Series

High-Performance Precision Rotation Stages

EQ 120 Bracket

3 POSITIONS:
- 6.10 (155)
- 13.70 (348)
- 21.85 (555)

4 HOLES ø .26 (6.6) ON SQR 5.91 (150)

2 x 4 HOLES M6 THD, DEPTH: 12

INTERFACE PLATE

9 HOLES M5 THD, DEPTH: AT (1)

INTERFACE PLATE

EQ 180 Bracket

3 POSITIONS:
- 4.80 (122)
- 10.31 (262)
- 15.83 (402)

4 HOLES ø .28 (7) ON SQR 3.97 (100.8)

3 POSITIONS:
- 4.41 (112)
- 4.39 (111.5)

INTERFACE PLATE

5 HOLES M5 THD

DIMENSIONS IN INCHES (AND MILLIMETERS)
10.0 Maintenance

RECOMMENDATION
Please contact Technical Sales Support team for recommendations on application specific maintenance.

10.1 Maintenance
A stage of the RV Series requires no particular maintenance. Nevertheless, this is a precision mechanical device that must be kept and operated with caution.

PRECAUTIONS
A rotation stage must be used or stocked in a clean environment, without dust, humidity, solvents or other substances.

RECOMMENDATION
It is recommended to return the stage to Newport for re-lubrication after 2000 hours of use.
If the RV Series stage is mounted on a workstation and cannot be easily removed, please contact Newport's After Sales Service for further instructions.

10.2 Repair

CAUTION
Never attempt to disassemble a component of the rotation stage that has not been covered in this manual.
To disassemble a non specified component can cause a malfunction of the stage.
If you observe a malfunction in your stage, please contact us immediately to arrange for a repair.

CAUTION
Any attempt to disassemble or repair a stage of the RV Series without prior authorization will void your warranty.

10.3 Calibration

CAUTION
It is recommended to return your RV Series stage to Newport once a year for recalibration to its original specifications.
Service Form

Your Local Representative
Tel.: __________________________
Fax: __________________________

Name: ____________________________ Return authorization #: ____________________________
Company: __________________________
Address: ____________________________ Date: ____________________________
Country: ____________________________ Phone Number: ____________________________
P.O. Number: ____________________________ Fax Number: ____________________________

Item(s) Being Returned:

Model #: ____________________________ Serial #: ____________________________
Description: ____________________________
Reasons of return of goods (please list any specific problems):

__
__
__
__
__
__
__
__
__
__
__

[Newport logo]
North America & Asia
Newport Corporation
1791 Deere Ave.
Irvine, CA 92606, USA

Sales
Tel.: (800) 222-6440
e-mail: sales@newport.com

Technical Support
Tel.: (800) 222-6440
e-mail: tech@newport.com

Service, RMAs & Returns
Tel.: (800) 222-6440
e-mail: service@newport.com

Europe
MICRO-CONTROLE Spectra-Physics S.A.S
9, rue du Bois Sauvage
91055 Évry CEDEX
France

Sales & Technical Support
Tel.: +33 (0)1.60.91.68.68
e-mail: france@newport.com

Service & Returns
Tel.: +33 (0)2.38.40.51.55