Warranty

Newport Corporation warrants this product to be free from defects in material and workmanship for a period of 1 year from the date of shipment. If found to be defective during the warranty period, the product will either be repaired or replaced at Newport’s discretion.

To exercise this warranty, write or call your local Newport representative, or contact Newport headquarters in Irvine, California. You will be given prompt assistance and return instructions. Send the instrument, transportation prepaid, to the indicated service facility. Repairs will be made and the instrument returned, transportation prepaid. Repaired products are warranted for the balance of the original warranty period, or at least 90 days.

Limitation of Warranty
This warranty does not apply to defects resulting from modification or misuse of any product or part.

CAUTION
Warranty does not apply to damages resulting from:
• Incorrect usage:
 – Load on the stage greater than maximum specified load.
 – Carriage speed higher than specified speed.
 – Improper grounding.
 ¬ Connectors must be properly secured.
 ¬ When the load on the stage represents an electrical risk, it must be connected to ground.
 – Excessive or improper cantilever loads.
• Modification of the stage or any part thereof.

This warranty is in lieu of all other warranties, expressed or implied, including any implied warranty of merchantability or fitness for a particular use. Newport Corporation shall not be liable for any indirect, special, or consequential damages.

© 2018 by Newport Corporation, Irvine, CA. All rights reserved.
Original instructions.
No part of this document may be reproduced or copied without the prior written approval of Newport Corporation. This document is provided for information only, and product specifications are subject to change without notice. Any change will be reflected in future publishings.
Table of Contents

Warranty ... ii
EC Declaration of Conformity ... v
Definitions and Symbols ... vi
Warnings ... vii
Caution .. viii

1.0 — Introduction .. 1

2.0 — Description ... 2
 2.1 Design Details .. 2

3.0 — Characteristics .. 3
 3.1 Definitions .. 3
 3.2 Mechanical Specifications ... 4
 3.3 Load Specification Definitions ... 4
 3.4 Load Characteristics and Stiffness ... 5
 3.5 Stage Weights .. 5

4.0 — Drives and Motors ... 6
 4.1 Stepper Drive Version ... 6
 4.2 DC-Motor Drive Version .. 6
 4.3 Sensor Position ... 7
 4.4 Feedback Signal Position ... 8
 4.5 Pinouts .. 8

5.0 — Connection to Newport Controllers ... 10
 5.1 Warnings on Controllers .. 10
 5.2 Connection ... 11
 5.3 Cables .. 11

6.0 — Connection to Non-Newport Electronics ... 12
 6.1 MFA-PPD & MFA-CC Connections .. 12
 6.2 MFA-PP Stage ... 13

7.0 — Dimensions ... 13

8.0 — Accessories .. 14
 8.1 MFA-BK Plate ... 14
 8.2 (M-)MFA-TP Top Plates .. 14
 8.3 MFA-BP Base Plate .. 14
9.0 — Maintenance ..15
 9.1 Maintenance ..15
 9.2 Repair ...15
 9.3 Calibration ...15

Service Form ...17
EC Declaration of Conformity

MFA Series

EU Declaration of Conformity
following Annex II-1A
of Directive 2006/42/EC on machinery

The manufacturer:
MICRO-CONTROLE Spectra-Physics,
9, rue du bois sauvage
F-91055 Evry FRANCE

Hereby declares that the machinery:
• Description: " MFA "
• Function: Miniature Linear Stages
• Models: MFA-CC/-CCV6/-PP/-PPD

– the technical file of which was compiled by:
Mr Hervé LE COINTE, Quality Director,
MICRO-CONTROLE Spectra-Physics, Zone Industrielle - B.P.29
F-45340 Beaune La Rolande France

– complies with all the relevant provisions of the Directive 2006/42/EC on machinery.
– complies with all the relevant provisions of the Directive 2014/30/EU relating to electro-
magnetic compatibility.
– complies with all the relevant provisions of the Directive 2011/65/EU relating to RoHS2.

– was designed and built in accordance with the following harmonised standards:
 • NF EN 61326-1:2013 « Electrical equipment for measurement, control and
 laboratory use – EMC requirements – Part 1: General requirements »
 • NF EN 55011:2010/A1:2011 Class A

– was designed and built in accordance with the following other standards:
 • NF EN 61000-4-2
 • NF EN 61000-4-3
 • NF EN 61000-4-4
 • NF EN 61000-4-5
 • NF EN 61000-4-6

ORIGINAL DECLARATION

Done in Beaune La Rolande on 16 May 2017
Hervé LE COINTE
Quality Director

DC1-EN rev:A
Definitions and Symbols

The following terms and symbols are used in this documentation and also appear on the product where safety-related issues occur.

General Warning or Caution

The exclamation symbol may appear in warning and caution tables in this document. This symbol designates an area where personal injury or damage to the equipment is possible.

The following are definitions of the Warnings, Cautions and Notes that may be used in this manual to call attention to important information regarding personal safety, safety and preservation of the equipment, or important tips.

WARNING

Warning indicates a potentially dangerous situation which can result in bodily harm or death.

CAUTION

Caution indicates a potentially hazardous situation which can result in damage to product or equipment.

NOTE

Note indicates additional information that must be considered by the user or operator.

European Union CE Mark

The presence of the CE Mark on Newport Corporation equipment means that it has been designed, tested and certified as complying with all applicable European Union (CE) regulations and recommendations.

Warnings and Cautions

ATTENTION

This stage is a Class A device. In a residential environment, this device can cause electromagnetic interference. In this case, suitable measures must be taken by the user.
Warnings

--
WARNING
The motion of objects of all types carries potential risks for operators. Ensure the protection of operators by prohibiting access to the dangerous area and by informing the personnel of the potential risks involved.
--

WARNING
Do not use this stage when its motor is emitting smoke or is unusually hot to the touch or is emitting any unusual odor or noise or is in any other abnormal state.
Stop using the stage immediately, switch off the motor power and then disconnect the electronics power supply.
After checking that smoke is no longer being emitted contact your Newport service facility and request repairs. Never attempt to repair the stage yourself as this can be dangerous.
--

WARNING
Make sure that this stage is not exposed to moisture and that liquid does not get into the stage.
Nevertheless, if any liquid has entered the stage, switch off the motor power and then disconnect the electronics from power supply.
Contact your Newport service facility and request repairs.
--

WARNING
Do not insert or drop objects into this stage, this may cause an electric shock, or lock the drive.
Do not use this stage if any foreign objects have entered the stage. Switch off the motor power and then disconnect the electronics power supply.
Contact your Newport service facility for repairs.
--

WARNING
Do not place this stage in unstable locations such as on a wobbly table or sloping surface, where it may fall or tip over and cause injury.
If this stage has been dropped or the case has been damaged, switch off the motor power and then disconnect the electronics power supply.
Contact your Newport service facility and request repairs.
--

WARNING
Do not attempt to modify this stage; this may cause an electric shock or downgrade its performance.
--

WARNING
Do not exceed the usable depth indicated on the mounting holes (see section "Dimensions"). Longer screws can damage the mechanics or cause a short-circuit.
Caution

CAUTION
Do not place this stage in a hostile environment such as X-Rays, hard UV,... or in any vacuum environment.
Only the MFA-CCV6 stage is compatible and can be used in a vacuum environment up to 10^{-6} hPa.

CAUTION
Do not place this stage in a location affected by dust, oil fumes, steam or high humidity. This may cause an electric shock.

CAUTION
Do not leave this stage in places subject to extremely high temperatures or low temperatures. This may cause an electric shock.
- Operating temperature: +10 to +35 °C
- Storage temperature: -10 to +40 °C (in its original packaging)

CAUTION
Do not move this stage if its motor power is on.
Make sure that the cable to the electronics is disconnected before moving the stage. Failure to do so may damage the cable and cause an electrical shock.

CAUTION
Be careful that the stage is not bumped when it is being carried. This may cause it to malfunction.

CAUTION
When handling this stage, always unplug the equipment from the power source for safety.

CAUTION
When the carriage is in its end-of-run position, it is strongly recommended not to go beyond this point as this may damage the stage mechanism.

CAUTION
Contact your Newport service facility to request cleaning and specification control every year.
1.0 Introduction

This manual provides operating instructions for the stage that you have purchased in the MFA Series:

• MFA-CC
• MFA-CCV6 (1)
• MFA-PP
• MFA-PPD

1) REMARK

Vacuum compatible stage to 10^6 hPa. In this case, the max. speed and load capacity have to be divided by two.

RECOMMENDATION

We recommend you read carefully the chapter “Connection to electronics” before using the MFA stage.
2.0 Description

Designed for space-limited applications and compact multi-axis assemblies, MFA Series linear stages supply very high resolution, single-axis translation in a low-cost, motorized package. Typical applications for this stage are fiber optic alignment, laser diode research, bio-medical applications and inspection systems.

MFA linear stages are available in two versions: The MFA-CC with a DC-motor, features an integrated gear-box and a motor mounted high resolution 2,048 cts/rev rotary encoder. The high-resolution position feedback and low-friction mechanical design ensures ultra-smooth motion with 100 nm sensitivity. The DC motor supplies an optimized output torque that permits the use of a lower ratio step-down gear allowing for faster motion with higher reliability and lower backlash. Hence, the MFA-CC is the recommended choice for applications that require small incremental motion with high dynamic speed range and good repeatability. The MFA-PP and MFA-PPD stepper motor versions are more economical solutions for less demanding applications.

Travel limit switches prevent bearing damage from accidental over-travel.

MFA stages feature an all-steel construction that provides a higher stiffness-to-weight ratio and lower thermal expansion compared to aluminum designs. The result is superior performance in a smaller footprint. The smooth motion of the MFA linear stages is further accentuated by Newport’s proprietary double-row linear ball bearing design with bearing ways that are directly machined into the structural frame of the stage. Compared to other solutions that use commercial bearings, MFA linear stages have a higher load capacity and stiffness with low pitch and yaw errors.

Another benefit of Newport’s integrated bearing ways is the availability of 4 widely spaced mounting holes for base mounting and XY-assemblies. This provides better stress distribution and allows for more rigid multi-axis combinations than other designs that provide only line contact with 2 mounting holes.

2.1 Design Details

<table>
<thead>
<tr>
<th>Base Material</th>
<th>Stainless Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearings</td>
<td>Double row linear ball bearings</td>
</tr>
<tr>
<td>Drive Mechanism</td>
<td>Backlash compensated leadscrew</td>
</tr>
<tr>
<td>Drive Screw Pitch</td>
<td>0.5 mm</td>
</tr>
<tr>
<td>Reduction Gear</td>
<td>MFA-CC: 1:14</td>
</tr>
<tr>
<td></td>
<td>MFA-PP: 1:43</td>
</tr>
<tr>
<td>Feedback</td>
<td>MFA-CC: Motor mounted rotary encoder; 2,048 cts/rev</td>
</tr>
<tr>
<td></td>
<td>MFA-PP: None</td>
</tr>
<tr>
<td>Limit Switches</td>
<td>Optical switches</td>
</tr>
<tr>
<td>Origin</td>
<td>Uses motor side limit for homing; typically <5 mm repeatability</td>
</tr>
<tr>
<td>Cable Length</td>
<td>MFA-PP, MFA-PPD & MFA-CC: 3 m</td>
</tr>
<tr>
<td></td>
<td>MFA-CCV6: 1.5 m</td>
</tr>
</tbody>
</table>
3.0 Characteristics

3.1 Definitions

Specifications of our products are established in reference to ISO 230 standard part II “Determination of accuracy and repeatability of positioning numerically controlled axes”.

This standard gives the definition of position uncertainty which depends on the 3 following parameters:

Absolute Accuracy
Difference between ideal position and real position.

Accuracy
Difference between ideal position and real position after the compensation of linear errors.

Linear errors include: cosine errors, inaccuracy of screw or linear scale pitch, angular deviation at the measuring point (Abbe error) and thermal expansion effects. All Newport motion electronics can compensate for linear errors.

The relation between absolute accuracy and on-axis accuracy is as follows:

\[
\text{Absolute Accuracy} = \text{Accuracy} + \text{Correction Factor} \times \text{Travel}
\]

Repeatability
Ability of a system to achieve a commanded position over many attempts.

Reversal Value (Hysteresis)
Difference between actual position values obtained for a given target position when approached from opposite directions.

Minimum Incremental Motion (MIM or Sensitivity)
The smallest increment of motion a device is capable of delivering consistently and reliably.

Resolution
The smallest increment that a motion device can theoretically move and/or detect. Resolution is not achievable, whereas MIM, is the real output of a motion system.

Yaw, Pitch
Rotation of carriage around the Z axis (Yaw) or Y axis (Pitch), when it moves.

The testing of accuracy, repeatability, and reversal error are made systematically with test equipment in controlled environment (20±1 °C).

A linear cycle with 21 data points on the travel and 4 cycles in each direction gives a total of 168 points.

Guaranteed and Typical Specifications

Guaranteed maximum performance values are verified per Newport’s A167 metrology test procedure. For more information, please consult the metrology tutorial section in the Newport catalog or at www.newport.com
3.2 Mechanical Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MFA-PP and MFA-PPD</th>
<th>MFA-CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Range (in. [mm])</td>
<td>0.1 (25)</td>
<td>0.1</td>
</tr>
<tr>
<td>Minimum Incremental Motion (µm)</td>
<td>±0.08 (±0.15)</td>
<td>±0.7 (±3.0)</td>
</tr>
<tr>
<td>Uni-directional Repeatability, Typical (Guaranteed) (µm)</td>
<td>±0.12 (±0.25)</td>
<td>±0.08 (±0.15)</td>
</tr>
<tr>
<td>Bi-directional Repeatability, Typical (Guaranteed) (µm)</td>
<td>±0.2 (±0.75)</td>
<td>±0.15 (±0.75)</td>
</tr>
<tr>
<td>Accuracy, Typical (Guaranteed) (µm)</td>
<td>±0.5 (±3.0)</td>
<td>±0.7 (±3.0)</td>
</tr>
<tr>
<td>Maximum Speed (mm/s)</td>
<td>0.3 (MFA-PP)</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>1.0 (MFA-PPD)</td>
<td></td>
</tr>
<tr>
<td>Pitch, Typical (Guaranteed) (µrad)</td>
<td>±25 (±100)</td>
<td></td>
</tr>
<tr>
<td>Yaw, Typical (Guaranteed) (µrad)</td>
<td>±30 (±50)</td>
<td></td>
</tr>
<tr>
<td>MTBF</td>
<td>10,000 h at a 1 kg load with a 20% duty cycle</td>
<td></td>
</tr>
</tbody>
</table>

1) For the definition of Typical and Guaranteed specifications see “Motion Basics Terminology & Standards” Tutorial at www.newport.com
2) After backlash compensation.
3) To obtain arcsec units, divide µrad value by 4.8.

NOTE
For the MFA-CCV6 vacuum compatible stage to 10^-6 hPa, the max. speed and load capacity have to be divided by two.

CAUTION
To reach specifications stated, stages must be fixed on a plane surface with a flatness of 5 µm.

3.3 Load Specification Definitions

Normal Load Capacity (Cz)
Maximum load a stage can move while maintaining specifications.
This value is given with speed and acceleration specified for each stage, and with a load perpendicular to bearings.

Axial Load Capacity (±Cx)
Maximum load along the direction of the drive train.

Off-Centered Load (Q)
Maximum cantilever-load a stage can move: Q ≤ Cz/(1 + D/a)
D: Cantilever distance.
a: Construction parameter
3.4 Load Characteristics and Stiffness

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_z, Normal centered load capacity (N)</td>
<td>50</td>
</tr>
<tr>
<td>$C_{x}\pm$, Axial load capacity (N)</td>
<td>10</td>
</tr>
<tr>
<td>K_{xx}, Compliance in roll (μrad/Nm)</td>
<td>60</td>
</tr>
<tr>
<td>K_{xy}, Compliance in pitch (μrad/Nm)</td>
<td>10</td>
</tr>
<tr>
<td>Q, Off-center load (N)</td>
<td>$Q \leq C_z \div (1 + D/20)$</td>
</tr>
</tbody>
</table>

Where D = Cantilever distance (mm)

NOTE

For the MFA-CCV6 vacuum compatible stage to 10^{-6} hPa, the load capacity has to be divided by two.

3.5 Stage Weights

The weight indicated is the average value for stages with their cable installed.

<table>
<thead>
<tr>
<th>Weight [lb (kg)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFA</td>
</tr>
<tr>
<td>1.3 (0.6)</td>
</tr>
</tbody>
</table>

The weight variation between drive units is not very significant.
4.0 Drives and Motors

4.1 Stepper Drive Version

Stepper-motor-driven stages are offered in one half-step drive version: MFA-PP & MFA-PPD.

Micro-Step Drive

This is the drive for stepper or pulse-driven motors, transmitted by the electronic unit, which entails a theoretical movement of the motor by one fraction of a full-step. For these translation stages, the micro-step is equivalent to 1/64 of the full-step.

Stepper Motor Performance Specifications and Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Resolution (µm)</th>
<th>Speed (mm/s)</th>
<th>Angle by Step (°)</th>
<th>RMS Current per Phase (A)</th>
<th>Resistance (Ω)</th>
<th>Inductance (mH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFA-PP</td>
<td>0.00757</td>
<td>0.3</td>
<td>15</td>
<td>0.25</td>
<td>12.5</td>
<td>5.5</td>
</tr>
<tr>
<td>MFA-PPD</td>
<td>0.00757</td>
<td>1.0</td>
<td>15</td>
<td>0.25</td>
<td>12.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>

*Micro-step driving.

Command Signals for the Stepper Motor

4.2 DC-Motor Drive Version

One DC-motor-driven configuration is available: MFA-CC.

DC-Motor Performance Specifications and Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Resolution (µm)</th>
<th>Speed (mm/s)</th>
<th>Nominal Voltage (V)</th>
<th>Max. RMS Current (A)</th>
<th>Max. Peak Current (A)</th>
<th>Resistance (Ω)</th>
<th>Inductance (mH)</th>
<th>Tachometer Const. (V/krpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFA-CC</td>
<td>0.0174</td>
<td>2.5</td>
<td>24</td>
<td>0.15</td>
<td>0.21</td>
<td>54.6</td>
<td>1.19</td>
<td>–</td>
</tr>
</tbody>
</table>

NOTE

For the MFA-CCV6 vacuum compatible stage to 10⁻⁶ hPa, the max. speed has to be divided by two.
Command Signals for the DC-Motor

In the above drawings, + Motor signal is referred to – Motor signal.

① When the stage moves in + Direction, the + Motor voltage is higher than – Motor voltage.

② When the stage moves in – Direction, the + Motor voltage is lower than – Motor voltage.

4.3 Sensor Position

End-of-Run are 5 V open collector type.

CAUTION

“End-of-Run” are active signals and should not be connected to any other source.
4.4 Feedback Signal Position

The incremental sensor consists of an optical scale and an encoder head. When the carriage moves, the encoder head generates square signals in quadrature and sends to pins #19, #20, #23 and #24 of the SUB-D25 connector.

“Encoder” are “differential pair” (type RS-422) type output signals. Using these signals permits a high immunity to noise. Emission circuits generally used by Newport are 26LS31 or MC3487. Reception circuits to use are 26LS32 or MC3486.

4.5 Pinouts

The pinout diagram for the MFA-PP stages mini-DIN9 connector is shown below.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+End-of-Run</td>
</tr>
<tr>
<td>2</td>
<td>Phase 1a</td>
</tr>
<tr>
<td>3</td>
<td>+5 V</td>
</tr>
<tr>
<td>4</td>
<td>Phase 2b</td>
</tr>
<tr>
<td>5</td>
<td>N.C.</td>
</tr>
<tr>
<td>6</td>
<td>Phase 2a</td>
</tr>
<tr>
<td>7</td>
<td>Phase 1b</td>
</tr>
<tr>
<td>8</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>+End-of-Run</td>
</tr>
</tbody>
</table>
The pinout diagrams for the MFA-PPD and MFA-CC stages SUB-D25M connector are shown below.

MFA-PPD

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phase 1a</td>
</tr>
<tr>
<td>2</td>
<td>N.C.</td>
</tr>
<tr>
<td>3</td>
<td>Phase 1b</td>
</tr>
<tr>
<td>4</td>
<td>N.C.</td>
</tr>
<tr>
<td>5</td>
<td>Phase 2a</td>
</tr>
<tr>
<td>6</td>
<td>N.C.</td>
</tr>
<tr>
<td>7</td>
<td>Phase 2b</td>
</tr>
<tr>
<td>8</td>
<td>N.C.</td>
</tr>
<tr>
<td>9</td>
<td>N.C.</td>
</tr>
<tr>
<td>10</td>
<td>N.C.</td>
</tr>
<tr>
<td>11</td>
<td>N.C.</td>
</tr>
<tr>
<td>12</td>
<td>N.C.</td>
</tr>
<tr>
<td>13</td>
<td>Reserved (1)</td>
</tr>
<tr>
<td>14</td>
<td>Ground</td>
</tr>
<tr>
<td>15</td>
<td>N.C.</td>
</tr>
<tr>
<td>16</td>
<td>0 V</td>
</tr>
<tr>
<td>17</td>
<td>+ End-of-Run</td>
</tr>
<tr>
<td>18</td>
<td>– End-of-Run</td>
</tr>
<tr>
<td>19</td>
<td>N.C.</td>
</tr>
<tr>
<td>20</td>
<td>N.C.</td>
</tr>
<tr>
<td>21</td>
<td>+5 V</td>
</tr>
<tr>
<td>22</td>
<td>0 V</td>
</tr>
<tr>
<td>23</td>
<td>N.C.</td>
</tr>
<tr>
<td>24</td>
<td>N.C.</td>
</tr>
<tr>
<td>25</td>
<td>N.C.</td>
</tr>
</tbody>
</table>

MFA-CC

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N.C.</td>
</tr>
<tr>
<td>2</td>
<td>N.C.</td>
</tr>
<tr>
<td>3</td>
<td>N.C.</td>
</tr>
<tr>
<td>4</td>
<td>N.C.</td>
</tr>
<tr>
<td>5</td>
<td>+ Motor</td>
</tr>
<tr>
<td>6</td>
<td>+ Motor</td>
</tr>
<tr>
<td>7</td>
<td>– Motor</td>
</tr>
<tr>
<td>8</td>
<td>– Motor</td>
</tr>
<tr>
<td>9</td>
<td>N.C.</td>
</tr>
<tr>
<td>10</td>
<td>N.C.</td>
</tr>
<tr>
<td>11</td>
<td>N.C.</td>
</tr>
<tr>
<td>12</td>
<td>N.C.</td>
</tr>
<tr>
<td>13</td>
<td>Reserved (1)</td>
</tr>
<tr>
<td>14</td>
<td>Ground</td>
</tr>
<tr>
<td>15</td>
<td>N.C.</td>
</tr>
<tr>
<td>16</td>
<td>0 V</td>
</tr>
<tr>
<td>17</td>
<td>+ End-of-Run</td>
</tr>
<tr>
<td>18</td>
<td>– End-of-Run</td>
</tr>
<tr>
<td>19</td>
<td>Encoder Phase A</td>
</tr>
<tr>
<td>20</td>
<td>Encoder Phase B</td>
</tr>
<tr>
<td>21</td>
<td>+5 V</td>
</tr>
<tr>
<td>22</td>
<td>0 V</td>
</tr>
<tr>
<td>23</td>
<td>Encoder Phase /A</td>
</tr>
<tr>
<td>24</td>
<td>Encoder Phase /B</td>
</tr>
<tr>
<td>25</td>
<td>N.C.</td>
</tr>
</tbody>
</table>

1) Pin #13 of SUB-D25M is reserved for internal logic for Newport controller.
5.0 Connection to Newport Controllers

5.1 Warnings on Controllers
Controllers are intended for use by qualified personnel who recognize shock hazards and are familiar with safety precautions required to avoid possible injury. Read the controller user’s manual carefully before operating the instrument and pay attention to all written warnings and cautions.

WARNING
Disconnect the power plug under the following circumstances:
• If the power cord or any attached cables are frayed or damaged in any way.
• If the power plug is damaged in any way.
• If the unit is exposed to rain, excessive moisture, or liquids are spilled on the unit.
• If the unit has been dropped or the case is damaged.
• If you suspect service or repair is required.
• Whenever you clean the electronics unit.

CAUTION
To protect the unit from damage, be sure to:
• Keep all air vents free of dirt and dust.
• Keep all liquids away from the unit.
• Do not expose the unit to excessive moisture (85% humidity).
• Read this manual before using the unit for the first time.

WARNING
All attachment plug receptacles in the vicinity of this unit are to be of the grounding type and properly polarized.
Contact your electrician to check your receptacles.

WARNING
This product is equipped with a 3-wire grounding type plug.
Any interruption of the grounding connection can create an electric shock hazard.
If you are unable to insert the plug into your wall plug receptacle, contact your electrician to perform the necessary alterations to ensure that the green (green-yellow) wire is attached to earth ground.

WARNING
This product operates with voltages that can be lethal.
Pushing objects of any kind into cabinet slots or holes, or spilling any liquid on the product, may touch hazardous voltage points or short out parts.
5.2 Connection

There is a label on every stage indicating its part and serial numbers.

WARNING

Always turn the controller’s power OFF before connecting to a stage.

NOTE

These stages are ESP compatible. Enhanced System Performance is Newport’s exclusive technology that enables Newport ESP motion controllers to recognize the connected Newport ESP stage and upload the stage parameters. This ensures that the user can operate the motion system quickly and safely.

5.3 Cables

MFA-PP, MFA-PPD and MFA-CC are delivered equipped with a 3-meter cable, the MFA-CCV6 stage is delivered with a 1.5-meter cable.

These cables are equipped with a SUB-D25M connector for direct connection to Newport Controllers.

WARNING

This cable is shielded correctly. For a correct operation, make sure to lock connectors (ground continuity provided by the cable).

WARNING

Keep the motor cables at a safe distance from other electrical cables in your environment to avoid potential cross talk.
6.0 Connection to Non-Newport Electronics

6.1 MFA-PPD & MFA-CC Connections

WARNING
Newport is not responsible for malfunction or damage of MFA stages when used with non-Newport controllers.

WARNING
Newport guarantees “CE” compliance of MFA stages only if used with Newport cables and controllers.

It is the customer’s responsibility to modify the cable and take care of sensor signal connections, when using the stage with non-Newport controllers.

End-of-Runs and Mechanical Zero are open collector type with a 5.6 V protective Zener diode.

For connection to non-Newport electronics, pin #17 and #18 End-of-Runs must be connected to +5 V with a pull-up resistor. For some non-Newport controllers, the +5 V output signal may be pulled up internally.

To enable End-of-Run, when a MFA stage is used with non-Newport controllers using the Sub-D25M connector provided, pin #13 must be connected to +5 V with a pull-up resistor (ex: 4.99 kΩ).
6.2 MFA-PP Stage

WARNING

The MFA-PP stage is equipped with a mini-DIN9 non-standard connector and must only be used with our Newport NSC200 controller/driver.

NSC200 Single-Axis Low-Power Motion Controller/Driver.

7.0 Dimensions

MODEL SHOWN: MFA (DIMENSIONS IN INCHES AND MILLIMETERS)

- 4 HOLES C’BORED, FOR 4-40 (M3) SCREW: 1.42 (36) mm
- 4 HOLES M3 THD, DEPTH: .12 (3) mm
- 6 HOLES M3 THD, DEPTH: .20 (5) mm
- 2 HOLES M3 THD, DEPTH: .20 (5) mm
- 2 HOLES M3 THD, DEPTH: .20 (5) mm
- CABLE LENGTH: 9.8 FT (3 M)
- 4 HOLES M2 THD, DEPTH: .12 (3)
- 6 HOLES M3 THD, DEPTH: .20 (5) mm

MFA-PP: MINI-DIN CONNECTOR

MFA-PPD & MFA-CC: SUB-D25M CONNECTOR

Newport

13 EDHB199En2041 — 12/18
8.0 Accessories

NOTE

These plates are not included with MFA stages and must be ordered separately.

8.1 MFA-BK Plate

The MFA-BK top plate is used for XZ and XYZ assemblies with MFA stages.

8.2 (M-)MFA-TP Top Plates

8.3 MFA-BP Base Plate
9.0 Maintenance

RECOMMENDATION
Please contact Technical Sales Support team for recommendations on application specific maintenance.

9.1 Maintenance
The MFA stage requires no particular maintenance. Nevertheless, this is a precision mechanical device that must be kept and operated with caution.

PRECAUTIONS
The MFA stage must be used or stocked in a clean environment, without dust, humidity, solvents or other substances.

RECOMMENDATION
It is recommended to return the stage to Newport for re-lubrication after 2000 hours of use.
If the MFA stage is mounted on a workstation and cannot be easily removed, please contact Newport's After Sales Service for further instructions.

9.2 Repair

CAUTION
Never attempt to disassemble a component of the stage that has not been covered in this manual.
To disassemble a non specified component can cause a malfunction of the stage.
If you observe a malfunction in your stage, please contact us immediately to arrange for a repair.

CAUTION
Any attempt to disassemble or repair a stage without prior authorization will void your warranty.

9.3 Calibration

CAUTION
It is recommended to return your MFA stage to Newport once a year for recalibration to its original specifications.
Service Form

<table>
<thead>
<tr>
<th>Name:</th>
<th>Return authorization #:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company:</td>
<td>(Please obtain prior to return of item)</td>
</tr>
<tr>
<td>Address:</td>
<td>Date:</td>
</tr>
<tr>
<td>Country:</td>
<td>Phone Number:</td>
</tr>
<tr>
<td>P.O. Number:</td>
<td>Fax Number:</td>
</tr>
</tbody>
</table>

Item(s) Being Returned:

<table>
<thead>
<tr>
<th>Model #:</th>
<th>Serial #:</th>
</tr>
</thead>
</table>

Description:

Reasons of return of goods (please list any specific problems):

__

__

__

__

__