

HXP

Tcl Manual

Hexapod
Motion Controller

Intaller Pack Version #30002

HXP Controller Tcl Manual

NOTE
Tcl/Tk has been distributed freely for over 10 years and is now used in thousands
of applications by companies and individuals worldwide. You are free to use it
however you wish, even in commercial applications.

©2018 by Newport Corporation, Irvine, CA. All rights reserved.
Original instructions.
No part of this document may be reproduced or copied without the prior written
approval of Newport Corporation. This document is provided for information only, and
product specifications are subject to change without notice. Any change will be
reflected in future publishings.

EDH0336En1032 — 12/18 ii

http://www.tcl.tk/software/tcltk
http://www.tcl.tk/software/tcltk/license_terms.txt
http://www.tcl.tk/software/tcltk/license_terms.txt

HXP Controller Tcl Manual

Table of Contents

1.0 Introduction ... 1
1.1 Tcl is a String-Based Command Language ... 1

1.1.1 Tcl Commands ... 1
1.2 Tcl script examples .. 2

1.2.1 Hello, World! ... 2
1.2.2 Variables .. 2
1.2.3 Command Substitution ... 3
1.2.4 Math Expressions ... 3
1.2.5 Backslash Substitution ... 4
1.2.6 Grouping with Braces and Double Quotes ... 5

1.2.6.1 Square Brackets Do Not Group .. 5
1.2.6.2 Grouping Before Substitution ... 5
1.2.6.3 Grouping Math Expressions with Braces ... 6
1.2.6.4 More Substitution Examples .. 6

1.2.7 Procedures .. 6
1.2.8 A Factorial Example .. 7
1.2.9 More About Variables .. 9

1.2.9.1 Funny Variable Names ... 9
1.2.9.2 The unset Command .. 9
1.2.9.3 Using info to Find Out About Variables .. 10

1.2.10 More About Math Expressions .. 11
1.2.11 Comments .. 12
1.2.12 Substitution and Grouping Summary ... 13
1.2.13 Fine Points ... 14

1.3 Reference ..15
1.3.1 Backslash Sequences ... 15
1.3.2 Arithmetic Operators ... 15
1.3.3 Built-in Math Functions ... 15

2.0 Tcl Command Descriptions .. 17
2.1 Tcl - Summary of Tcl Language Syntax ...17
2.2 after - Execute a Command After a Time Delay ..20
2.3 append - Append to Variable ..21
2.4 array - Manipulate Array Variables ..22
2.5 binary - Insert and Extract Fields from Binary strings..24
2.6 break - Abort Looping Command ...30
2.7 catch - Evaluate Script and Trap Exceptional Returns ...31
2.8 cd - Change Working Directory ...32

 iii EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.9 clock - Obtain and Manipulate Time ..33
2.10 close - Close an Open Channel ...36
2.11 concat - Join Lists Together ..37
2.12 continue - Skip to the Next Iteration of a Loop ..38
2.13 eof - Check for End of File Condition on Channel ...39
2.14 error - Generate an Error...40
2.15 eval - Evaluate a Tcl Script ...41
2.16 exec - Invoke Subprocess(es) ...42
2.17 exit - End the Application ...44
2.18 expr - Evaluate an Expression ..45
2.19 fconfigure - Set and Get Options on a Channel ..50
2.20 fcopy - Copy Data From One Channel to Another ...53
2.21 file - Manipulate File Names and Attributes...55
2.22 fileevent - Execute a Script When a Channel Becomes Readable or Writable59
2.23 flush - Flush Buffered Output for a Channel ..61
2.24 for - ``For'' Loop ...62
2.25 foreach - Iterate Over All Elements in One or More Lists ..63
2.26 format - Format a String in the Style of sprintf ..64
2.27 gets - Read a Line from a Channel ...67
2.28 glob - Return Names of Files that Match Patterns ..68
2.29 global - Access Global Variables ...69
2.30 if - Execute Scripts Conditionally ...70
2.31 incr - Increment the Value of a Variable ..71
2.32 info - Return Information About the State of the Tcl Interpreter72
2.33 join - Create a String by Joining Together List Elements ...75
2.34 lappend - Append List Elements Onto a Variable ..76
2.35 lindex - Retrieve an Element From a List ...77
2.36 linsert - Insert Elements Into a List ...78
2.37 list - Create a List..79
2.38 llength - Count the Number of Elements in a List ..80
2.39 lrange - Return One or More Adjacent Elements From a List ..81
2.40 lreplace - Replace Elements in a List With New Elements ..82
2.41 lsearch - See if a List Contains a Particular Element ..83
2.42 lsort - Sort the Elements of a List ...84
2.43 namespace - Create and Manipulate Contexts for Commands and Variables85
2.44 open - Open a File-Based or Command Pipeline Channel ...92
2.45 pid - Retrieve Process id(s) ...95
2.46 proc - Create a Tcl Procedure ...96
2.47 puts - Write to a Channel ..97
2.48 pwd - Return the Current Working Directory ...98
2.49 read - Read from a Channel ..99
2.50 rename - Rename or Delete a Command ..100
2.51 return - Return from a Procedure ..101

EDH0336En1032 — 12/18 iv

HXP Controller Tcl Manual

2.52 scan - Parse String Using Conversion Specifiers in the Style of sscanf103
2.53 seek - Change the Access Position for an Open Channel ...106
2.54 set - Read and Write Variables ...107
2.55 socket - Open a TCP Network Connection ...108
2.56 source - Evaluate a File or Resource as a Tcl Script ...110
2.57 split - Split a STRING into a PROPER Tcl LIST ...111
2.58 string - Manipulate Strings ...112
2.59 subst - Perform Backslash, Command, and Variable Substitutions117
2.60 switch - Evaluate One of Several Scripts, Depending on a Given Value119
2.61 tell - Return Current Access Position for an Open Channel ...121
2.62 time - Time the Execution of a Script ...122
2.63 trace - Monitor Variable Accesses, Command Usages and Command Executions123
2.64 unset - Delete Variables ..128
2.65 update - Process Pending Events and Idle Callbacks ..129
2.66 uplevel - Execute a Script in a Different Stack Frame ..130
2.67 upvar - Create Link to Variable in a Different Stack Frame ...131
2.68 variable - Create and Initialize a Namespace Variable ...133
2.69 vwait - Process Events Until a Variable is Written ...134
2.70 while - Execute Script Repeatedly as Long as a Condition is Met135

3.0 TCL commands Not Supported ... 136

4.0 Boot Tcl Script ... 137

5.0 Telnet Connection .. 138

6.0 Error Handling .. 140

7.0 Examples of Tcl Programs with XPS .. 144
7.1 Using analog I/O for Motion ..144
7.2 Using Digital I/O for Motion ..147
7.3 Test GPIO1 ...150
7.4 Gathering with Motion ...152
7.5 External Gathering ..155
7.6 Position Compare ...158
7.7 Master-Slave Mode...160
7.8 Jogging ...162
7.9 Jogging and Gathering ..164
7.10 Analog Position Tracking ...168
7.11 Backlash Compensation ...170
7.12 Timer Event and Global Variables ...173
7.13 TCL script with input arguments ..177

Service Form .. 179

 v EDH0337En1032 — 12/18

HXP Controller Tcl Manual

EDH0336En1032 — 12/18 vi

HXP Controller Tcl Manual

1.0 Introduction

1.1 Tcl is a String-Based Command Language
The language has only a few fundamental constructs and relatively little syntax, which
makes it easy to learn. The Tcl syntax is meant to be simple. Tcl is designed to be a glue
that assembles software building blocks into applications. A simpler glue makes the job
easier. In addition, Tcl is interpreted when the application runs. The interpreter makes it
easy to build and refine your application
in an interactive manner. A great way to learn Tcl is to try out commands interactively.
If you are not sure how to run Tcl on your system, see Chapter 2 for instructions for
starting Tcl on UNIX systems. This chapter takes you through the basics of the Tcl
language syntax. Even if you are an expert programmer, it is worth taking the time to
read these few pages to make sure you understand the fundamentals of Tcl. The basic
mechanisms are all related to strings and string substitutions, so it is fairly easy to
visualize what is going on in the interpreter. The model is a little different from some
other programming languages with which you may already be familiar, so it is worth
making sure you understand the basic concepts.

1.1.1 Tcl Commands
Tcl stands for Tool Command Language. A command does something for you, like
output a string, compute a math expression, or display a widget on the screen. Tcl casts
everything into the mold of a command, even programming constructs like variable
assignment and procedure definition. Tcl adds a tiny amount of syntax needed to
properly invoke commands, and then it leaves all the hard work up to the command
implementation.
The basic syntax for a Tcl command is:
command arg1 arg2 arg3 ...
The command is either the name of a built-in command or a Tcl procedure. White space
(i.e., spaces or tabs) is used to separate the command name and its arguments, and a
newline (i.e., the end of line character) or semicolon is used to terminate a command.
Tcl does not interpret the arguments to the commands except to perform grouping,
which allows multiple words in one argument, and
substitution, which is used with programming variables and nested command
calls. The behavior of the Tcl command processor can be summarized in three basic
steps:
• Argument grouping.
• Value substitution of nested commands, variables, and backslash escapes.
• Command invocation. It is up to the command to interpret its arguments.

Hexapod
Motion Controller
HXP

 1 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

1.2 Tcl script examples

1.2.1 Hello, World!
Example 1–1: The “Hello, World!” example.

puts stdout {Hello, World!}
=> Hello, World!

In this example, the command is puts, which takes two arguments: an I/O stream
identifier and a string. puts writes the string to the I/O stream along with a trailing
newline character.
There are two points to emphasize:
• Arguments are interpreted by the command. In the example, stdout is used to

identify the standard output stream. The use of stdout as a name is a convention
employed by puts and the other I/O commands. Also, stderr is used to
identify the standard error output, and stdin is used to identify the standard input.
Chapter 9 describes how to open other files for I/O.

• Curly braces are used to group words together into a single argument. The puts
command receives Hello, World! as its second argument.

The braces are not part of the value.

The braces are syntax for the interpreter, and they get stripped off before the value is
passed to the command. Braces group all characters, including newlines and nested
braces, until a matching brace is found. Tcl also uses double quotes for grouping.
Grouping arguments will be described in more detail later.

1.2.2 Variables
The set command is used to assign a value to a variable. It takes two arguments:
The first is the name of the variable, and the second is the value. Variable names can be
any length, and case is significant. In fact, you can use any character in a variable
name.
It is not necessary to declare Tcl variables before you use
them.

The interpreter will create the variable when it is first assigned a value.
The value of a variable is obtained later with the dollar-sign syntax, illustrated in
Example 1–2:
Example 1–2: Tcl variables.

set var 5

=> 5
set b $var

=> 5
The second set command assigns to variable b the value of variable var.
The use of the dollar sign is our first example of substitution. You can imagine that the
second set command gets rewritten by substituting the value of var for $var to
obtain a new command.

set b 5

The actual implementation of substitution is more efficient, which is important when the
value is large.

EDH0336En1032 — 12/18 2

HXP Controller Tcl Manual

1.2.3 Command Substitution
The second form of substitution is command substitution. A nested command is
delimited by square brackets, []. The Tcl interpreter takes everything between the
brackets and evaluates it as a command. It rewrites the outer command by replacing the
square brackets and everything between them with the result of the nested command.
This is similar to the use of backquotes in other shells, except that it has the additional
advantage of supporting arbitrary nesting of commands.
Example 1–3: Command substitution.

set len [string length foobar]

=> 6
In Example 1–3, the nested command is:

string length foobar

This command returns the length of the string foobar. The nested command runs first.
Then, command substitution causes the outer command to be rewritten as if it were:

set len 6

If there are several cases of command substitution within a single command, the
interpreter processes them from left to right. As each right bracket is encountered, the
command it delimits is evaluated. This results in a sensible ordering in which nested
commands are evaluated first so that their result can be used in arguments to the outer
command.

1.2.4 Math Expressions
The Tcl interpreter itself does not evaluate math expressions. Tcl just does grouping,
substitutions and command invocations. The expr command is used to parse and
evaluate math expressions.
Example 1–4: Simple arithmetic.

expr 7.2 / 4

=> 1.8
The math syntax supported by expr is the same as the C expression syntax. The expr
command deals with integer, floating point, and boolean values. Logical operations
return either 0 (false) or 1 (true). Integer values are promoted to floating point values as
needed. Octal values are indicated by a leading zero (e.g., 033 is 27 decimal).
Hexadecimal values are indicated by a leading 0x. Scientific notation for floating point
numbers is supported. A summary of the operator precedence is given on page 20.
You can include variable references and nested commands in math expressions.
The following example uses expr to add the value of x to the length of the string
foobar. As a result of the innermost command substitution, the expr command sees 6
+ 7, and len gets the value 13:
Example 1–5: Nested commands.

set x 7
set len [expr [string length foobar] + $x]

=> 13
The expression evaluator supports a number of built-in math functions. Example 1–6
computes the value of pi:
Example 1–6: Built-in math functions.

set pi [expr 2*asin(1.0)]

=> 3.1415926535897931
The implementation of expr is careful to preserve accurate numeric values and avoid
conversions between numbers and strings. However, you can make expr operate more
efficiently by grouping the entire expression in curly braces. The explanation has to do
with the byte code compiler that Tcl uses internally, and its effects are explained in

 3 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

more detail on page 15. For now, you should be aware that these expressions are all
valid and run a bit faster than the examples shown above:
Example 1–7: Grouping expressions with braces.

expr {7.2 / 4}
set len [expr {[string length foobar] + $x}]
set pi [expr {2*asin(1.0)}]

1.2.5 Backslash Substitution
The final type of substitution done by the Tcl interpreter is backslash
substitution. This is used to quote characters that have special meaning to the
interpreter. For example, you can specify a literal dollar sign, brace, or bracket by
quoting it with a backslash. As a rule, however, if you find yourself using lots of
backslashes, there is probably a simpler way to achieve the effect you are striving
for. In particular, the list command will do quoting for you automatically. In
Example 1–8 backslash is used to get a literal $:
Example 1–8: Quoting special characters with backslash.

set dollar \$foo
=> $foo

set x $dollar

=> $foo
Only a single round of interpretation is done.

The second set command in the example illustrates an important property of Tcl. The
value of dollar does not affect the substitution performed in the assignment to x. In
other words, the Tcl parser does not care about the value of a variable when it does the
substitution. In the example, the value of x and dollar is the string $foo. In general, you
do not have to worry about the value of variables until you use eval.
You can also use backslash sequences to specify characters with their Unicode,
hexadecimal, or octal value:

set escape \u001b
set escape \0x1b
set escape \033

The value of variable escape is the ASCII ESC character, which has character code
27. The table on page 20 summarizes backslash substitutions.
A common use of backslashes is to continue long commands on multiple lines. This is
necessary because a newline terminates a command. The backslash in the next example
is required; otherwise the expr command gets terminated by the newline after the plus
sign.
Example 1–9: Continuing long lines with backslashes.

set totalLength [expr [string length $one] + \
[string length $two]]

There are two fine points to escaping newlines. First, if you are grouping an argument
as described in the next section, then you do not need to escape newlines; the newlines
are automatically part of the group and do not terminate the command. Second, a
backslash as the last character in a line is converted into a space, and all the white space
at the beginning of the next line is replaced by this
substitution. In other words, the backslash-newline sequence also consumes all the
leading white space on the next line.

EDH0336En1032 — 12/18 4

HXP Controller Tcl Manual

1.2.6 Grouping with Braces and Double Quotes
Double quotes and curly braces are used to group words together into one argument.
The difference between double quotes and curly braces is that quotes allow substitutions
to occur in the group, while curly braces prevent substitutions. This rule applies to
command, variable, and backslash substitutions.
Example 1–10: Grouping with double quotes vs. braces.

set s Hello

=> Hello
puts stdout "The length of $s is [string length $s]."

=> The length of Hello is 5.
puts stdout {The length of $s is [string length $s].}

=> The length of $s is [string length $s].
In the second command of Example 1–10, the Tcl interpreter does variable and
command substitution on the second argument to puts. In the third command,
substitutions are prevented, so the string is printed as is. In practice, grouping with curly
braces is used when substitutions on the argument must be delayed until a later time (or
never done at all). Examples include loops, conditional statements, and procedure
declarations. Double quotes are useful in simple cases like the puts command
previously shown.
Another common use of quotes is with the format command. This is similar to the C
printf function. The first argument to format is a format specifier that often
includes special characters like newlines, tabs, and spaces. The easiest way to specify
these characters is with backslash sequences (e.g., \n for newline and \t for tab). The
backslashes must be substituted before the format command is called, so you need to
use quotes to group the format specifier.

puts [format "Item: %s\t%5.3f" $name $value]
Here format is used to align a name and a value with a tab. The %s and %5.3f
indicate how the remaining arguments to format are to be formatted. Note that the
trailing \n usually found in a C printf call is not needed because puts provides one
for us. For more information about the format command.

1.2.6.1 Square Brackets Do Not Group
The square bracket syntax used for command substitution does not provide grouping.
Instead, a nested command is considered part of the current group. In the command
below, the double quotes group the last argument, and the nested command is just part
of that group. puts stdout "The length of $s is [string length $s]."
If an argument is made up of only a nested command, you do not need to group it with
double-quotes because the Tcl parser treats the whole nested command as part of the
group.

puts stdout [string length $s]

The following is a redundant use of double quotes:
puts stdout "[expr $x + $y]"

1.2.6.2 Grouping Before Substitution
The Tcl parser makes a single pass through a command as it makes grouping decisions
and performs string substitutions. Grouping decisions are made before substitutions are
performed, which is an important property of Tcl. This means that the values being
substituted do not affect grouping because the grouping decisions have already been
made.
The following example demonstrates how nested command substitution affects
grouping. A nested command is treated as an unbroken sequence of characters,
regardless of its internal structure. It is included with the surrounding group of
characters when collecting arguments for the main command.

 5 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

Example 1–11: Embedded command and variable substitution.
set x 7; set y 9
puts stdout $x+$y=[expr $x + $y]

=> 7+9=16
In Example 1–11, the second argument to puts is:
$x+$y=[expr $x + $y]

The white space inside the nested command is ignored for the purposes of grouping the
argument. By the time Tcl encounters the left bracket, it has already done some variable
substitutions to obtain:

7+9=

When the left bracket is encountered, the interpreter calls itself recursively to evaluate
the nested command. Again, the $x and $y are substituted before calling expr.
Finally, the result of expr is substituted for everything from the left bracket to the right
bracket. The puts command gets the following as its second argument:

7+9=16

Grouping before substitution.
The point of this example is that the grouping decision about puts’s second argument
is made before the command substitution is done. Even if the result of the nested
command contained spaces or other special characters, they would be ignored for the
purposes of grouping the arguments to the outer command. Grouping and variable
substitution interact the same as grouping and command
substitution. Spaces or special characters in variable values do not affect grouping
decisions because these decisions are made before the variable values are substituted.
If you want the output to look nicer in the example, with spaces around the + and =,
then you must use double quotes to explicitly group the argument to puts:
puts stdout "$x + $y = [expr $x + $y]"
The double quotes are used for grouping in this case to allow the variable and command
substitution on the argument to puts.

1.2.6.3 Grouping Math Expressions with Braces
It turns out that expr does its own substitutions inside curly braces. This is explained
in more detail on page 15. This means you can write commands like the one below and
the substitutions on the variables in the expression still occur:

puts stdout "$x + $y = [expr {$x + $y}]"

1.2.6.4 More Substitution Examples
If you have several substitutions with no white space between them, you can avoid
grouping with quotes. The following command sets concat to the value of variables a,
b, and c all concatenated together:

set concat ab$c

Again, if you want to add spaces, you’ll need to use quotes:
set concat "$a $b $c"

In general, you can place a bracketed command or variable reference anywhere. The
following computes a command name:

 [findCommand $x] arg arg

1.2.7 Procedures
Tcl uses the proc command to define procedures. Once defined, a Tcl procedure is
used just like any of the other built-in Tcl commands. The basic syntax to define a
procedure is:

proc name arglist body

The first argument is the name of the procedure being defined. The second argument is
a list of parameters to the procedure. The third argument is a command body that is
one or more Tcl commands. The procedure name is case sensitive, and in fact it can
contain any characters. Procedure names and variable names do not conflict with each

EDH0336En1032 — 12/18 6

HXP Controller Tcl Manual

other. As a convention, this book begins procedure names with uppercase letters and it
begins variable names with lowercase letters. Good programming style is important as
your Tcl scripts get larger.
Example 1–12: Defining a procedure.

proc Diag {a b} {
set c [expr sqrt($a * $a + $b * $b)]
return $c
}

puts "The diagonal of a 3, 4 right triangle is [Diag 3 4]"

=> The diagonal of a 3, 4 right triangle is 5.0
The Diag procedure defined in the example computes the length of the diagonal side of
a right triangle given the lengths of the other two sides. The sqrt function is one of
many math functions supported by the expr command. The variable c is local to the
procedure; it is defined only during execution of Diag. Variable scope is discussed
further in Chapter 7. It is not really necessary to use the variable c in this example. The
procedure can also be written as:

proc Diag {a b} {
return [expr sqrt($a * $a + $b * $b)]
}

The return command is used to return the result of the procedure. The return
command is optional in this example because the Tcl interpreter returns the value of the
last command in the body as the value of the procedure. So, the procedure could be
reduced to:

proc Diag {a b} {
expr sqrt($a * $a + $b * $b)
}

Note the stylized use of curly braces in the example. The curly brace at the end of the
first line starts the third argument to proc, which is the command body. In this case, the
Tcl interpreter sees the opening left brace, causing it to ignore newline characters and
scan the text until a matching right brace is found. Double quotes have the
same property. They group characters, including
newlines, until another double quote is found. The result of the grouping is thatthe third
argument to proc is a sequence of commands. When they are evaluated later, the
embedded newlines will terminate each command.
The other crucial effect of the curly braces around the procedure body is to delay any
substitutions in the body until the time the procedure is called. For example, the
variables a, b, and c are not defined until the procedure is called, so we do not want to
do variable substitution at the time Diag is defined.
The proc command supports additional features such as having variable numbers of
arguments and default values for arguments.

1.2.8 A Factorial Example
To reinforce what we have learned so far, below is a longer example that uses a while
loop to compute the factorial function:
Example 1–13: A while loop to compute factorial.

proc Factorial {x} {
 set i 1; set product 1
 while {$i <= $x} {
 set product [expr $product * $i]
 incr i
 }

 return $product
}

Factorial 10

=> 3628800

 7 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

The semicolon is used on the first line to remind you that it is a command terminator
just like the newline character. The while loop is used to multiply all the numbers
from one up to the value of x. The first argument to while is a boolean expression, and
its second argument is a command body to execute.
The same math expression evaluator used by the expr command is used by while to
evaluate the boolean expression. There is no need to explicitly use the expr command
in the first argument to while, even if you have a much more complex expression.
The loop body and the procedure body are grouped with curly braces in the same way.
The opening curly brace must be on the same line as proc and while. If you like to
put opening curly braces on the line after a while or if statement, you must escape
the newline with a backslash:

while {$i < $x} \
{

 set product ...
}

Always group expressions and command bodies with curly braces.
Curly braces around the boolean expression are crucial because they delay variable
substitution until the while command implementation tests the expression. The
following example is an infinite loop:

set i 1; while $i<=10 {incr i}
The loop will run indefinitely.* The reason is that the Tcl interpreter will substitute for
$i before while is called, so while gets a constant expression 1<=10 that will
always be true. You can avoid these kinds of errors by adopting a consistent coding
style that groups expressions with curly braces:

set i 1; while {$i<=10} {incr i}
The incr command is used to increment the value of the loop variable i. This is a
handy command that saves us from the longer command:

set i [expr $i + 1]
The incr command can take an additional argument, a positive or negative integer by
which to change the value of the variable. Using this form, it is possible to eliminate the
loop variable i and just modify the parameter x. The loop body can be written like this:

while {$x > 1} {
 set product [expr $product * $x]
 incr x -1
}

Example 1–14 shows factorial again, this time using a recursive definition. A recursive
function is one that calls itself to complete its work. Each recursive call decrements x
by one, and when x is one, then the recursion stops.
Example 1–14: A recursive definition of factorial.

proc Factorial {x} {
 if {$x <= 1} {
 return 1
 } else {
 return [expr $x * [Factorial [expr $x - 1]]]
 }

}

EDH0336En1032 — 12/18 8

HXP Controller Tcl Manual

1.2.9 More About Variables
The set command will return the value of a variable if it is only passed a single
argument. It treats that argument as a variable name and returns the current value of the
variable. The dollar-sign syntax used to get the value of a variable is really just an easy
way to use the set command. Example 1–15 shows a trick you can play by putting the
name of one variable into another variable:
Example 1–15 Using set to return a variable value.

set var {the value of var}

=> the value of var
set name var

=> var
set name

=> var
set $name

=> the value of var
This is a somewhat tricky example. In the last command, $name gets substituted with
var. Then, the set command returns the value of var, which is the value of var.
Nested set commands provide another way to achieve a level of indirection. The last
set command above can be written as follows:

set [set name]

=> the value of var
Using a variable to store the name of another variable may seem overly complex.
However, there are some times when it is very useful. There is even a special command,
upvar, that makes this sort of trick easier.

1.2.9.1 Funny Variable Names
The Tcl interpreter makes some assumptions about variable names that make it easy to
embed variable references into other strings. By default, it assumes that variable names
contain only letters, digits, and the underscore. The construct $foo.o represents a
concatenation of the value of foo and the literal “.o”.
If the variable reference is not delimited by punctuation or white space, then you can
use curly braces to explicitly delimit the variable name (e.g., ${x}). You can also use
this to reference variables with funny characters in their name, although you probably
do not want variables named like that. If you find yourself using funny variable names,
or computing the names of variables, then you may want to use the upvar command.
Example 1–16 Embedded variable references.

set foo filename
set object $foo.o

=> filename.o
set a AAA
set b abc${a}def

=> abcAAAdef
set .o yuk!
set x ${.o}y

=> yuk!y

1.2.9.2 The unset Command
You can delete a variable with the unset command:

unset varName varName2 ...

 9 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

Any number of variable names can be passed to the unset command. However,
unset will raise an error if a variable is not already defined.

1.2.9.3 Using info to Find Out About Variables
The existence of a variable can be tested with the info exists command. For
example, because incr requires that a variable exist, you might have to test for the
existence of the variable first.
Example 1–17: Using info to determine if a variable exists.

if {![info exists foobar]} {
 set foobar 0

} else {
 incr foobar

}

EDH0336En1032 — 12/18 10

HXP Controller Tcl Manual

1.2.10 More About Math Expressions
This section describes a few fine points about math in Tcl scripts. In Tcl 7.6 and earlier
versions math is not that efficient because of conversions between strings and numbers.
The expr command must convert its arguments from strings to numbers. It then does
all its computations with double precision floating point values. The result is formatted
into a string that has, by default, 12 significant digits. This number can be changed by
setting the tcl_precision variable to the number of significant digits desired.
Seventeen digits of precision are enough to ensure that no information is lost when
converting back and forth between a string and an IEEE double precision number:
Example 1–18 Controlling precision with tcl_precision.

expr 1 / 3

=> 0
expr 1 / 3.0

=> 0.333333333333
set tcl_precision 17

=> 17
expr 1 / 3.0
The trailing 1 is the IEEE rounding digit

=> 0.33333333333333331
In Tcl 8.0 and later versions, the overhead of conversions is eliminated in most cases by
the built-in compiler. Even so, Tcl was not designed to support math-intensive
applications. There is support for string comparisons by expr, so you can test string
values in if statements. You must use quotes so that expr knows to do string
comparisons:

if {$answer == "yes"} { ... }

However, the string compare and string equal commands more reliable
because expr may do conversions on strings that look like numbers. Expressions can
include variable and command substitutions and still be grouped with curly braces. This
is because an argument to expr is subject to two rounds of substitution: one by the Tcl
interpreter, and a second by expr itself. Ordinarily this is not a problem because math
values do not contain the characters that are special to the Tcl interpreter. The second
round of substitutions is needed to support commands like while and if that use the
expression evaluator internally.
Grouping expressions can make them run more efficiently.

You should always group expressions in curly braces and let expr do command and
variable substitutions. Otherwise, your values may suffer extra conversions from
numbers to strings and back to numbers. Not only is this process slow, but the
conversions can loose precision in certain circumstances. For example, suppose x is
computed from a math function:

set x [expr {sqrt(2.0)}]

At this point the value of x is a double-precision floating point value, just as you would
expect. If you do this:

set two [expr $x * $x]

then you may or may not get 2.0 as the result! This is because Tcl will substitute $x
and expr will concatenate all its arguments into one string, and then parse the
expression again. In contrast, if you do this:

set two [expr {$x * $x}]

then expr will do the substitutions, and it will be careful to preserve the floating point
value of x. The expression will be more accurate and run more efficiently because no
string conversions will be done. The story behind Tcl values is described in more detail
in Chapter 44 on C programming and Tcl.

 11 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

1.2.11 Comments
Tcl uses the pound character, #, for comments. Unlike in many other languages, the #
must occur at the beginning of a command. A # that occurs elsewhere is not treated
specially. An easy trick to append a comment to the end of a command is to precede
the # with a semicolon to terminate the previous command:

Here are some parameters
set rate 7.0 ;# The interest rate
set months 60 ;# The loan term

One subtle effect to watch for is that a backslash effectively continues a comment line
onto the next line of the script. In addition, a semicolon inside a comment is not
significant. Only a newline terminates comments:

Here is the start of a Tcl comment \
and some more of it; still in the comment

A surprising property of Tcl comments is that curly braces inside comments are still
counted for the purposes of finding matching brackets. I think the motivation for this
mis-feature was to keep the original Tcl parser simpler. However, it means that the
following will not work as expected to comment out an alternate version of an if
expression:

if {boolean expression1} {
if {boolean expression2} {
 some commands

}

The previous sequence results in an extra left curly brace, and probably a complaint
about a missing close brace at the end of your script! A technique I use to comment out
large chunks of code is to put the code inside an if block that will never execute:

if {0} {
 unused code here

}

EDH0336En1032 — 12/18 12

HXP Controller Tcl Manual

1.2.12 Substitution and Grouping Summary
The following rules summarize the fundamental mechanisms of grouping and
substitution that are performed by the Tcl interpreter before it invokes a command:
• Command arguments are separated by white space, unless arguments are grouped

with curly braces or double quotes as described below.
• Grouping with curly braces, { }, prevents substitutions. Braces nest. The

interpreter includes all characters between the matching left and right brace in the
group, including newlines, semicolons, and nested braces. The enclosing (i.e.,
outermost) braces are not included in the group’s value.

• Grouping with double quotes, " ", allows substitutions. The interpreter groups
everything until another double quote is found, including newlines and semicolons.
The enclosing quotes are not included in the group of characters. A double-quote
character can be included in the group by quoting it with a backslash, (e.g., \").

• Grouping decisions are made before substitutions are performed, which means that
the values of variables or command results do not affect grouping.

• A dollar sign, $, causes variable substitution. Variable names can be any length, and
case is significant. If variable references are embedded into other strings, or if they
include characters other than letters, digits, and the underscore, they can be
distinguished with the ${varname} syntax.

• Square brackets, [], cause command substitution. Everything between the
brackets is treated as a command, and everything including the brackets is replaced
with the result of the command. Nesting is allowed.

• The backslash character, \, is used to quote special characters. You can think of this
as another form of substitution in which the backslash and the next character or
group of characters are replaced with a new character.

• Substitutions can occur anywhere unless prevented by curly brace grouping. Part of
a group can be a constant string, and other parts of it can be the result of
substitutions. Even the command name can be affected by substitutions.

• A single round of substitutions is performed before command invocation. The result
of a substitution is not interpreted a second time. This rule is important if you have a
variable value or a command result that contains special characters such as spaces,
dollar signs, square brackets, or braces. Because only a single round of substitution
is done, you do not have to worry about special characters in values causing extra
substitutions.

 13 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

1.2.13 Fine Points
• A common error is to forget a space between arguments when grouping with braces

or quotes. This is because white space is used as the separator, while the braces or
quotes only provide grouping. If you forget the space, you will get syntax errors
about unexpected characters after the closing brace or quote. The following is an
error because of the missing space between } and {:
if {$x > 1}{puts "x = $x"}

• A double quote is only used for grouping when it comes after white space. This
means you can include a double quote in the middle of a group without quoting it
with a backslash. This requires that curly braces or white space delimit the group. I
do not recommend using this obscure feature, but this is what it looks like:
set silly a"b

• When double quotes are used for grouping, the special effect of curly braces is
turned off. Substitutions occur everywhere inside a group formed with double
quotes. In the next are
set x xvalue
set y "foo {$x} bar"
=> foo {xvalue} bar

• When double quotes are used for grouping and a nested command is encountered,
the nested command can use double quotes for grouping, too.

puts "results [format "%f %f" $x $y]"

• Spaces are not required around the square brackets used for command
substitution. For the purposes of grouping, the interpreter considers everything
between the square brackets as part of the current group. The following sets x to the
concatenation of two command results because there is no space between] and [.
set x [cmd1][cmd2]

• Newlines and semicolons are ignored when grouping with braces or double quotes.
They get included in the group of characters just like all the others. The following
sets x to a string that contains newlines:
set x "This is line one.

This is line two.
This is line three."
• During command substitution, newlines and semicolons are significant as

command terminators. If you have a long command that is nested in square brackets,
put a backslash before the newline if you want to continue the command on another
line.

• A dollar sign followed by something other than a letter, digit, underscore, or left
parenthesis is treated as a literal dollar sign. The following sets x to the single
character $.
set x $

EDH0336En1032 — 12/18 14

HXP Controller Tcl Manual

1.3 Reference

1.3.1 Backslash Sequences
\a Bell. (0x7)
\b Backspace. (0x8)
\f Form feed. (0xc)
\n Newline. (0xa)
\r Carriage return. (0xd)
\t Tab. (0x9)
\v Vertical tab. (0xb)
\<newline> Replace the newline and the leading white space on the next line

with a space.
\\ Backslash. (‘\’)
\ooo Octal specification of character code. 1, 2, or 3 digits.
\xhh Hexadecimal specification of character code. 1 or 2 digits.
\uhhhh Hexadecimal specification of a 16-bit Unicode character value. 4

hex digits.
\c Replaced with literal c if c is not one of the cases listed above. In

particular, \$, \", \{, \}, \], and \[are used to obtain these
characters.

1.3.2 Arithmetic Operators
- ~ ! Unary minus, bitwise NOT, logical NOT.
* / % Multiply, divide, remainder.
+ - Add, subtract.
<< >> Left shift, right shift.
< > <=
>=

Comparison: less, greater, less or equal, greater or equal.

== != Equal, not equal.
& Bitwise AND.
^ Bitwise XOR.
| Bitwise OR.
&& Logical AND.
|| Logical OR.
x?y:z If x then y else z.

1.3.3 Built-in Math Functions
acos(x) Arccosine of x.
asin(x) Arcsine of x.
atan(x) Arctangent of x.
atan2(y,x) Rectangular (x,y) to polar (r,th). atan2 gives th.
ceil(x) Least integral value greater than or equal to x.
cos(x) Cosine of x.
cosh(x) Hyperbolic cosine of x.
exp(x) Exponential, ex.
floor(x) Greatest integral value less than or equal to x.
fmod(x,y) Floating point remainder of x/y.
hypot(x,y) Returns sqrt(x*x + y*y). r part of polar coordinates.
log(x) Natural log of x.
log10(x) Log base 10 of x.
pow(x,y) x to the y power, xy.
sin(x) Sine of x.
sinh(x) Hyperbolic sine of x.

 15 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

sqrt(x) Square root of x.
tan(x) Tangent of x.
tanh(x) Hyperbolic tangent of x.
abs(x) Absolute value of x.
double(x) Promote x to floating point.
int(x) Truncate x to an integer.
round(x) Round x to an integer.
rand() Return a random floating point value between 0.0 and 1.0.
srand(x) Set the seed for the random number generator to the integer x.

EDH0336En1032 — 12/18 16

HXP Controller Tcl Manual

2.0 Tcl Command Descriptions

2.1 Tcl - Summary of Tcl Language Syntax
The following rules define the syntax and semantics of the Tcl language:
 [1]
A Tcl script is a string containing one or more commands. Semi-colons and newlines
are command separators unless quoted as described below. Close brackets are command
terminators during command substitution (see below) unless quoted.
[2]
A command is evaluated in two steps. First, the Tcl interpreter breaks the command into
words and performs substitutions as described below. These substitutions are performed
in the same way for all commands. The first word is used to locate a command
procedure to carry out the command, then all of the words of the command are passed to
the command procedure. The command procedure is free to interpret each of its words
in any way it likes, such as an integer, variable name, list, or Tcl script. Different
commands interpret their words differently.
[3]
Words of a command are separated by white space (except for newlines, which are
command separators).
[4]
If the first character of a word is double-quote (``"'') then the word is terminated by the
next double-quote character. If semi-colons, close brackets, or white space characters
(including newlines) appear between the quotes then they are treated as ordinary
characters and included in the word. Command substitution, variable substitution, and
backslash substitution are performed on the characters between the quotes as described
below. The double-quotes are not retained as part of the word.
[5]
If the first character of a word is an open brace (``{'') then the word is terminated by the
matching close brace (``}''). Braces nest within the word: for each additional open brace
there must be an additional close brace (however, if an open brace or close brace within
the word is quoted with a backslash then it is not counted in locating the matching close
brace). No substitutions are performed on the characters between the braces except for
backslash-newline substitutions described below, nor do semi-colons, newlines, close
brackets, or white space receive any special interpretation. The word will consist of
exactly the characters between the outer braces, not including the braces themselves.
[6]
If a word contains an open bracket (``['') then Tcl performs command substitution. To
do this it invokes the Tcl interpreter recursively to process the characters following the
open bracket as a Tcl script. The script may contain any number of commands and must
be terminated by a close bracket (``]''). The result of the script (i.e. the result of its last
command) is substituted into the word in place of the brackets and all of the characters
between them. There may be any number of command substitutions in a single word.
Command substitution is not performed on words enclosed in braces.
[7]
If a word contains a dollar-sign (``$'') then Tcl performs variable substitution: the
dollar-sign and the following characters are replaced in the word by the value of a
variable. Variable substitution may take any of the following forms:

 17 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

$name
Name is the name of a scalar variable; the name is terminated by any character that isn't
a letter, digit, or underscore.
$name(index)
Name gives the name of an array variable and index gives the name of an element
within that array. Name must contain only letters, digits, and underscores. Command
substitutions, variable substitutions, and backslash substitutions are performed on the
characters of index.
${name}
Name is the name of a scalar variable. It may contain any characters whatsoever except
for close braces.
There may be any number of variable substitutions in a single word. Variable
substitution is not performed on words enclosed in braces.
[8]
If a backslash (``\'') appears within a word then backslash substitution occurs. In all
cases but those described below the backslash is dropped and the following character is
treated as an ordinary character and included in the word. This allows characters such as
double quotes, close brackets, and dollar signs to be included in words without
triggering special processing. The following table lists the backslash sequences that are
handled specially, along with the value that replaces each sequence.
\a
Audible alert (bell) (0x7).
\b
Backspace (0x8).
\f
Form feed (0xc).
\n
Newline (0xa).
\r
Carriage-return (0xd).
\t
Tab (0x9).
\v
Vertical tab (0xb).
\<newline>whiteSpace
A single space character replaces the backslash, newline, and all spaces and tabs after
the newline. This backslash sequence is unique in that it is replaced in a separate pre-
pass before the command is actually parsed. This means that it will be replaced even
when it occurs between braces, and the resulting space will be treated as a word
separator if it isn't in braces or quotes.
\\
Backslash (``\'').
\ooo
The digits ooo (one, two, or three of them) give the octal value of the character.
\xhh
The hexadecimal digits hh give the hexadecimal value of the character. Any number of
digits may be present.

EDH0336En1032 — 12/18 18

HXP Controller Tcl Manual

Backslash substitution is not performed on words enclosed in braces, except for
backslash-newline as described above.
[9]
If a hash character (``#'') appears at a point where Tcl is expecting the first character of
the first word of a command, then the hash character and the characters that follow it,
up through the next newline, are treated as a comment and ignored. The comment
character only has significance when it appears at the beginning of a command.
[10]
Each character is processed exactly once by the Tcl interpreter as part of creating the
words of a command. For example, if variable substitution occurs then no further
substitutions are performed on the value of the variable; the value is inserted into the
word verbatim. If command substitution occurs then the nested command is processed
entirely by the recursive call to the Tcl interpreter; no substitutions are performed before
making the recursive call and no additional substitutions are performed on the result of
the nested script.
[11]
Substitutions do not affect the word boundaries of a command. For example, during
variable substitution the entire value of the variable becomes part of a single word, even
if the variable's value contains spaces.

 19 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.2 after - Execute a Command After a Time Delay

Name
after - Execute a command after a time delay

Synopsis
after ms
after ms ?script script script ...?
after cancel id
after cancel script script script ...
after idle ?script script script ...?
after info ?id?

Description
This command is used to delay execution of the program or to execute a command in
background sometime in the future. It has several forms, depending on the first
argument to the command:
after ms
Ms must be an integer giving a time in milliseconds. The command sleeps for ms
milliseconds and then returns. While the command is sleeping the application does not
respond to events.
after ms ?script script script ...?
In this form the command returns immediately, but it arranges for a Tcl command to be
executed ms milliseconds later as an event handler. The command will be executed
exactly once, at the given time. The delayed command is formed by concatenating all
the script arguments in the same fashion as the concat command. The command will be
executed at global level (outside the context of any Tcl procedure). The after command
returns an identifier that can be used to cancel the delayed command using after cancel.
after cancel id
Cancels the execution of a delayed command that was previously scheduled. Id
indicates which command should be canceled; it must have been the return value from a
previous after command. If the command given by id has already been executed then
the after cancel command has no effect.
after cancel script script ...
This command also cancels the execution of a delayed command. The script arguments
are concatenated together with space separators (just as in the concat command). If
there is a pending command that matches the string, it is cancelled and will never be
executed; if no such command is currently pending then the after cancel command has
no effect.
after idle script ?script script ...?
Concatenates the script arguments together with space separators (just as in the concat
command), and arranges for the resulting script to be evaluated later as an idle callback.
The script will be run exactly once, the next time the event loop is entered and there are
no events to process. The command returns an identifier that can be used to cancel the
delayed command using after cancel.
after info ?id?
This command returns information about existing event handlers. If no id argument is
supplied, the command returns a list of the identifiers for all existing event handlers
created by the after command for this interpreter. If id is supplied, it specifies an
existing handler; id must have been the return value from some previous call to after
and it must not have triggered yet or been cancelled. In this case the command returns a

EDH0336En1032 — 12/18 20

HXP Controller Tcl Manual

list with two elements. The first element of the list is the script associated with id, and
the second element is either idle or timer to indicate what kind of event handler it is.
The after ms and after idle forms of the command assume that the application
is event driven: the delayed commands will not be executed unless the
application enters the event loop. In applications that are not normally event-
driven, such as tclsh, the event loop can be entered with the vwait and update
commands.

2.3 append - Append to Variable

Name
append - Append to variable

Synopsis
append varName ?value value value ...?

Description
Append all of the value arguments to the current value of variable varName. If varName
doesn't exist, it is given a value equal to the concatenation of all the value arguments.
This command provides an efficient way to build up long variables incrementally.
For example,
append a $b
is much more efficient than
set a ab
if $a is long.

 21 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.4 array - Manipulate Array Variables

Name
array - Manipulate array variables

Synopsis
array option arrayName ?arg arg ...?

Description
This command performs one of several operations on the variable given by arrayName.
Unless otherwise specified for individual commands below, arrayName must be the
name of an existing array variable. The option argument determines what action is
carried out by the command. The legal options (which may be abbreviated) are:
array anymore arrayName searchId
Returns 1 if there are any more elements left to be processed in an array search, 0 if all
elements have already been returned. SearchId indicates which search on arrayName to
check, and must have been the return value from a previous invocation of array
startsearch. This option is particularly useful if an array has an element with an empty
name, since the return value from array nextelement won't indicate whether the search
has been completed.
array donesearch arrayName searchId
This command terminates an array search and destroys all the state associated with that
search. SearchId indicates which search on arrayName to destroy, and must have been
the return value from a previous invocation of array startsearch. Returns an empty
string.
array exists arrayName
Returns 1 if arrayName is an array variable, 0 if there is no variable by that name or if it
is a scalar variable.
array get arrayName ?pattern?
Returns a list containing pairs of elements. The first element in each pair is the name of
an element in arrayName and the second element of each pair is the value of the array
element. The order of the pairs is undefined. If pattern is not specified, then all of the
elements of the array are included in the result. If pattern is specified, then only those
elements whose names match pattern (using the glob-style matching rules of string
match) are included. If arrayName isn't the name of an array variable, or if the array
contains no elements, then an empty list is returned.
array names arrayName ?pattern?
Returns a list containing the names of all of the elements in the array that match pattern
(using the glob-style matching rules of string match). If pattern is omitted then the
command returns all of the element names in the array. If there are no (matching)
elements in the array, or if arrayName isn't the name of an array variable, then an empty
string is returned.
array nextelement arrayName searchId
Returns the name of the next element in arrayName, or an empty string if all elements
of arrayName have already been returned in this search. The searchId argument
identifies the search, and must have been the return value of an array startsearch
command. Warning: if elements are added to or deleted from the array, then all searches
are automatically terminated just as if array donesearch had been invoked; this will
cause array nextelement operations to fail for those searches.

EDH0336En1032 — 12/18 22

HXP Controller Tcl Manual

array set arrayName list
Sets the values of one or more elements in arrayName. list must have a form like that
returned by array get, consisting of an even number of elements. Each odd-numbered
element in list is treated as an element name within arrayName, and the following
element in list is used as a new value for that array element.
array size arrayName
Returns a decimal string giving the number of elements in the array. If arrayName isn't
the name of an array then 0 is returned.
array startsearch arrayName
This command initializes an element-by-element search through the array given by
arrayName, such that invocations of the array nextelement command will return the
names of the individual elements in the array. When the search has been completed, the
array donesearch command should be invoked. The return value is a search identifier
that must be used in array nextelement and array donesearch commands; it allows
multiple searches to be underway simultaneously for the same array.
For example:

set personne_info(nom) "André Dupont"
set personne_info(age) "78"
set personne_info(metier) "Artiste"
foreach chose [array names personne_info] {
 puts "$chose == $personne_info($chose)"
}

=> age == 78
=> metier == Artiste
=> nom == André Dupont

 23 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.5 binary - Insert and Extract Fields from Binary strings

Name
binary - Insert and extract fields from binary strings

Synopsis
binary format formatString ?arg arg ...?
binary scan string formatString ?varName varName ...?

Description
This command provides facilities for manipulating binary data.
The first form, binary format, creates a binary string from normal Tcl values. For
example, given the values 16 and 22, it might produce an 8-byte binary string consisting
of two 4-byte integers, one for each of the numbers. The second form of the command,
binary scan, does the opposite: it extracts data from a binary string and returns it as
ordinary Tcl string values.

 Binary format
The binary format command generates a binary string whose layout is specified by the
formatString and whose contents come from the additional arguments. The resulting
binary value is returned.
The formatString consists of a sequence of zero or more field specifiers
separated by zero or more spaces. Each field specifier is a single type character
followed by an optional numeric count. Most field specifiers consume one
argument to obtain the value to be formatted. The type character specifies how
the value is to be formatted. The count typically indicates how many items of
the specified type are taken from the value. If present, the count is a non-
negative decimal integer or *, which normally indicates that all of the items in
the value are to be used. If the number of arguments does not match the number
of fields in the format string that consume arguments, then an error is generated.
Each type-count pair moves an imaginary cursor through the binary data,
storing bytes at the current position and advancing the cursor to just after the
last byte stored. The cursor is initially at position 0 at the beginning of the data.
The type may be any one of the following characters:
a Stores a character string of length count in the output string. If arg has fewer

than count bytes, then additional zero bytes are used to pad out the field. If arg is
longer than the specified length, the extra characters will be ignored. If count is
*, then all of the bytes in arg will be formatted. If count is omitted, then one
character will be formatted. For example,
binary format a7a*a alpha bravo charlie

will return a string equivalent to alpha\000\000bravoc.

A This form is the same as a except that spaces are used for padding instead of
nulls. For example,
binary format A6A*A alpha bravo charlie

will return alpha bravoc.

b Stores a string of count binary digits in low-to-high order within each byte in the
output string. Arg must contain a sequence of 1 and 0 characters. The resulting
bytes are emitted in first to last order with the bits being formatted in low-to-high
order within each byte. If arg has fewer than count digits, then zeros will be used
for the remaining bits. If arg has more than the specified number of digits, the
extra digits will be ignored. If count is *, then all of the digits in arg will be

EDH0336En1032 — 12/18 24

HXP Controller Tcl Manual

formatted. If count is omitted, then one digit will be formatted. If the number of
bits formatted does not end at a byte boundary, the remaining bits of the last byte
will be zeros. For example,
binary format b5b* 11100 111000011010

will return a string equivalent to \x07\x87\x05.

B This form is the same as b except that the bits are stored in high-to-low order
within each byte. For example,
binary format B5B* 11100 111000011010

will return a string equivalent to \xe0\xe1\xa0.

h Stores a string of count hexadecimal digits in low-to-high within each byte in the
output string. Arg must contain a sequence of characters in the set
``0123456789abcdefABCDEF''. The resulting bytes are emitted in first to last
order with the hex digits being formatted in low-to-high order within each byte.
If arg has fewer than count digits, then zeros will be used for the remaining
digits. If arg has more than the specified number of digits, the extra digits will be
ignored. If count is *, then all of the digits in arg will be formatted. If count is
omitted, then one digit will be formatted. If the number of digits formatted does
not end at a byte boundary, the remaining bits of the last byte will be zeros. For
example,
binary format h3h* AB def

will return a string equivalent to \xba\xed\x0f.

H This form is the same as h except that the digits are stored in high-to-low order
within each byte. For example,
binary format H3H* ab DEF

will return a string equivalent to \xab\xde\xf0.

c Stores one or more 8-bit integer values in the output string. If no count is
specified, then arg must consist of an integer value; otherwise arg must consist
of a list containing at least count integer elements. The low-order 8 bits of each
integer are stored as a one-byte value at the cursor position. If count is *, then all
of the integers in the list are formatted. If the number of elements in the list is
fewer than count, then an error is generated. If the number of elements in the list
is greater than count, then the extra elements are ignored. For example,
binary format c3cc* {3 -3 128 1} 257 {2 5}
will return a string equivalent to \x03\xfd\x80\x01\x02\x05, whereas
binary format c {2 5}
will generate an error.

s This form is the same as c except that it stores one or more 16-bit integers in
little-endian byte order in the output string. The low-order 16-bits of each integer
are stored as a two-byte value at the cursor position with the least significant
byte stored first. For example,
binary format s3 {3 -3 258 1}

will return a string equivalent to \x03\x00\xfd\xff\x02\x01.

S This form is the same as s except that it stores one or more 16-bit integers in big-
endian byte order in the output string. For example,
binary format S3 {3 -3 258 1}

will return a string equivalent to \x00\x03\xff\xfd\x01\x02.

 25 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

i This form is the same as c except that it stores one or more 32-bit integers in
little-endian byte order in the output string. The low-order 32-bits of each integer
are stored as a four-byte value at the cursor position with the least significant
byte stored first. For example,
binary format i3 {3 -3 65536 1}

will return a string equivalent to
\x03\x00\x00\x00\xfd\xff\xff\xff\x00\x00\x10\x00.

I This form is the same as i except that it stores one or more one or more 32-bit
integers in big-endian byte order in the output string. For example,
binary format I3 {3 -3 65536 1}

will return a string equivalent to
\x00\x00\x00\x03\xff\xff\xff\xfd\x00\x10\x00\x00.

f This form is the same as c except that it stores one or more one or more single-
precision floating in the machine's native representation in the output string. This
representation is not portable across architectures, so it should not be used to
communicate floating point numbers across the network. The size of a floating
point number may vary across architectures, so the number of bytes that are
generated may vary. If the value is out of range for the machine's native
representation, then the value of FLT_MIN or FLT_MAX as defined by the
system will be used instead. Because Tcl uses double-precision floating-point
numbers internally, there may be some loss of precision in the conversion to
single-precision.

d This form is the same as f except that it stores one or more one or more double-
precision floating in the machine's native representation in the output string.

x Stores count null bytes in the output string. If count is not specified, stores one
null byte. If count is *, generates an error. This type does not consume an
argument. For example,
binary format a3xa3x2a3 abc def ghi

will return a string equivalent to abc\000def\000\000ghi.

X Moves the cursor back count bytes in the output string. If count is * or is larger
than the current cursor position, then the cursor is positioned at location 0 so that
the next byte stored will be the first byte in the result string. If count is omitted
then the cursor is moved back one byte. This type does not consume an
argument. For example,
binary format a3X*a3X2a3 abc def ghi

will return dghi.

@ Moves the cursor to the absolute location in the output string specified by count.
Position 0 refers to the first byte in the output string. If count refers to a position
beyond the last byte stored so far, then null bytes will be placed in the unitialized
locations and the cursor will be placed at the specified location. If count is *,
then the cursor is moved to the current end of the output string. If count is
omitted, then an error will be generated. This type does not consume an
argument. For example,
binary format a5@2a1@*a3@10a1 abcde f ghi j

will return abfdeghi\000\000j.

EDH0336En1032 — 12/18 26

HXP Controller Tcl Manual

• binary scan

The binary scan command parses fields from a binary string, returning the number of
conversions performed. String gives the input to be parsed and formatString indicates
how to parse it. Each varName gives the name of a variable; when a field is scanned
from string the result is assigned to the corresponding variable.
As with binary format, the formatString consists of a sequence of zero or more field
specifiers separated by zero or more spaces. Each field specifier is a single type
character followed by an optional numeric count. Most field specifiers consume one
argument to obtain the variable into which the scanned values should be placed. The
type character specifies how the binary data is to be interpreted. The count typically
indicates how many items of the specified type are taken from the data. If present, the
count is a non-negative decimal integer or *, which normally indicates that all of the
remaining items in the data are to be used. If there are not enough bytes left after the
current cursor position to satisfy the current field specifier, then the corresponding
variable is left untouched and binary scan returns immediately with the number of
variables that were set. If there are not enough arguments for all of the fields in the
format string that consume arguments, then an error is generated.
Each type-count pair moves an imaginary cursor through the binary data, reading bytes
from the current position. The cursor is initially at position 0 at the beginning of the
data. The type may be any one of the following characters:

a The data is a character string of length count. If count is *, then all of the
remaining bytes in string will be scanned into the variable. If count is omitted,
then one character will be scanned. For example,
binary scan abcde\000fghi a6a10 var1 var2

will return 1 with the string equivalent to abcde\000 stored in var1 and var2 left
unmodified.

A This form is the same as a, except trailing blanks and nulls are stripped from the
scanned value before it is stored in the variable. For example,
binary scan "abc efghi \000" a* var1

will return 1 with abc efghi stored in var1.

b The data is turned into a string of count binary digits in low-to-high order
represented as a sequence of ``1'' and ``0'' characters. The data bytes are scanned
in first to last order with the bits being taken in low-to-high order within each
byte. Any extra bits in the last byte are ignored. If count is *, then all of the
remaining bits in string will be scanned. If count is omitted, then one bit will be
scanned. For example,
binary scan \x07\x87\x05 b5b* var1 var2

will return 2 with 11100 stored in var1 and 1110000110100000 stored in var2.

B This form is the same as B, except the bits are taken in high-to-low order within
each byte. For example,
binary scan \x70\x87\x05 b5b* var1 var2

will return 2 with 01110 stored in var1 and 1000011100000101 stored in var2.

h The data is turned into a string of count hexadecimal digits in low-to-high order
represented as a sequence of characters in the set ``0123456789abcdef''. The data
bytes are scanned in first to last order with the hex digits being taken in low-to-
high order within each byte. Any extra bits in the last byte are ignored. If count
is *, then all of the remaining hex digits in string will be scanned. If count is
omitted, then one hex digit will be scanned. For example,
binary scan \x07\x86\x05 h3h* var1 var2

will return 2 with 706 stored in var1 and 50 stored in var2.

 27 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

H This form is the same as h, except the digits are taken in low-to-high order
within each byte. For example,
binary scan \x07\x86\x05 H3H* var1 var2

will return 2 with 078 stored in var1 and 05 stored in var2.

c The data is turned into count 8-bit signed integers and stored in the
corresponding variable as a list. If count is *, then all of the remaining bytes in
string will be scanned. If count is omitted, then one 8-bit integer will be
scanned. For example,
binary scan \x07\x86\x05 c2c* var1 var2

will return 2 with 7 -122 stored in var1 and 5 stored in var2. Note that the
integers returned are signed, but they can be converted to unsigned 8-bit
quantities using an expression like:
expr ($num + 0x100) % 0x100

s The data is interpreted as count 16-bit signed integers represented in little-endian
byte order. The integers are stored in the corresponding variable as a list. If count
is *, then all of the remaining bytes in string will be scanned. If count is omitted,
then one 16-bit integer will be scanned. For example,
binary scan \x05\x00\x07\x00\xf0\xff s2s* var1 var2

will return 2 with 5 7 stored in var1 and -16 stored in var2. Note that the
integers returned are signed, but they can be converted to unsigned 16-bit
quantities using an expression like:
expr ($num + 0x10000) % 0x10000

S This form is the same as s except that the data is interpreted as count 16-bit
signed integers represented in big-endian byte order. For example,
binary scan \x00\x05\x00\x07\xff\xf0 S2S* var1 var2

will return 2 with 5 7 stored in var1 and -16 stored in var2.

i The data is interpreted as count 32-bit signed integers represented in little-endian
byte order. The integers are stored in the corresponding variable as a list. If count
is *, then all of the remaining bytes in string will be scanned. If count is omitted,
then one 32-bit integer will be scanned. For example,
binary scan \x05\x00\x00\x00\x07\x00\x00\x00\xf0\xff\xff\xff i2i* var1 var2

will return 2 with 5 7 stored in var1 and -16 stored in var2. Note that the
integers returned are signed and cannot be represented by Tcl as unsigned values.

I This form is the same as I except that the data is interpreted as count 32-bit
signed integers represented in big-endian byte order. For example,
binary \x00\x00\x00\x05\x00\x00\x00\x07\xff\xff\xff\xf0 I2I* var1 var2

will return 2 with 5 7 stored in var1 and -16 stored in var2.

f The data is interpreted as count single-precision floating point numbers in the
machine's native representation. The floating point numbers are stored in the
corresponding variable as a list. If count is *, then all of the remaining bytes in
string will be scanned. If count is omitted, then one single-precision floating
point number will be scanned. The size of a floating point number may vary
across architectures, so the number of bytes that are scanned may vary. If the
data does not represent a valid floating point number, the resulting value is
undefined and compiler dependent.

d This form is the same as f except that the data is interpreted as count double-
precision floating point numbers in the machine's native representation.

x Moves the cursor forward count bytes in string. If count is * or is larger than the
number of bytes after the current cursor cursor position, then the cursor is
positioned after the last byte in string. If count is omitted, then the cursor is

EDH0336En1032 — 12/18 28

http://www.tcl.tk/man/tcl8.0/TclCmd/string.htm
http://www.tcl.tk/man/tcl8.0/TclCmd/string.htm

HXP Controller Tcl Manual

moved forward one byte. Note that this type does not consume an argument. For
example,
binary scan \x01\x02\x03\x04 x2H* var1

will return 1 with 0304 stored in var1.

X Moves the cursor back count bytes in string. If count is * or is larger than the
current cursor position, then the cursor is positioned at location 0 so that the next
byte scanned will be the first byte in string. If count is omitted then the cursor is
moved back one byte. Note that this type does not consume an argument. For
example,
binary scan \x01\x02\x03\x04 c2XH* var1 var2

will return 2 with 1 2 stored in var1 and 020304 stored in var2.

@ Moves the cursor to the absolute location in the data string specified by count.
Note that position 0 refers to the first byte in string. If count refers to a position
beyond the end of string, then the cursor is positioned after the last byte. If count
is omitted, then an error will be generated. For example,
binary scan \x01\x02\x03\x04 c2@1H* var1 var2

will return 2 with 1 2 stored in var1 and 020304 stored in var2.

Platform issues
Sometimes it is desirable to format or scan integer values in the native byte order for the
machine. Refer to the byteOrder element of the tcl_platform array to decide which
type character to use when formatting or scanning integers.

See also
format, scan, tclvars

 29 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.6 break - Abort Looping Command

Name
break - Abort looping command

Synopsis
break

Description
This command is typically invoked inside the body of a looping command such as for
or foreach or while. It returns a TCL_BREAK code, which causes a break exception to
occur. The exception causes the current script to be aborted out to the innermost
containing loop command, which then aborts its execution and returns normally. Break
exceptions are also handled in a few other situations, such as the catch command, Tk
event bindings, and the outermost scripts of procedure bodies.

EDH0336En1032 — 12/18 30

HXP Controller Tcl Manual

2.7 catch - Evaluate Script and Trap Exceptional Returns

Name
catch - Evaluate script and trap exceptional returns

Synopsis
catch script ?varName?

Description
The catch command may be used to prevent errors from aborting command
interpretation. catch calls the Tcl interpreter recursively to execute script, and always
returns a TCL_OK code, regardless of any errors that might occur while executing
script. The return value from catch is a decimal string giving the code returned by the
Tcl interpreter after executing script. This will be 0 (TCL_OK) if there were no errors
in script; otherwise it will have a non-zero value corresponding to one of the
exceptional return codes (see tcl.h for the definitions of code values). If the varName
argument is given, then it gives the name of a variable; catch will set the variable to the
string returned from script (either a result or an error message).
Note that catch catches all exceptions, including those generated by break and
continue as well as errors.

 31 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.8 cd - Change Working Directory

Name
cd - Change working directory

Synopsis
cd ?dirName?

Description
Change the current working directory to dirName, or to the home directory (as specified
in the HOME environment variable) if dirName is not given. Returns an empty string.

EDH0336En1032 — 12/18 32

HXP Controller Tcl Manual

2.9 clock - Obtain and Manipulate Time

Name
clock - Obtain and manipulate time

Synopsis
clock option ?arg arg ...?

Description
This command performs one of several operations that may obtain or manipulate strings
or values that represent some notion of time. The option argument determines what
action is carried out by the command. The legal options (which may be abbreviated)
are:
clock clicks
Return a high-resolution time value as a system-dependent integer value. The unit of the
value is system-dependent but should be the highest resolution clock available on the
system such as a CPU cycle counter. This value should only be used for the relative
measurement of elapsed time.
clock format clockValue ?-format string? ?-gmt boolean?
Converts an integer time value, typically returned by clock seconds, clock scan, or the
atime, mtime, or ctime options of the file command, to human-readable form. If the -
format argument is present the next argument is a string that describes how the date and
time are to be formatted.
Field descriptors consist of a % followed by a field descriptor character. All other
characters are copied into the result. Valid field descriptors are:
%% Insert a %.
%a Abbreviated weekday name (Mon, Tue, etc.).
%A Full weekday name (Monday, Tuesday, etc.).
%b Abbreviated month name (Jan, Feb, etc.).
%B Full month name.
%c Locale specific date and time.
%d Day of month (01 - 31).
%H Hour in 24-hour format (00 - 23).
%I Hour in 12-hour format (00 - 12).
%j Day of year (001 - 366).
%m Month number (01 - 12).
%M Minute (00 - 59).
%p AM/PM indicator.
%S Seconds (00 - 59).
%U Week of year (01 - 52), Sunday is the first day of the week.
%w Weekday number (Sunday = 0).
%W Week of year (01 - 52), Monday is the first day of the week.
%x Locale specific date format.
%X Locale specific time format.
%y Year without century (00 - 99).
%Y Year with century (e.g. 1990)

 33 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

%Z Time zone name.
In addition, the following field descriptors may be supported on some systems
(e.g.Unix):
%D Date as %m/%d/%y.
%e Day of month (1 - 31), no leading zeros.
%h Abbreviated month name.
%n Insert a newline.
%r Time as %I:%M:%S %p.
%R Time as %H:%M.
%t Insert a tab.
%T Time as %H:%M:%S.
If the -format argument is not specified, the format string "%a %b %d %H:%M:%S
%Z %Y" is used. If the -gmt argument is present the next argument must be a boolean
which if true specifies that the time will be formatted as Greenwich Mean Time. If false
then the local timezone will be used as defined by the operating environment.
clock scan dateString ?-base clockVal? ?-gmt boolean?
Convert dateString to an integer clock value (see clock seconds). This command can
parse and convert virtually any standard date and/or time string, which can include
standard time zone mnemonics. If only a time is specified, the current date is assumed.
If the string does not contain a time zone mnemonic, the local time zone is assumed,
unless the -gmt argument is true, in which case the clock value is calculated assuming
that the specified time is relative to Greenwich Mean Time.
If the -base flag is specified, the next argument should contain an integer clock
value. Only the date in this value is used, not the time. This is useful for
determining the time on a specific day or doing other date-relative conversions.
The dateString consists of zero or more specifications of the following form:
time
A time of day, which is of the form: hh?:mm?:ss?? ?meridian? ?zone? or hhmm
?meridian? ?zone?. If no meridian is specified, hh is interpreted on a 24-hour clock.
date
A specific month and day with optional year. The acceptable formats are mm/dd?/yy?,
monthname dd ?, yy?, dd monthname ?yy? and day, dd monthname yy. The default year
is the current year. If the year is less then 100, we treat the years 00-38 as 2000-2038
and the years 70-99 as 1970-1999. The years 39-70 are undefined and may not be valid
on certain platforms. (For thos platforms where it is defined then the years 69-99 match
to 1969-1999.)
relative time
A specification relative to the current time. The format is number unit acceptable units
are year, fortnight, month, week, day, hour, minute (or min), and second (or sec).
The unit can be specified as a singular or plural, as in 3 weeks. These modifiers may
also be specified: tomorrow, yesterday, today, now, last, this, next, ago.
The actual date is calculated according to the following steps. First, any
absolute date and/or time is processed and converted. Using that time as the
base, day-of-week specifications are added. Next, relative specifications are
used. If a date or day is specified, and no absolute or relative time is given,
midnight is used. Finally, a correction is applied so that the correct hour of the
day is produced after allowing for daylight savings time differences and the
correct date is given when going from the end of a long month to a short month.

EDH0336En1032 — 12/18 34

HXP Controller Tcl Manual

clock seconds
Return the current date and time as a system-dependent integer value. The unit of the
value is seconds, allowing it to be used for relative time calculations. The value is
usually defined as total elapsed time from an ``epoch''. You shouldn't assume the value
of the epoch.

 35 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.10 close - Close an Open Channel

Name
close - Close an open channel.

Synopsis
close channelId

Description
Closes the channel given by channelId. ChannelId must be a channel identifier such as
the return value from a previous open or socket command. All buffered output is
flushed to the channel's output device, any buffered input is discarded, the underlying
file or device is closed, and channelId becomes unavailable for use.
If the channel is blocking, the command does not return until all output is
flushed. If the channel is nonblocking and there is unflushed output, the channel
remains open and the command returns immediately; output will be flushed in
the background and the channel will be closed when all the flushing is
complete.
If channelId is a blocking channel for a command pipeline then close waits for
the child processes to complete.
If the channel is shared between interpreters, then close makes channelId
unavailable in the invoking interpreter but has no other effect until all of the
sharing interpreters have closed the channel. When the last interpreter in which
the channel is registered invokes close, the cleanup actions described above
occur. See the interp command for a description of channel sharing.
Channels are automatically closed when an interpreter is destroyed and when
the process exits. Channels are switched to blocking mode, to ensure that all
output is correctly flushed before the process exits.
The command returns an empty string, and may generate an error if an error
occurs while flushing output.

EDH0336En1032 — 12/18 36

HXP Controller Tcl Manual

2.11 concat - Join Lists Together

Name
concat - Join lists together

Synopsis
concat ?arg arg ...?

Description
This command treats each argument as a list and concatenates them into a single list. It
also eliminates leading and trailing spaces in the arg's and adds a single separator space
between arg's. It permits any number of arguments.
For example, the command

concat a b {c d e} {f {g h}}
a b c d e f {g h}

as its result.
If no args are supplied, the result is an empty string.
For example:

set simple_list "John Joe Mary Susan"
set simple_liste2 "Michael Samuel Sophie Stéphanie"
set maliste "Mercure Venus Terre Mars Jupiter"
set groupe_liste [list $simple_liste $simple_liste2]
set newliste [concat $maliste $groupe_liste]
puts $newliste

=> Mercure Venus Terre Mars Jupiter {John Joe Mary Susan} {Michael Samuel
Sophie Stéphanie}

 37 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.12 continue - Skip to the Next Iteration of a Loop

Name
continue - Skip to the next iteration of a loop

Synopsis
continue

Description
This command is typically invoked inside the body of a looping command such as for
or foreach or while. It returns a TCL_CONTINUE code, which causes a continue
exception to occur. The exception causes the current script to be aborted out to the
innermost containing loop command, which then continues with the next iteration of the
loop. Catch exceptions are also handled in a few other situations, such as the catch
command and the outermost scripts of procedure bodies.

EDH0336En1032 — 12/18 38

HXP Controller Tcl Manual

2.13 eof - Check for End of File Condition on Channel

Name
eof - Check for end of file condition on channel

Synopsis
eof channelId

Description
Returns 1 if an end of file condition occurred during the most recent input operation on
channelId (such as gets), 0 otherwise.

 39 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.14 error - Generate an Error

Name
error - Generate an error

Synopsis
error message ?info? ?code?

Description
Returns a TCL_ERROR code, which causes command interpretation to be unwound.
Message is a string that is returned to the application to indicate what went wrong.
If the info argument is provided and is non-empty, it is used to initialize the
global variable errorInfo. errorInfo is used to accumulate a stack trace of what
was in progress when an error occurred; as nested commands unwind, the Tcl
interpreter adds information to errorInfo. If the info argument is present, it is
used to initialize errorInfo and the first increment of unwind information will
not be added by the Tcl interpreter. In other words, the command containing the
error command will not appear in errorInfo; in its place will be info. This
feature is most useful in conjunction with the catch command: if a caught error
cannot be handled successfully, info can be used to return a stack trace
reflecting the original point of occurrence of the error:

catch {...} errMsg
set savedInfo $errorInfo
 ...
error $errMsg $savedInfo

If the code argument is present, then its value is stored in the errorCode global
variable. This variable is intended to hold a machine-readable description of the
error in cases where such information is available; see the tclvars manual page
for information on the proper format for the variable. If the code argument is
not present, then errorCode is automatically reset to ``NONE'' by the Tcl
interpreter as part of processing the error generated by the command.

EDH0336En1032 — 12/18 40

HXP Controller Tcl Manual

2.15 eval - Evaluate a Tcl Script

Name
eval - Evaluate a Tcl script

Synopsis
eval arg ?arg ...?

Description
eval takes one or more arguments, which together comprise a Tcl script containing one
or more commands. eval concatenates all its arguments in the same fashion as the
concat command, passes the concatenated string to the Tcl interpreter recursively, and
returns the result of that evaluation (or any error generated by it).

 41 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.16 exec - Invoke Subprocess(es)

Name
exec - Invoke subprocess(es)

Synopsis
exec ?switches? arg ?arg ...?

Description
This command treats its arguments as the specification of one or more subprocesses to
execute. The arguments take the form of a standard shell pipeline where each arg
becomes one word of a command, and each distinct command becomes a subprocess.
If the initial arguments to exec start with - then they are treated as command-
line switches and are not part of the pipeline specification. The following
switches are currently supported:
-keepnewline Retains a trailing newline in the pipeline's output. Normally a

trailing newline will be deleted.
-- Marks the end of switches. The argument following this one will

be treated as the first arg even if it starts with a -.
If an arg (or pair of arg's) has one of the forms described below then it is used
by exec to control the flow of input and output among the subprocess(es). Such
arguments will not be passed to the subprocess(es). In forms such as ``<
fileName'' fileName may either be in a separate argument from ``<'' or in the
same argument with no intervening space (i.e. ``<fileName'').
| Separates distinct commands in the pipeline. The standard output

of the preceding command will be piped into the standard input of
the next command.

|& Separates distinct commands in the pipeline. Both standard output
and standard error of the preceding command will be piped into
the standard input of the next command. This form of redirection
overrides forms such as 2> and >&.

< fileName The file named by fileName is opened and used as the standard
input for the first command in the pipeline.

<@ fileId FileId must be the identifier for an open file, such as the return
value from a previous call to open. It is used as the standard input
for the first command in the pipeline. FileId must have been
opened for reading.

<< value Value is passed to the first command as its standard input.

> fileName Standard output from the last command is redirected to the file
named fileName, overwriting its previous contents.

2> fileName Standard error from all commands in the pipeline is redirected to
the file named fileName, overwriting its previous contents.

>& fileName Both standard output from the last command and standard error
from all commands are redirected to the file named fileName,
overwriting its previous contents.

>> fileName Standard output from the last command is redirected to the file
named fileName, appending to it rather than overwriting it.

2>> fileName Standard error from all commands in the pipeline is redirected to
the file named fileName, appending to it rather than overwriting it.

EDH0336En1032 — 12/18 42

HXP Controller Tcl Manual

>>& fileName Both standard output from the last command and standard error
from all commands are redirected to the file named fileName,
appending to it rather than overwriting it.

>@ fileId FileId must be the identifier for an open file, such as the return
value from a previous call to open. Standard output from the last
command is redirected to fileId's file, which must have been
opened for writing.

2>@ fileId FileId must be the identifier for an open file, such as the return
value from a previous call to open. Standard error from all
commands in the pipeline is redirected to fileId's file. The file must
have been opened for writing.

>&@ fileId FileId must be the identifier for an open file, such as the return
value from a previous call to open. Both standard output from the
last command and standard error from all commands are redirected
to fileId's file. The file must have been opened for writing.

If standard output has not been redirected then the exec command returns the standard
output from the last command in the pipeline. If any of the commands in the pipeline
exit abnormally or are killed or suspended, then exec will return an error and the error
message will include the pipeline's output followed by error messages describing the
abnormal terminations; the errorCode variable will contain additional information
about the last abnormal termination encountered. If any of the commands writes to its
standard error file and that standard error isn't redirected, then exec will return an error;
the error message will include the pipeline's standard output, followed by messages
about abnormal terminations (if any), followed by the standard error output.
If the last character of the result or error message is a newline then that character is
normally deleted from the result or error message. This is consistent with other Tcl
return values, which don't normally end with newlines. However, if -keepnewline is
specified then the trailing newline is retained.
If standard input isn't redirected with ``<'' or ``<<'' or ``<@'' then the standard input for
the first command in the pipeline is taken from the application's current standard input.
If the last arg is ``&'' then the pipeline will be executed in background. In this case the
exec command will return a list whose elements are the process identifiers for all of the
subprocesses in the pipeline. The standard output from the last command in the pipeline
will go to the application's standard output if it hasn't been redirected, and error output
from all of the commands in the pipeline will go to the application's standard error file
unless redirected.
The first word in each command is taken as the command name; tilde-substitution is
performed on it, and if the result contains no slashes then the directories in the PATH
environment variable are searched for an executable by the given name. If the name
contains a slash then it must refer to an executable reachable from the current directory.
No ``glob'' expansion or other shell-like substitutions are performed on the arguments to
commands.

Portability issues
The exec command is fully functional and works as described.

See also
open

 43 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.17 exit - End the Application

Name
exit - End the application

Synopsis
exit ?returnCode?

Description
Terminate the process, returning returnCode to the system as the exit status.
If returnCode isn't specified then it defaults to 0.

EDH0336En1032 — 12/18 44

HXP Controller Tcl Manual

2.18 expr - Evaluate an Expression

Name
expr - Evaluate an expression

Synopsis
expr arg ?arg arg ...?

Description
Concatenates arg's (adding separator spaces between them), evaluates the result as a Tcl
expression, and returns the value. The operators permitted in Tcl expressions are a
subset of the operators permitted in C expressions, and they have the same meaning and
precedence as the corresponding C operators. Expressions almost always yield numeric
results (integer or floating-point values). For example, the expression

expr 8.2 + 6

evaluates to 14.2. Tcl expressions differ from C expressions in the way that operands
are specified. Also, Tcl expressions support non-numeric operands and string
comparisons.

Operands
A Tcl expression consists of a combination of operands, operators, and parentheses.
White space may be used between the operands and operators and parentheses; it is
ignored by the expression's instructions. Where possible, operands are interpreted as
integer values. Integer values may be specified in decimal (the normal case), in octal (if
the first character of the operand is 0), or in hexadecimal (if the first two characters of
the operand are 0x). If an operand does not have one of the integer formats given above,
then it is treated as a floating-point number if that is possible. Floating-point numbers
may be specified in any of the ways accepted by an ANSI-compliant C compiler (except
that the f, F, l, and L suffixes will not be permitted in most installations). For example,
all of the following are valid floating-point numbers: 2.1, 3., 6e4, 7.91e+16. If no
numeric interpretation is possible, then an operand is left as a string (and only a limited
set of operators may be applied to it).
Operands may be specified in any of the following ways:
 [1]
As an numeric value, either integer or floating-point.
[2]
As a Tcl variable, using standard $ notation. The variable's value will be used as the
operand.
[3]
As a string enclosed in double-quotes. The expression parser will perform backslash,
variable, and command substitutions on the information between the quotes, and use the
resulting value as the operand
[4]
As a string enclosed in braces. The characters between the open brace and matching
close brace will be used as the operand without any substitutions.
[5]
As a Tcl command enclosed in brackets. The command will be executed and its result
will be used as the operand.

 45 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

[6]
As a mathematical function whose arguments have any of the above forms for operands,
such as sin($x). See below for a list of defined functions.
Where substitutions occur above (e.g. inside quoted strings), they are performed
by the expression's instructions. However, an additional layer of substitution
may already have been performed by the command parser before the expression
processor was called. As discussed below, it is usually best to enclose
expressions in braces to prevent the command parser from performing
substitutions on the contents.
For some examples of simple expressions, suppose the variable a has the value
3 and the variable b has the value 6. Then the command on the left side of each
of the lines below will produce the value on the right side of the line:

expr 3.1 + $a 6.1
expr 2 + "$a.$b" 5.6
expr 4*[llength "6 2"] 8
expr {{word one} < "word $a"} 0

Operators
The valid operators are listed below, grouped in decreasing order of precedence:
- + ~ !
Unary minus, unary plus, bit-wise NOT, logical NOT. None of these operands may be
applied to string operands, and bit-wise NOT may be applied only to integers.
* / %
Multiply, divide, remainder. None of these operands may be applied to string operands,
and remainder may be applied only to integers. The remainder will always have the
same sign as the divisor and an absolute value smaller than the divisor.
+ -
Add and subtract. Valid for any numeric operands.
<< >>
Left and right shift. Valid for integer operands only. A right shift always propagates the
sign bit.
< > <= >=
Boolean less, greater, less than or equal, and greater than or equal. Each operator
produces 1 if the condition is true, 0 otherwise. These operators may be applied to
strings as well as numeric operands, in which case string comparison is used.
== !=
Boolean equal and not equal. Each operator produces a zero/one result. Valid for all
operand types.
&
Bit-wise AND. Valid for integer operands only.
^
Bit-wise exclusive OR. Valid for integer operands only.
|
Bit-wise OR. Valid for integer operands only.
&&
Logical AND. Produces a 1 result if both operands are non-zero, 0 otherwise. Valid for
numeric operands only (integers or floating-point).

EDH0336En1032 — 12/18 46

HXP Controller Tcl Manual

||
Logical OR. Produces a 0 result if both operands are zero, 1 otherwise. Valid for
numeric operands only (integers or floating-point).
x?y:z
If-then-else, as in C. If x evaluates to non-zero, then the result is the value of y.
Otherwise the result is the value of z. The x operand must have a numeric value.
See the C manual for more details on the results produced by each operator. All of the
binary operators group left-to-right within the same precedence level.
For example, the command
expr 4*2 < 7

returns 0.
The &&, ||, and ?: operators have ``lazy evaluation'', just as in C, which means
that operands are not evaluated if they are not needed to determine the outcome.
For example, in the command
expr {$v ? [a] : [b]}

only one of [a] or [b] will actually be evaluated, depending on the value of $v. Note,
however, that this is only true if the entire expression is enclosed in braces; otherwise
the Tcl parser will evaluate both [a] and [b] before invoking the expr command.

Math functions
Tcl supports the following mathematical functions in expressions:

acos cos hypot sinh
asin cosh log sqrt
atan exp log10 tan
atan2 floor pow tanh
ceil fmod sin

Each of these functions invokes the math library function of the same name; see the
manual entries for the library functions for details on what they do. Tcl also implements
the following functions for conversion between integers and floating-point numbers and
the generation of random numbers:

abs(arg) Returns the absolute value of arg. Arg may be either integer or
floating-point, and the result is returned in the same form.

double(arg) If arg is a floating value, returns arg, otherwise converts arg to
floating and returns the converted value.

int(arg) If arg is an integer value, returns arg, otherwise converts arg to
integer by truncation and returns the converted value.

rand() Returns a floating point number from zero to just less than one or,
in mathematical terms, the range [0,1). The seed comes from the
internal clock of the machine or may be set manual with the srand
function.

round(arg) If arg is an integer value, returns arg, otherwise converts arg to
integer by rounding and returns the converted value.

srand(arg) The arg, which must be an integer, is used to reset the seed for the
random number generator. Returns the first random number from
that seed. Each interpreter has it's own seed.

In addition to these predefined functions, applications may define additional
functions using Tcl_CreateMathFunc().

 47 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

Types, overflow, and precision
All internal computations involving integers are done with the C type long, and all
internal computations involving floating-point are done with the C type double. When
converting a string to floating-point, exponent overflow is detected and results in a Tcl
error.
For conversion to integer from string, detection of overflow depends on the behavior of
some routines in the local C library, so it should be regarded as unreliable. In any case,
integer overflow and underflow are generally not detected reliably for intermediate
results. Floating-point overflow and underflow are detected to the degree supported by
the hardware, which is generally pretty reliable.
Conversion among internal representations for integer, floating-point, and string
operands is done automatically as needed. For arithmetic computations, integers
are used until some floating-point number is introduced, after which floating-
point is used.
For example,

expr 5 / 4

returns 1, while
expr 5 / 4.0
expr 5 / ([string length "abcd"] + 0.0)

both return 1.25. Floating-point values are always returned with a ``.'' or an e so that
they will not look like integer values.
For example,

expr 20.0/5.0

returns 4.0, not 4.

String operations
String values may be used as operands of the comparison operators, although the
expression evaluator tries to do comparisons as integer or floating-point when it can. If
one of the operands of a comparison is a string and the other has a numeric value, the
numeric operand is converted back to a string using the C sprintf format specifier %d
for integers and %g for floating-point values.
For example, the commands
expr {"0x03" > "2"}
expr {"0y" < "0x12"}

both return 1. The first comparison is done using integer comparison, and the second is
done using string comparison after the second operand is converted to the string 18.
Because of Tcl's tendency to treat values as numbers whenever possible, it isn't
generally a good idea to use operators like == when you really want string comparison
and the values of the operands could be arbitrary; it's better in these cases to use the
string compare command instead.

EDH0336En1032 — 12/18 48

HXP Controller Tcl Manual

Performance considerations
Enclose expressions in braces for the best speed and the smallest storage requirements.
This allows the Tcl bytecode compiler to generate the best code.
As mentioned above, expressions are substituted twice: once by the Tcl parser
and once by the expr command.
For example, the commands

set a 3
set b {$a + 2}
expr $b*4

return 11, not a multiple of 4. This is because the Tcl parser will first substitute $a + 2
for the variable b, then the expr command will evaluate the expression $a + 2*4.
Most expressions do not require a second round of substitutions. Either they are
enclosed in braces or, if not, their variable and command substitutions yield
numbers or strings that don't themselves require substitutions. However,
because a few unbraced expressions need two rounds of substitutions, the
bytecode compiler must emit additional instructions to handle this situation. The
most expensive code is required for unbraced expressions that contain
command substitutions. These expressions must be implemented by generating
new code each time the expression is executed.

 49 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.19 fconfigure - Set and Get Options on a Channel

Name
fconfigure - Set and get options on a channel

Synopsis
fconfigure channelId
fconfigure channelId name
fconfigure channelId name value ?name value ...?

Description
The fconfigure command sets and retrieves options for channels. ChannelId identifies
the channel for which to set or query an option. If no name or value arguments are
supplied, the command returns a list containing alternating option names and values for
the channel. If name is supplied but no value then the command returns the current
value of the given option. If one or more pairs of name and value are supplied, the
command sets each of the named options to the corresponding value; in this case the
return value is an empty string.
The options described below are supported for all channels. In addition, each
channel type may add options that only it supports. See the manual entry for the
command that creates each type of channels for the options that that specific
type of channel supports.

For example, see the manual entry for the socket command for its additional
options.
-blocking boolean
The -blocking option determines whether I/O operations on the channel can cause the
process to block indefinitely. The value of the option must be a proper boolean value.
Channels are normally in blocking mode; if a channel is placed into nonblocking mode
it will affect the operation of the gets, read, puts, flush, and close commands; see the
documentation for those commands for details. For nonblocking mode to work
correctly, the application must be using the Tcl event loop (e.g. by calling
Tcl_DoOneEvent or invoking the vwait command).
-buffering newValue
If newValue is full then the I/O system will buffer output until its internal buffer is full
or until the flush command is invoked. If newValue is line, then the I/O system will
automatically flush output for the channel whenever a newline character is output. If
newValue is none, the I/O system will flush automatically after every output operation.
The default is for -buffering to be set to full except for channels that connect to
terminal-like devices; for these channels the initial setting is line.
-buffersize newSize
Newvalue must be an integer; its value is used to set the size of buffers, in bytes,
subsequently allocated for this channel to store input or output. Newvalue must be
between ten and one million, allowing buffers of ten to one million bytes in size.
-eofchar char
-eofchar {inChar outChar}
This option supports DOS file systems that use Control-z (\x1a) as an end of file
marker. If char is not an empty string, then this character signals end of file when it is
encountered during input. For output, the end of file character is output when the
channel is closed. If char is the empty string, then there is no special end of file
character marker. For read-write channels, a two-element list specifies the end of file

EDH0336En1032 — 12/18 50

HXP Controller Tcl Manual

marker for input and output, respectively. As a convenience, when setting the end-of-
file character for a read-write channel you can specify a single value that will apply to
both reading and writing. When querying the end-of-file character of a read-write
channel, a two-element list will always be returned. The default value for -eofchar is
the empty string in all cases. In that case the -eofchar is Control-z (\x1a) for reading
and the empty string for writing.
-translation mode
-translation {inMode outMode}
In Tcl scripts the end of a line is always represented using a single newline character
(\n). However, in actual files and devices the end of a line may be represented
differently on different platforms, or even for different devices on the same platform.
For example, under UNIX newlines are used in files, whereas carriage-return-linefeed
sequences are normally used in network connections. On input (i.e., with gets and read)
the Tcl I/O system automatically translates the external end-of-line representation into
newline characters. Upon output (i.e., with puts), the I/O system translates newlines to
the external end-of-line representation. The default translation mode, auto, handles all
the common cases automatically, but the -translation option provides explicit control
over the end of line translations.
The value associated with -translation is a single item for read-only and write-
only channels. The value is a two-element list for read-write channels; the read
translation mode is the first element of the list, and the write translation mode is
the second element. As a convenience, when setting the translation mode for a
read-write channel you can specify a single value that will apply to both reading
and writing. When querying the translation mode of a read-write channel, a
two-element list will always be returned. The following values are currently
supported:
auto
As the input translation mode, auto treats any of newline (lf), carriage return (cr), or
carriage return followed by a newline (crlf) as the end of line representation. The end of
line representation can even change from line-to-line, and all cases are translated to a
newline. As the output translation mode, auto chooses a platform specific
representation; for sockets on all platforms Tcl chooses crlf, for all Unix flavors, it
chooses lf. The default setting for -translation is auto for both input and output.
binary
No end-of-line translations are performed. This is nearly identical to lf mode, except
that in addition binary mode also sets the end of file character to the empty string,
which disables it. See the description of -eofchar for more information.
cr
The end of a line in the underlying file or device is represented by a single carriage
return character. As the input translation mode, cr mode converts carriage returns to
newline characters. As the output translation mode, cr mode translates newline
characters to carriage returns.
crlf
The end of a line in the underlying file or device is represented by a carriage return
character followed by a linefeed character. As the input translation mode, crlf mode
converts carriage-return-linefeed sequences to newline characters. As the output
translation mode, crlf mode translates newline characters to carriage-return-linefeed
sequences. This mode is typically used for network connections.
lf
The end of a line in the underlying file or device is represented by a single newline
(linefeed) character. In this mode no translations occur during either input or output.
This mode is typically used on UNIX platforms.

 51 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

See also
close, flush, gets, puts, read, socket

EDH0336En1032 — 12/18 52

HXP Controller Tcl Manual

2.20 fcopy - Copy Data From One Channel to Another

Name
fcopy - Copy data from one channel to another.

Synopsis
fcopy inchan outchan ?-size size? ?-command callback?

Description
The fcopy command copies data from one I/O channel, inchan to another I/O channel,
outchan. The fcopy command leverages the buffering in the Tcl I/O system to avoid
extra copies and to avoid buffering too much data in main memory when copying large
files to slow destinations like network sockets.
The fcopy command transfers data from inchan until end of file or size bytes
have been transferred. If no -size argument is given, then the copy goes until
end of file. All the data read from inchan is copied to outchan. Without the -
command option, fcopy blocks until the copy is complete and returns the
number of bytes written to outchan.
The -command argument makes fcopy work in the background. In this case it
returns immediately and the callback is invoked later when the copy completes.
The callback is called with one or two additional arguments that indicates how
many bytes were written to outchan. If an error occurred during the background
copy, the second argument is the error string associated with the error. With a
background copy, it is not necessary to put inchan or outchan into non-blocking
mode; the fcopy command takes care of that automatically. However, it is
necessary to enter the event loop by using the vwait command.
You are not allowed to do other I/O operations with inchan or outchan during a
background fcopy. If either inchan or outchan get closed while the copy is in
progress, the current copy is stopped and the command callback is not made. If
inchan is closed, then all data already queued for outchan is written out.
Note that inchan can become readable during a background copy. You should
turn off any fileevent handlers during a background copy so those handlers do
not interfere with the copy. Any I/O attempted by a fileevent handler will get a
"channel busy" error.
Fcopy translates end-of-line sequences in inchan and outchan according to the -
translation option for these channels. See the manual entry for fconfigure for
details on the -translation option. The translations mean that the number of
bytes read from inchan can be different than the number of bytes written to
outchan. Only the number of bytes written to outchan is reported, either as the
return value of a synchronous fcopy or as the argument to the callback for an
asynchronous fcopy.

 53 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

Examples
This first example shows how the callback gets passed the number of bytes transferred.
It also uses vwait to put the application into the event loop. Of course, this simplified
example could be done without the command callback.

proc Cleanup {in out bytes {error {}}} {
 global total
 set total $bytes
 close $in
 close $out
 if {[string length $error] != 0} {
 # error occurred during the copy
 }
}
set in [open $file1]
set out [socket $server $port]
fcopy $in $out -command [list Cleanup $in $out]
vwait total

The second example copies in chunks and tests for end of file in the command callback
proc CopyMore {in out chunk bytes {error {}}} {
 global total done
 incr total $bytes
 if {([string length $error] != 0) || [eof $in] {
 set done $total
 close $in
 close $out
 } else {
 fcopy $in $out -command [list CopyMore $in $out $chunk] \
 -size $chunk
 }
}
set in [open $file1]
set out [socket $server $port]
set chunk 1024
set total 0
fcopy $in $out -command [list CopyMore $in $out $chunk] -size $chunk
vwait done

See also
eof, fconfigure

EDH0336En1032 — 12/18 54

HXP Controller Tcl Manual

2.21 file - Manipulate File Names and Attributes

Name
file - Manipulate file names and attributes

Synopsis
file option name ?arg arg ...?

Description
This command provides several operations on a file's name or attributes. Name is the
name of a file; if it starts with a tilde, then tilde substitution is done before executing the
command (see the manual entry for filename for details). Option indicates what to do
with the file name. Any unique abbreviation for option is acceptable. The valid options
are:
file atime name
Returns a decimal string giving the time at which file name was last accessed. The time
is measured in the standard POSIX fashion as seconds from a fixed starting time (often
January 1, 1970). If the file doesn't exist or its access time cannot be queried then an
error is generated.
file attributes name
file attributes name ?option?
file attributes name ?option value option value...?
This subcommand returns or sets platform specific values associated with a file. The
first form returns a list of the platform specific flags and their values. The second form
returns the value for the specific option. The third form sets one or more of the values.
The values are as follows:
On Unix, -group gets or sets the group name for the file. A group id can be
given to the command, but it returns a group name. -owner gets or sets the user
name of the owner of the file. The command returns the owner name, but the
numerical id can be passed when setting the owner. -permissions sets or
retrieves the octal code that chmod(1) uses. This command does not support the
symbolic attributes for chmod(1) at this time.
file copy ?-force? ?--? source target
file copy ?-force? ?--? source ?source ...? targetDir
The first form makes a copy of the file or directory source under the pathname target. If
target is an existing directory, then the second form is used. The second form makes a
copy inside targetDir of each source file listed. If a directory is specified as a source,
then the contents of the directory will be recursively copied into targetDir.
Existing files will not be overwritten unless the -force option is specified. Trying to
overwrite a non-empty directory, overwrite a directory with a file, or a file with a
directory will all result in errors even if -force was specified. Arguments are processed
in the order specified, halting at the first error, if any. A -- marks the end of switches;
the argument following the -- will be treated as a source even if it starts with a -.
file delete ?-force? ?--? pathname ?pathname ... ?
Removes the file or directory specified by each pathname argument. Non-empty
directories will be removed only if the -force option is specified. Trying to delete a non-
existant file is not considered an error. Trying to delete a read-only file will cause the
file to be deleted, even if the -force flags is not specified. Arguments are processed in
the order specified, halting at the first error, if any. A -- marks the end of switches; the
argument following the -- will be treated as a pathname even if it starts with a -.

 55 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

file dirname name
Returns a name comprised of all of the path components in name excluding the last
element. If name is a relative file name and only contains one path element, then returns
”.”. If name refers to a root directory, then the root directory is returned.
For example,

file dirname c:/
returns c:/.
Note that tilde substitution will only be performed if it is necessary to complete
the command.
For example,

file dirname ~/src/foo.c
returns ~/src, whereas

file dirname ~
returns /home (or something similar).
file executable name
Returns 1 if file name is executable by the current user, 0 otherwise.
file exists name
Returns 1 if file name exists and the current user has search privileges for the directories
leading to it, 0 otherwise.
file extension name
Returns all of the characters in name after and including the last dot in the last element
of name. If there is no dot in the last element of name then returns the empty string.
file isdirectory name
Returns 1 if file name is a directory, 0 otherwise.
file isfile name
Returns 1 if file name is a regular file, 0 otherwise.
file join name ?name ...?
Takes one or more file names and combines them, using the correct path separator for
the current platform. If a particular name is relative, then it will be joined to the
previous file name argument. Otherwise, any earlier arguments will be discarded, and
joining will proceed from the current argument.
For example,

file join a b /foo bar
returns /foo/bar.
Note that any of the names can contain separators, and that the result is always
canonical for the current platform: / for Unix .
file lstat name varName
Same as stat option (see below) except uses the lstat kernel call instead of stat. This
means that if name refers to a symbolic link the information returned in varName is for
the link rather than the file it refers to. On systems that don't support symbolic links this
option behaves exactly the same as the stat option.
file mkdir dir ?dir ...?
Creates each directory specified. For each pathname dir specified, this command will
create all non-existing parent directories as well as dir itself. If an existing directory is
specified, then no action is taken and no error is returned. Trying to overwrite an
existing file with a directory will result in an error. Arguments are processed in the
order specified, halting at the first error, if any.

EDH0336En1032 — 12/18 56

HXP Controller Tcl Manual

file mtime name
Returns a decimal string giving the time at which file name was last modified. The time
is measured in the standard POSIX fashion as seconds from a fixed starting time (often
January 1, 1970). If the file doesn't exist or its modified time cannot be queried then an
error is generated.
file nativename name
Returns the platform-specific name of the file. This is useful if the filename is needed to
pass to a platform-specific call.
file owned name
Returns 1 if file name is owned by the current user, 0 otherwise.
file pathtype name
Returns one of absolute, relative, volumerelative. If name refers to a specific file on a
specific volume, the path type will be absolute. If name refers to a file relative to the
current working directory, then the path type will be relative. If name refers to a file
relative to the current working directory on a specified volume, or to a specific file on
the current working volume, then the file type is volumerelative.
file readable name
Returns 1 if file name is readable by the current user, 0 otherwise.
file readlink name
Returns the value of the symbolic link given by name (i.e. the name of the file it points
to). If name isn't a symbolic link or its value cannot be read, then an error is returned.
On systems that don't support symbolic links this option is undefined.
file rename ?-force? ?--? source target
file rename ?-force? ?--? source ?source ...? targetDir
The first form takes the file or directory specified by pathname source and renames it to
target, moving the file if the pathname target specifies a name in a different directory. If
target is an existing directory, then the second form is used. The second form moves
each source file or directory into the directory targetDir. Existing files will not be
overwritten unless the -force option is specified. Trying to overwrite a non-empty
directory, overwrite a directory with a file, or a file with a directory will all result in
errors. Arguments are processed in the order specified, halting at the first error, if any.
A -- marks the end of switches; the argument following the -- will be treated as a source
even if it starts with a -.
file rootname name
Returns all of the characters in name up to but not including the last ``.'' character in the
last component of name. If the last component of name doesn't contain a dot, then
returns name.
file size name
Returns a decimal string giving the size of file name in bytes. If the file doesn't exist or
its size cannot be queried then an error is generated.
file split name
Returns a list whose elements are the path components in name. The first element of the
list will have the same path type as name. All other elements will be relative. Path
separators will be discarded unless they are needed ensure that an element is
unambiguously relative. For example, under Unix
file split /foo/~bar/baz
returns / foo ./~bar baz to ensure that later commands that use the third component do
not attempt to perform tilde substitution.

 57 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

file stat name varName
Invokes the stat kernel call on name, and uses the variable given by varName to hold
information returned from the kernel call. VarName is treated as an array variable, and
the following elements of that variable are set: atime, ctime, dev, gid, ino, mode,
mtime, nlink, size, type, uid. Each element except type is a decimal string with the
value of the corresponding field from the stat return structure; see the manual entry for
stat for details on the meanings of the values. The type element gives the type of the
file in the same form returned by the command file type. This command returns an
empty string.
file tail name
Returns all of the characters in name after the last directory separator. If name contains
no separators then returns name.
file type name
Returns a string giving the type of file name, which will be one of file, directory,
characterSpecial, blockSpecial, fifo, link, or socket.
file volume
Returns the absolute paths to the volumes mounted on the system, as a proper Tcl list.
On UNIX, the command will always return "/", since all filesystems are locally
mounted.
file writable name
Returns 1 if file name is writable by the current user, 0 otherwise.

Portability issues
Unix
These commands always operate using the real user and group identifiers, not the
effective ones.

EDH0336En1032 — 12/18 58

HXP Controller Tcl Manual

2.22 fileevent - Execute a Script When a Channel Becomes Readable or
Writable

Name
fileevent - Execute a script when a channel becomes readable or writable

Synopsis
fileevent channelId readable ?script?
fileevent channelId writable ?script?

Description
This command is used to create file event handlers. A file event handler is a binding
between a channel and a script, such that the script is evaluated whenever the channel
becomes readable or writable. File event handlers are most commonly used to allow
data to be received from another process on an event-driven basis, so that the receiver
can continue to interact with the user while waiting for the data to arrive. If an
application invokes gets or read on a blocking channel when there is no input data
available, the process will block; until the input data arrives, it will not be able to
service other events, so it will appear to the user to ``freeze up''. With fileevent, the
process can tell when data is present and only invoke gets or read when they won't
block.
The channelId argument to fileevent refers to an open channel, such as the return value
from a previous open or socket command. If the script argument is specified, then
fileevent creates a new event handler: script will be evaluated whenever the channel
becomes readable or writable (depending on the second argument to fileevent). In this
case fileevent returns an empty string. The readable and writable event handlers for a
file are independent, and may be created and deleted separately. However, there may be
at most one readable and one writable handler for a file at a given time in a given
interpreter. If fileevent is called when the specified handler already exists in the
invoking interpreter, the new script replaces the old one.
If the script argument is not specified, fileevent returns the current script for channelId,
or an empty string if there is none. If the script argument is specified as an empty string
then the event handler is deleted, so that no script will be invoked. A file event handler
is also deleted automatically whenever its channel is closed or its interpreter is deleted.
A channel is considered to be readable if there is unread data available on the
underlying device. A channel is also considered to be readable if there is unread data in
an input buffer, except in the special case where the most recent attempt to read from
the channel was a gets call that could not find a complete line in the input buffer. This
feature allows a file to be read a line at a time in nonblocking mode using events. A
channel is also considered to be readable if an end of file or error condition is present on
the underlying file or device. It is important for script to check for these conditions and
handle them appropriately; for example, if there is no special check for end of file, an
infinite loop may occur where script reads no data, returns, and is immediately invoked
again.
A channel is considered to be writable if at least one byte of data can be written to the
underlying file or device without blocking, or if an error condition is present on the
underlying file or device.
Event-driven I/O works best for channels that have been placed into nonblocking mode
with the fconfigure command. In blocking mode, a puts command may block if you
give it more data than the underlying file or device can accept, and a gets or read
command will block if you attempt to read more data than is ready; no events will be
processed while the commands block. In nonblocking mode puts, read, and gets never

 59 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

block. See the documentation for the individual commands for information on how they
handle blocking and nonblocking channels.
The script for a file event is executed at global level (outside the context of any Tcl
procedure) in the interpreter in which the fileevent command was invoked. In addition,
the file event handler is deleted if it ever returns an error; this is done in order to prevent
infinite loops due to buggy handlers.

See also
fconfigure, gets, puts, read

EDH0336En1032 — 12/18 60

HXP Controller Tcl Manual

2.23 flush - Flush Buffered Output for a Channel

Name
flush - Flush buffered output for a channel

Synopsis
flush channelId

Description
Flushes any output that has been buffered for channelId. ChannelId must be a channel
identifier such as returned by a previous open or socket command, and it must have
been opened for writing. If the channel is in blocking mode the command does not
return until all the buffered output has been flushed to the channel. If the channel is in
nonblocking mode, the command may return before all buffered output has been
flushed; the remainder will be flushed in the background as fast as the underlying file or
device is able to absorb it.

See also
open, socket

 61 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.24 for - ``For'' Loop

Name
for - ``For'' loop

Synopsis
for start test next body

Description
For is a looping command, similar in structure to the C for statement. The start, next,
and body arguments must be Tcl command strings, and test is an expression string. The
for command first invokes the Tcl interpreter to execute start. Then it repeatedly
evaluates test as an expression; if the result is non-zero it invokes the Tcl interpreter on
body, then invokes the Tcl interpreter on next, then repeats the loop. The command
terminates when test evaluates to 0. If a continue command is invoked within body then
any remaining commands in the current execution of body are skipped; processing
continues by invoking the Tcl interpreter on next, then evaluating test, and so on. If a
break command is invoked within body or next, then the for command will return
immediately. The operation of break and continue are similar to the corresponding
statements in C. For returns an empty string.

NOTE
test should almost always be enclosed in braces. If not, variable substitutions will
be made before the for command starts executing, which means that variable
changes made by the loop body will not be considered in the expression. This is
likely to result in an infinite loop. If test is enclosed in braces, variable substitutions
are delayed until the expression is evaluated (before each loop iteration), so
changes in the variables will be visible.

For an example, try the following script with and without the braces around $x<10:
for {set x 0} {$x<10} {incr x} {
 puts "x is $x"
}

EDH0336En1032 — 12/18 62

HXP Controller Tcl Manual

2.25 foreach - Iterate Over All Elements in One or More Lists

Name
foreach - Iterate over all elements in one or more lists

Synopsis
foreach varname list body
foreach varlist1 list1 ?varlist2 list2 ...? body

Description
The foreach command implements a loop where the loop variable(s) take on values
from one or more lists. In the simplest case there is one loop variable, varname, and one
list, list, that is a list of values to assign to varname. The body argument is a Tcl script.
For each element of list (in order from first to last), foreach assigns the contents of the
element to varname as if the lindex command had been used to extract the element,
then calls the Tcl interpreter to execute body.
In the general case there can be more than one value list (e.g., list1 and list2),
and each value list can be associated with a list of loop variables (e.g., varlist1
and varlist2). During each iteration of the loop the variables of each varlist are
assigned consecutive values from the corresponding list. Values in each list are
used in order from first to last, and each value is used exactly once. The total
number of loop iterations is large enough to use up all the values from all the
value lists. If a value list does not contain enough elements for each of its loop
variables in each iteration, empty values are used for the missing elements.
The break and continue statements may be invoked inside body, with the same
effect as in the for command. Foreach returns an empty string.

Examples
The following loop uses i and j as loop variables to iterate over pairs of elements of a
single list.

set x {}
foreach {i j} {a b c d e f} {
 lappend x $j $i
}
The value of x is "b a d c f e"
There are 3 iterations of the loop.

The next loop uses i and j to iterate over two lists in parallel.
set x {}
foreach i {a b c} j {d e f g} {
 lappend x $i $j
}
The value of x is "a d b e c f {} g"
There are 4 iterations of the loop.

The two forms are combined in the following example.
set x {}
foreach i {a b c} {j k} {d e f g} {
 lappend x $i $j $k
}
The value of x is "a d e b f g c {} {}"
There are 3 iterations of the loop.

 63 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.26 format - Format a String in the Style of sprintf

Name
format - Format a string in the style of sprintf

Synopsis
format formatString ?arg arg ...?

Introduction
This command generates a formatted string in the same way as the ANSI C sprintf
procedure (it uses sprintf in its implementation). FormatString indicates how to format
the result, using % conversion specifiers as in sprintf, and the additional arguments, if
any, provide values to be substituted into the result. The return value from format is the
formatted string.

Details on formatting
The command operates by scanning formatString from left to right. Each character from
the format string is appended to the result string unless it is a percent sign. If the
character is a % then it is not copied to the result string. Instead, the characters
following the % character are treated as a conversion specifier. The conversion
specifier controls the conversion of the next successive arg to a particular format and
the result is appended to the result string in place of the conversion specifier.
If there are multiple conversion specifiers in the format string, then each one controls
the conversion of one additional arg. The format command must be given enough args
to meet the needs of all of the conversion specifiers in formatString.
Each conversion specifier may contain up to six different parts: an XPG3
position specifier, a set of flags, a minimum field width, a precision, a length
modifier, and a conversion character. Any of these fields may be omitted except
for the conversion character. The fields that are present must appear in the order
given above. The paragraphs below discuss each of these fields in turn.
If the % is followed by a decimal number and a $, as in ``%2$d'', then the
value to convert is not taken from the next sequential argument. Instead, it is
taken from the argument indicated by the number, where 1 corresponds to the
first arg. If the conversion specifier requires multiple arguments because of *
characters in the specifier then successive arguments are used, starting with the
argument given by the number. This follows the XPG3 conventions for
positional specifiers. If there are any positional specifiers in formatString then
all of the specifiers must be positional.
The second portion of a conversion specifier may contain any of the following
flag characters, in any order:
- Specifies that the converted argument should be left-justified in its field

(numbers are normally right-justified with leading spaces if needed).

+ Specifies that a number should always be printed with a sign, even if
positive.

space Specifies that a space should be added to the beginning of the number if the
first character isn't a sign.

0 Specifies that the number should be padded on the left with zeroes instead of
spaces.

.............. Requests an alternate output form. For o and O conversions it guarantees that
the first digit is always 0. For x or X conversions, 0x or 0X (respectively)
will be added to the beginning of the result unless it is zero. For all floating-

EDH0336En1032 — 12/18 64

HXP Controller Tcl Manual

point conversions (e, E, f, g, and G) it guarantees that the result always has a
decimal point. For g and G conversions it specifies that trailing zeroes should
not be removed.

The third portion of a conversion specifier is a number giving a minimum field width
for this conversion. It is typically used to make columns line up in tabular printouts. If
the converted argument contains fewer characters than the minimum field width then it
will be padded so that it is as wide as the minimum field width. Padding normally
occurs by adding extra spaces on the left of the converted argument, but the 0 and -
flags may be used to specify padding with zeroes on the left or with spaces on the right,
respectively. If the minimum field width is specified as * rather than a number, then the
next argument to the format command determines the minimum field width; it must be
a numeric string.
The fourth portion of a conversion specifier is a precision, which consists of a period
followed by a number. The number is used in different ways for different conversions.
For e, E, and f conversions it specifies the number of digits to appear to the right of the
decimal point.
For g and G conversions it specifies the total number of digits to appear, including those
on both sides of the decimal point (however, trailing zeroes after the decimal point will
still be omitted unless the # flag has been specified). For integer conversions, it
specifies a minimum number of digits to print (leading zeroes will be added if
necessary). For s conversions it specifies the maximum number of characters to be
printed; if the string is longer than this then the trailing characters will be dropped. If the
precision is specified with * rather than a number then the next argument to the format
command determines the precision; it must be a numeric string.
The fifth part of a conversion specifier is a length modifier, which must be h or l. If it is
h it specifies that the numeric value should be truncated to a 16-bit value before
converting. This option is rarely useful. The l modifier is ignored.
The last thing in a conversion specifier is an alphabetic character that determines what
kind of conversion to perform. The following conversion characters are currently
supported:

d Convert integer to signed decimal string.

u Convert integer to unsigned decimal string.

i Convert integer to signed decimal string; the integer may either be in
decimal, in octal (with a leading 0) or in hexadecimal (with a leading 0x).

o Convert integer to unsigned octal string.

x or X Convert integer to unsigned hexadecimal string, using digits
``0123456789abcdef'' for x and ``0123456789ABCDEF'' for X).

c Convert integer to the 8-bit character it represents.

s No conversion; just insert string.

f Convert floating-point number to signed decimal string of the form xx.yyy,
where the number of y's is determined by the precision (default: 6). If the
precision is 0 then no decimal point is output.

e or e Convert floating-point number to scientific notation in the form x.yyye±zz,
where the number of y's is determined by the precision (default: 6). If the
precision is 0 then no decimal point is output. If the E form is used then E is
printed instead of e.

g or G If the exponent is less than -4 or greater than or equal to the precision, then
convert floating-point number as for %e or %E. Otherwise convert as for
%f. Trailing zeroes and a trailing decimal point are omitted.

% No conversion: just insert %.

 65 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

For the numerical conversions the argument being converted must be an integer or
floating-point string; format converts the argument to binary and then converts it back
to a string according to the conversion specifier.

Differences from ansi sprintf
The behavior of the format command is the same as the ANSI C sprintf procedure
except for the following differences:
 [1]
%p and %n specifiers are not currently supported.
 [2]
For %c conversions the argument must be a decimal string, which will then be
converted to the corresponding character value.
 [3]
The l modifier is ignored; integer values are always converted as if there were no
modifier present and real values are always converted as if the l modifier were present
(i.e. type double is used for the internal representation). If the h modifier is specified
then integer values are truncated to short before conversion.

EDH0336En1032 — 12/18 66

HXP Controller Tcl Manual

2.27 gets - Read a Line from a Channel

Name
gets - Read a line from a channel

Synopsis
gets channelId ?varName?

Description
This command reads the next line from channelId, returns everything in the line up to
(but not including) the end-of-line character(s), and discards the end-of-line
character(s). If varName is omitted the line is returned as the result of the command. If
varName is specified then the line is placed in the variable by that name and the return
value is a count of the number of characters returned.
If end of file occurs while scanning for an end of line, the command returns
whatever input is available up to the end of file. If channelId is in nonblocking
mode and there is not a full line of input available, the command returns an
empty string and does not consume any input. If varName is specified and an
empty string is returned in varName because of end-of-file or because of
insufficient data in nonblocking mode, then the return count is -1.
Note that if varName is not specified then the end-of-file and no-full-line-
available cases can produce the same results as if there were an input line
consisting only of the end-of-line character(s). The eof command can be used to
distinguish these three cases.

See also
eof

 67 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.28 glob - Return Names of Files that Match Patterns

Name
glob - Return names of files that match patterns

Synopsis
glob ?switches? pattern ?pattern ...?

Description
This command performs file name ``globbing'' in a fashion similar to the csh shell. It
returns a list of the files whose names match any of the pattern arguments.
If the initial arguments to glob start with - then they are treated as switches. The
following switches are currently supported:
-nocomplain
Allows an empty list to be returned without error; without this switch an error is
returned if the result list would be empty.
--
Marks the end of switches. The argument following this one will be treated as a pattern
even if it starts with a -.
The pattern arguments may contain any of the following special characters:
?
Matches any single character.
*
Matches any sequence of zero or more characters.
[chars]
Matches any single character in chars. If chars contains a sequence of the form a-b then
any character between a and b (inclusive) will match.
\x
Matches the character x.
{a,b,...}
Matches any of the strings a, b, etc.
As with csh, a ``.'' at the beginning of a file's name or just after a ``/'' must be matched
explicitly or with a {} construct. In addition, all ``/'' characters must be matched
explicitly.
If the first character in a pattern is ``~'' then it refers to the home directory for the user
whose name follows the ``~''. If the ``~'' is followed immediately by ``/'' then the value
of the HOME environment variable is used.
The glob command differs from csh globbing in two ways. First, it does not sort its
result list (use the lsort command if you want the list sorted). Second, glob only returns
the names of files that actually exist; in csh no check for existence is made unless a
pattern contains a ?, *, or [] construct.

Portability issues
Unlike other Tcl commands that will accept both network and native style names (see
the filename manual entry for details on how native and network names are specified),
the glob command only accepts native names.

EDH0336En1032 — 12/18 68

HXP Controller Tcl Manual

2.29 global - Access Global Variables

Name
global - Access global variables

Synopsis
global varname ?varname ...?

Description
This command is ignored unless a Tcl procedure is being interpreted. If so then it
declares the given varname's to be global variables rather than local ones. Global
variables are variables in the global namespace. For the duration of the current
procedure (and only while executing in the current procedure), any reference to any of
the varnames will refer to the global variable by the same name.
Example:

proc muet_proc {} {
 # Set local variable
 set mavar 4
 puts "La valeur de la variable locale est $mavar"

 # Access to global variable
 global variableGlob
 puts "La valeur de la variable globale est $variableGlob"
}

Set global variable
set variableGlob 15

Call procedure
muet_proc

See also
namespace, variable

 69 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.30 if - Execute Scripts Conditionally

Name
if - Execute scripts conditionally

Synopsis
if expr1 ?then? body1 elseif expr2 ?then? body2 elseif ... ?else? ?bodyN?

Description
The if command evaluates expr1 as an expression (in the same way that expr evaluates
its argument). The value of the expression must be a boolean (a numeric value, where 0
is false and anything is true, or a string value such as true or yes for true and false or no
for false); if it is true then body1 is executed by passing it to the Tcl interpreter.
Otherwise expr2 is evaluated as an expression and if it is true then body2 is executed,
and so on. If none of the expressions evaluates to true then bodyN is executed. The then
and else arguments are optional ``noise words'' to make the command easier to read.
There may be any number of elseif clauses, including zero. BodyN may also be omitted
as long as else is omitted too. The return value from the command is the result of the
body script that was executed, or an empty string if none of the expressions was non-
zero and there was no bodyN.
Example of multiple conditions:

if {$x == 0 && $y == 0} {
 ...

}

EDH0336En1032 — 12/18 70

HXP Controller Tcl Manual

2.31 incr - Increment the Value of a Variable

Name
incr - Increment the value of a variable

Synopsis
incr varName ?increment?

Description
Increments the value stored in the variable whose name is varName. The value of the
variable must be an integer. If increment is supplied then its value (which must be an
integer) is added to the value of variable varName; otherwise 1 is added to varName.
The new value is stored as a decimal string in variable varName and also returned as
result.

 71 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.32 info - Return Information About the State of the Tcl Interpreter

Name
info - Return information about the state of the Tcl interpreter

Synopsis
info option ?arg arg ...?

Description
This command provides information about various internals of the Tcl interpreter. The
legal option's (which may be abbreviated) are:
info args procname
Returns a list containing the names of the arguments to procedure procname, in order.
Procname must be the name of a Tcl command procedure.
info body procname
Returns the body of procedure procname. Procname must be the name of a Tcl
command procedure.
info cmdcount
Returns a count of the total number of commands that have been invoked in this
interpreter.
info commands ?pattern?
If pattern isn't specified, returns a list of names of all the Tcl commands in the current
namespace, including both the built-in commands written in C and the command
procedures defined using the proc command. If pattern is specified, only those names
matching pattern are returned. Matching is determined using the same rules as for
string match. pattern can be a qualified name like Foo::print*. That is, it may specify
a particular namespace using a sequence of namespace names separated by ::s, and may
have pattern matching special characters at the end to specify a set of commands in that
namespace. If pattern is a qualified name, the resulting list of command names has each
one qualified with the name of the specified namespace.
info complete command
Returns 1 if command is a complete Tcl command in the sense of having no unclosed
quotes, braces, brackets or array element names, If the command doesn't appear to be
complete then 0 is returned. This command is typically used in line-oriented input
environments to allow users to type in commands that span multiple lines; if the
command isn't complete, the script can delay evaluating it until additional lines have
been typed to complete the command.
info default procname arg varname
Procname must be the name of a Tcl command procedure and arg must be the name of
an argument to that procedure. If arg doesn't have a default value then the command
returns 0. Otherwise it returns 1 and places the default value of arg into variable
varname.
info exists varName
Returns 1 if the variable named varName exists in the current context (either as a global
or local variable), returns 0 otherwise.
info globals ?pattern?
If pattern isn't specified, returns a list of all the names of currently-defined global
variables. Global variables are variables in the global namespace. If pattern is specified,

EDH0336En1032 — 12/18 72

http://www.tcl.tk/man/tcl8.0/TclCmd/proc.htm

HXP Controller Tcl Manual

only those names matching pattern are returned. Matching is determined using the same
rules as for string match.
info hostname
Returns the name of the computer on which this invocation is being executed.
info level ?number?
If number is not specified, this command returns a number giving the stack level of the
invoking procedure, or 0 if the command is invoked at top-level. If number is specified,
then the result is a list consisting of the name and arguments for the procedure call at
level number on the stack. If number is positive then it selects a particular stack level (1
refers to the top-most active procedure, 2 to the procedure it called, and so on);
otherwise it gives a level relative to the current level (0 refers to the current procedure, -
1 to its caller, and so on). See the uplevel command for more information on what stack
levels mean.
info library
Returns the name of the library directory in which standard Tcl scripts are stored. This
is actually the value of the tcl_library variable and may be changed by setting
tcl_library. See the tclvars manual entry for more information.
info loaded ?interp?
Returns a list describing all of the packages that have been loaded into interp with the
load command. Each list element is a sub-list with two elements consisting of the name
of the file from which the package was loaded and the name of the package. For
statically-loaded packages the file name will be an empty string. If interp is omitted
then information is returned for all packages loaded in any interpreter in the process. To
get a list of just the packages in the current interpreter, specify an empty string for the
interp argument.
info locals ?pattern?
If pattern isn't specified, returns a list of all the names of currently-defined local
variables, including arguments to the current procedure, if any. Variables defined with
the global and upvar commands will not be returned. If pattern is specified, only those
names matching pattern are returned. Matching is determined using the same rules as
for string match.
info nameofexecutable
Returns the full path name of the binary file from which the application was invoked. If
Tcl was unable to identify the file, then an empty string is returned.
info patchlevel
Returns the value of the global variable tcl_patchLevel; see the tclvars manual entry
for more information.
info procs ?pattern?
If pattern isn't specified, returns a list of all the names of Tcl command procedures in
the current namespace. If pattern is specified, only those procedure names in the current
namespace matching pattern are returned. Matching is determined using the same rules
as for string match.
info script
If a Tcl script file is currently being evaluated (i.e. there is a call to Tcl_EvalFile active
or there is an active invocation of the source command), then this command returns the
name of the innermost file being processed. Otherwise the command returns an empty
string.
info sharedlibextension
Returns the extension used on this platform for the names of files containing shared
libraries (for example, .so under Solaris). If shared libraries aren't supported on this
platform then an empty string is returned.

 73 EDH0337En1032 — 12/18

http://www.tcl.tk/man/tcl8.0/TclCmd/uplevel.htm
http://www.tcl.tk/man/tcl8.0/TclCmd/tclvars.htm
http://www.tcl.tk/man/tcl8.0/TclCmd/load.htm

HXP Controller Tcl Manual

info tclversion
Returns the value of the global variable tcl_version; see the tclvars manual entry for
more information.
info vars ?pattern?
If pattern isn't specified, returns a list of all the names of currently-visible variables.
This includes locals and currently-visible globals. If pattern is specified, only those
names matching pattern are returned. Matching is determined using the same rules as
for string match. pattern can be a qualified name like Foo::option*. That is, it may
specify a particular namespace using a sequence of namespace names separated by ::s,
and may have pattern matching special characters at the end to specify a set of variables
in that namespace. If pattern is a qualified name, the resulting list of variable names has
each matching namespace variable qualified with the name of its namespace.

EDH0336En1032 — 12/18 74

HXP Controller Tcl Manual

2.33 join - Create a String by Joining Together List Elements

Name
join - Create a string by joining together list elements

Synopsis
join list ?joinString?

Description
The list argument must be a valid Tcl list. This command returns the string formed by
joining all of the elements of list together with joinString separating each adjacent pair
of elements. The joinString argument defaults to a space character.
For example:

set maliste "Mercure Venus Mars"
puts $maliste
set str [join $maliste ";"]
puts $str

=> Mercure;Venus;Mars

 75 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.34 lappend - Append List Elements Onto a Variable

Name
lappend - Append list elements onto a variable

Synopsis
lappend varName ?value value value ...?

Description
This command treats the variable given by varName as a list and appends each of the
value arguments to that list as a separate element, with spaces between elements. If
varName doesn't exist, it is created as a list with elements given by the value arguments.
Lappend is similar to append except that the values are appended as list elements
rather than raw text. This command provides a relatively efficient way to build up large
lists.
For example, ``lappend a $b'' is much more efficient than ``set a [concat $a [list $b]]''
when $a is long.
For example:

set maliste "Mercure Venus Mars"
puts $maliste
lappend maliste Jupiter
puts $maliste

=> Mercure Venus Mars
=> Mercure Venus Mars Jupiter

EDH0336En1032 — 12/18 76

HXP Controller Tcl Manual

2.35 lindex - Retrieve an Element From a List

Name
lindex - Retrieve an element from a list

Synopsis
lindex list index

Description
This command treats list as a Tcl list and returns the index'th element from it (0 refers to
the first element of the list). In extracting the element, lindex observes the same rules
concerning braces and quotes and backslashes as the Tcl command interpreter;
however, variable substitution and command substitution do not occur. If index is
negative or greater than or equal to the number of elements in value, then an empty
string is returned. If index has the value end, it refers to the last element in the list.
Example to use lindex:

set simple_list "John Joe Mary Susan"
puts [lindex $simple_list 0]
puts [lindex $simple_list 2]

=> John
=> Mary

 77 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.36 linsert - Insert Elements Into a List

Name
linsert - Insert elements into a list

Synopsis
linsert list index element ?element element ...?

Description
This command produces a new list from list by inserting all of the element arguments
just before the indexth element of list. Each element argument will become a separate
element of the new list. If index is less than or equal to zero, then the new elements are
inserted at the beginning of the list. If index has the value end, or if it is greater than or
equal to the number of elements in the list, then the new elements are appended to the
list.
For example:

set maliste "Mercure Venus Mars"
puts $maliste
set maliste [linsert $maliste 2 Terre]
puts $maliste

=> Mercure Venus Mars
=> Mercure Venus Terre Mars

EDH0336En1032 — 12/18 78

HXP Controller Tcl Manual

2.37 list - Create a List

Name
list - Create a list

Synopsis
list ?arg arg ...?

Description
This command returns a list comprised of all the args, or an empty string if no args are
specified. Braces and backslashes get added as necessary, so that the index command
may be used on the result to re-extract the original arguments, and also so that eval may
be used to execute the resulting list, with arg1 comprising the command's name and the
other args comprising its arguments. List produces slightly different results than
concat: concat removes one level of grouping before forming the list, while list works
directly from the original arguments.
For example, the command

list a b {c d e} {f {g h}}

will return: a b {c d e} {f {g h}}
while concat with the same arguments will return: a b c d e f {g h}
For example:

set simple_liste2 "Michael Samuel Sophie Stéphanie"
set groupe_liste [list $simple_liste $simple_liste2]
puts $groupe_liste

=> {John Joe Mary Susan} {Michael Samuel Sophie Stéphanie}

 79 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.38 llength - Count the Number of Elements in a List

Name
llength - Count the number of elements in a list

Synopsis
llength list

Description
Treats list as a list and returns a decimal string giving the number of elements in it.
For example:

set simple_liste2 "Michael Samuel Sophie Stéphanie"
set groupe_liste [list $simple_liste $simple_liste2]
puts [llength $groupe_liste]

=> 2

EDH0336En1032 — 12/18 80

HXP Controller Tcl Manual

2.39 lrange - Return One or More Adjacent Elements From a List

Name
lrange - Return one or more adjacent elements from a list

Synopsis
lrange list first last

Description
List must be a valid Tcl list. This command will return a new list consisting of elements
first through last, inclusive.
First or last may be end (or any abbreviation of it) to refer to the last element of the list.
If first is less than zero, it is treated as if it were zero.
If last is greater than or equal to the number of elements in the list, then it is treated as if
it were end.
If first is greater than last then an empty string is returned.

NOTE
``lrange list first first'' does not always produce the same result as ``lindex list first''
(although it often does for simple fields that aren't enclosed in braces); it does,
however, produce exactly the same results as ``list [lindex list first]''

For example:
set maliste "Mercure Venus Terre Mars Jupiter"
set listeRange [lrange $maliste 0 2]
puts $listeRange

=> Mercure Venus Terre

 81 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.40 lreplace - Replace Elements in a List With New Elements

Name
lreplace - Replace elements in a list with new elements

Synopsis
lreplace list first last ?element element ...?

Description
lreplace returns a new list formed by replacing one or more elements of list with the
element arguments. First gives the index in list of the first element to be replaced (0
refers to the first element). If first is less than zero then it refers to the first element of
list; the element indicated by first must exist in the list. Last gives the index in list of the
last element to be replaced. If last is less than first then no elements are deleted; the new
elements are simply inserted before first. First or last may be end (or any abbreviation
of it) to refer to the last element of the list. The element arguments specify zero or more
new arguments to be added to the list in place of those that were deleted. Each element
argument will become a separate element of the list. If no element arguments are
specified, then the elements between first and last are simply deleted.

set maliste "Mercure Venus Terre Mars Jupiter"
set newliste [lreplace $maliste 0 0 Lune]
puts $newliste

=> Lune Venus Terre Mars Jupiter

EDH0336En1032 — 12/18 82

HXP Controller Tcl Manual

2.41 lsearch - See if a List Contains a Particular Element

Name
lsearch - See if a list contains a particular element

Synopsis
lsearch ?mode? list pattern

Description
This command searches the elements of list to see if one of them matches pattern. If so,
the command returns the index of the first matching element. If not, the command
returns -1. The mode argument indicates how the elements of the list are to be matched
against pattern and it must have one of the following values:
-exact
The list element must contain exactly the same string as pattern.
-glob
Pattern is a glob-style pattern which is matched against each list element using the same
rules as the string match command.
-regexp
Pattern is treated as a regular expression and matched against each list element using
the same rules.
If mode is omitted then it defaults to -glob.
For example:

set maliste "Mercure Venus Terre Mars Jupiter"
set index [lsearch -exact $maliste Terre]
puts $index

=> 2

 83 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.42 lsort - Sort the Elements of a List

Name
lsort - Sort the elements of a list

Synopsis
lsort ?options? list

Description
This command sorts the elements of list, returning a new list in sorted order. By default
ASCII sorting is used with the result returned in increasing order. However, any of the
following options may be specified before list to control the sorting process (unique
abbreviations are accepted):

-ascii Use string comparison with ASCII collation order. This is the
default.

-dictionary Use dictionary-style comparison. This is the same as -ascii except
(a) case is ignored except as a tie-breaker and (b) if two strings
contain embedded numbers, the numbers compare as integers, not
characters. For example, in -dictionary mode, bigBoy sorts
between bigbang and bigboy, and x10y sorts between x9y and
x11y.

-integer Convert list elements to integers and use integer comparison.

-real Convert list elements to floating-point values and use floating
comparison.

-command command Use command as a comparison command. To compare two
elements, evaluate a Tcl script consisting of command with the two
elements appended as additional arguments. The script should
return an integer less than, equal to, or greater than zero if the first
element is to be considered less than, equal to, or greater than the
second, respectively.

-increasing Sort the list in increasing order (``smallest'' items first). This is the
default.

-decreasing Sort the list in decreasing order (``largest'' items first).

-index index If this option is specified, each of the elements of list must itself be
a proper Tcl sublist. Instead of sorting based on whole sublists,
lsort will extract the index'th element from each sublist and sort
based on the given element. The keyword end is allowed for the
index to sort on the last sublist element.

For example,
lsort -integer -index 1 {{First 24} {Second 18} {Third 30}}

returns {Second 18} {First 24} {Third 30}. This option is much more efficient than
using -command to achieve the same effect.
Other example:

set maliste "Mercure Venus Terre Mars Jupiter"
set newliste [lsort -dictionary $maliste]
puts $newliste

=> Jupiter Mars Mercure Terre Venus

EDH0336En1032 — 12/18 84

HXP Controller Tcl Manual

2.43 namespace - Create and Manipulate Contexts for Commands and
Variables

Name
namespace - create and manipulate contexts for commands and variables

Synopsis
namespace ?option? ?arg ...?

Description
The namespace command lets you create, access, and destroy separate contexts for
commands and variables. See the section WHAT IS A NAMESPACE? below for a
brief overview of namespaces. The legal option's are listed below. Note that you can
abbreviate the option's.
namespace children ?namespace? ?pattern?
Returns a list of all child namespaces that belong to the namespace namespace. If
namespace is not specified, then the children are returned for the current namespace.
This command returns fully-qualified names, which start with ::. If the optional pattern
is given, then this command returns only the names that match the glob-style pattern.
The actual pattern used is determined as follows: a pattern that starts with :: is used
directly, otherwise the namespace namespace (or the fully-qualified name of the current
namespace) is prepended onto the the pattern.
namespace code script
Captures the current namespace context for later execution of the script script. It returns
a new script in which script has been wrapped in a namespace code command. The
new script has two important properties. First, it can be evaluated in any namespace and
will cause script to be evaluated in the current namespace (the one where the
namespace code command was invoked). Second, additional arguments can be
appended to the resulting script and they will be passed to script as additional
arguments.
For example, suppose the command set script [namespace code {foo bar}] is invoked
in namespace ::a::b. Then eval "$script x y" can be executed in any namespace
(assuming the value of script has been passed in properly) and will have the same effect
as the command namespace eval ::a::b {foo bar x y}. This command is needed
because extensions like Tk normally execute callback scripts in the global namespace.
A scoped command captures a command together with its namespace context in a way
that allows it to be executed properly later. See the section SCOPED VALUES for
some examples of how this is used to create callback scripts.
namespace current
Returns the fully-qualified name for the current namespace. The actual name of the
global namespace is ``'' (i.e., an empty string), but this command returns :: for the
global namespace as a convenience to programmers.
namespace delete ?namespace namespace ...?
Each namespace namespace is deleted and all variables, procedures, and child
namespaces contained in the namespace are deleted.
If a procedure is currently executing inside the namespace, the namespace will be kept
alive until the procedure returns; however, the namespace is marked to prevent other
code from looking it up by name.
If a namespace doesn't exist, this command returns an error. If no namespace names are
given, this command does nothing.

 85 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

namespace eval namespace arg ?arg ...?
Activates a namespace called namespace and evaluates some code in that context. If the
namespace does not already exist, it is created. If more than one arg argument is
specified, the arguments are concatenated together with a space between each one in the
same fashion as the eval command, and the result is evaluated.
If namespace has leading namespace qualifiers and any leading namespaces do
not exist, they are automatically created.
namespace export ?-clear? ?pattern pattern ...?
Specifies which commands are exported from a namespace. The exported commands
are those that can be later imported into another namespace using a namespace import
command. Both commands defined in a namespace and commands the namespace has
previously imported can be exported by a namespace. The commands do not have to be
defined at the time the namespace export command is executed. Each pattern may
contain glob-style special characters, but it may not include any namespace qualifiers.
That is, the pattern can only specify commands in the current (exporting) namespace.
Each pattern is appended onto the namespace's list of export patterns. If the -clear flag
is given, the namespace's export pattern list is reset to empty before any pattern
arguments are appended. If no patterns are given and the -clear flag isn't given, this
command returns the namespace's current export list.
namespace forget ?pattern pattern ...?
Removes previously imported commands from a namespace. Each pattern is a qualified
name such as foo::x or a::b::p*. Qualified names contain ::s and qualify a name with
the name of one or more namespaces. Each pattern is qualified with the name of an
exporting namespace and may have glob-style special characters in the command name
at the end of the qualified name. Glob characters may not appear in a namespace name.
This command first finds the matching exported commands. It then checks whether any
of those those commands were previously imported by the current namespace. If so, this
command deletes the corresponding imported commands. In effect, this un-does the
action of a namespace import command.
namespace import ?-force? ?pattern pattern ...?
Imports commands into a namespace. Each pattern is a qualified name like foo::x or
a::p*. That is, it includes the name of an exporting namespace and may have glob-style
special characters in the command name at the end of the qualified name. Glob
characters may not appear in a namespace name. All the commands that match a pattern
string and which are currently exported from their namespace are added to the current
namespace. This is done by creating a new command in the current namespace that
points to the exported command in its original namespace; when the new imported
command is called, it invokes the exported command. This command normally returns
an error if an imported command conflicts with an existing command. However, if the -
force option is given, imported commands will silently replace existing commands. The
namespace import command has snapshot semantics: that is, only requested
commands that are currently defined in the exporting namespace are imported. In other
words, you can import only the commands that are in a namespace at the time when the
namespace import command is executed. If another command is defined and exported
in this namespace later on, it will not be imported.
namespace inscope namespace arg ?arg ...?
Executes a script in the context of a particular namespace. This command is not
expected to be used directly by programmers; calls to it are generated implicitly when
applications use namespace code commands to create callback scripts that the
applications then register with, e.g., Tk widgets. The namespace inscope command is
much like the namespace eval command except that it has lappend semantics and the
namespace must already exist. It treats the first argument as a list, and appends any
arguments after the first onto the end as proper list elements. namespace inscope ::foo

EDH0336En1032 — 12/18 86

HXP Controller Tcl Manual

a x y z is equivalent to namespace eval ::foo [concat a [list x y z]] This lappend
semantics is important because many callback scripts are actually prefixes.
namespace origin command
Returns the fully-qualified name of the original command to which the imported
command command refers. When a command is imported into a namespace, a new
command is created in that namespace that points to the actual command in the
exporting namespace. If a command is imported into a sequence of namespaces a, b,...,n
where each successive namespace just imports the command from the previous
namespace, this command returns the fully-qualified name of the original command in
the first namespace, a. If command does not refer to an imported command, the
command's own fully-qualified name is returned.
namespace parent ?namespace?
Returns the fully-qualified name of the parent namespace for namespace namespace. If
namespace is not specified, the fully-qualified name of the current namespace's parent is
returned.
namespace qualifiers string
Returns any leading namespace qualifiers for string. Qualifiers are namespace names
separated by ::s. For the string ::foo::bar::x, this command returns ::foo::bar, and for
:: it returns ``'' (an empty string). This command is the complement of the namespace
tail command. Note that it does not check whether the namespace names are, in fact, the
names of currently defined namespaces.
namespace tail string
Returns the simple name at the end of a qualified string. Qualifiers are namespace
names separated by ::s. For the string ::foo::bar::x, this command returns x, and for ::
it returns ``'' (an empty string). This command is the complement of the namespace
qualifiers command. It does not check whether the namespace names are, in fact, the
names of currently defined namespaces.
namespace which ?-command? ?-variable? name
Looks up name as either a command or variable and returns its fully-qualified name.
For example, if name does not exist in the current namespace but does exist in the
global namespace, this command returns a fully-qualified name in the global
namespace. If the command or variable does not exist, this command returns an empty
string. If no flag is given, name is treated as a command name. See the section NAME
RESOLUTION below for an explanation of the rules regarding name resolution.

What is a namespace?
A namespace is a collection of commands and variables. It encapsulates the commands
and variables to ensure that they won't interfere with the commands and variables of
other namespaces. Tcl has always had one such collection, which we refer to as the
global namespace. The global namespace holds all global variables and commands. The
namespace eval command lets you create new namespaces.
For example,

namespace eval Counter {
 namespace export Bump
 variable num 0

 proc Bump {} {
 variable num
 incr num
 }
}

 87 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

creates a new namespace containing the variable num and the procedure Bump. The
commands and variables in this namespace are separate from other commands and
variables in the same program. If there is a command named Bump in the global
namespace, for example, it will be different from the command Bump in the Counter
namespace.
Namespace variables resemble global variables in Tcl. They exist outside of the
procedures in a namespace but can be accessed in a procedure via the variable
command, as shown in the example above.
Namespaces are dynamic. You can add and delete commands and variables at
any time, so you can build up the contents of a namespace over time using a
series of namespace eval commands. For example, the following series of
commands has the same effect as the namespace definition shown above:

namespace eval Counter {
 variable num 0

 proc Bump {} {
 variable num
 return [incr num]
 }
}

namespace eval Counter {
 proc test {args} {
 return $args
 }
}

namespace eval Counter {
 rename test ""
}

Note that the test procedure is added to the Counter namespace, and later removed via
the rename command.
Namespaces can have other namespaces within them, so they nest
hierarchically. A nested namespace is encapsulated inside its parent namespace
and can not interfere with other namespaces.

Qualified names
Since namespaces may nest, qualified names are used to refer to commands, variables,
and child namespaces contained inside namespaces. Qualified names are similar to the
hierarchical path names for Unix files or Tk widgets, except that :: is used as the
separator instead of / or .. The topmost or global namespace has the name ``'' (i.e., an
empty string), although :: is a synonym. As an example, the name
::safe::interp::create refers to the command create in the namespace interp that is a
child of of namespace ::safe, which in turn is a child of the global namespace ::.
If you want to access commands and variables from another namespace, you
must use some extra syntax. Names must be qualified by the namespace that
contains them.
From the global namespace, we might access the Counter procedures like this:

Counter::Bump 5
Counter::Reset

We could access the current count like this:
puts "count = $Counter::num"

EDH0336En1032 — 12/18 88

HXP Controller Tcl Manual

When one namespace contains another, you may need more than one qualifier to reach
its elements. If we had a namespace Foo that contained the namespace Counter, you
could invoke its Bump procedure from the global namespace like this:

Foo::Counter::Bump 3
You can also use qualified names when you create and rename commands. For
example, you could add a procedure to the Foo namespace like this:

proc Foo::Test {args} {return $args}
And you could move the same procedure to another namespace like this:

rename Foo::Test Bar::Test
There are a few remaining points about qualified names that we should cover.
Namespaces have nonempty names except for the global namespace. :: is disallowed in
simple command, variable, and namespace names except as a namespace separator.
Extra :s in a qualified name are ignored; that is, two or more :s are treated as a
namespace separator. A trailing :: in a qualified variable or command name refers to the
variable or command named {}. However, a trailing :: in a qualified namespace name is
ignored.

Name resolution
In general, all Tcl commands that take variable and command names support qualified
names. This means you can give qualified names to such commands as set, proc and
rename. If you provide a fully-qualified name that starts with a ::, there is no question
about what command, variable, or namespace you mean. However, if the name does not
start with a :: (i.e., is relative), Tcl follows a fixed rule for looking it up: Command and
variable names are always resolved by looking first in the current namespace, and then
in the global namespace. Namespace names, on the other hand, are always resolved by
looking in only the current namespace.
In the following example,

set traceLevel 0
namespace eval Debug {
 printTrace $traceLevel
}

Tcl looks for traceLevel in the namespace Debug and then in the global namespace. It looks
up the command printTrace in the same way. If a variable or command name is not found in
either context, the name is undefined. To make this point absolutely clear, consider the
following example:

set traceLevel 0
namespace eval Foo {
 variable traceLevel 3

 namespace eval Debug {
 printTrace $traceLevel
 }
}

Here Tcl looks for traceLevel first in the namespace Foo::Debug. Since it is not found
there, Tcl then looks for it in the global namespace. The variable Foo::traceLevel is
completely ignored during the name resolution process.
You can use the namespace which command to clear up any question about name
resolution. For example, the command:

namespace eval Foo::Debug {namespace which -variable traceLevel}

returns ::traceLevel. On the other hand, the command,
namespace eval Foo {namespace which -variable traceLevel}

 89 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

returns ::Foo::traceLevel.
As mentioned above, namespace names are looked up differently than the names of
variables and commands. Namespace names are always resolved in the current
namespace. This means, for example, that a namespace eval command that creates a
new namespace always creates a child of the current namespace unless the new
namespace name begins with a ::.
Tcl has no access control to limit what variables, commands, or namespaces you can
reference. If you provide a qualified name that resolves to an element by the name
resolution rule above, you can access the element.
You can access a namespace variable from a procedure in the same namespace by using
the variable command. Much like the global command, this creates a local link to the
namespace variable. If necessary, it also creates the variable in the current namespace
and initializes it. Note that the global command only creates links to variables in the
global namespace. It is not necessary to use a variable command if you always refer to
the namespace variable using an appropriate qualified name.

Importing commands
Namespaces are often used to represent libraries. Some library commands are used so
frequently that it is a nuisance to type their qualified names. For example, suppose that
all of the commands in a package like BLT are contained in a namespace called Blt.
Then you might access these commands like this:

Blt::graph .g -background red
Blt::table . .g 0,0

If you use the graph and table commands frequently, you may want to access them
without the Blt:: prefix. You can do this by importing the commands into the current
namespace, like this:

namespace import Blt::*

This adds all exported commands from the Blt namespace into the current namespace
context, so you can write code like this:

graph .g -background red
table . .g 0,0

The namespace import command only imports commands from a namespace that that
namespace exported with a namespace export command.
Importing every command from a namespace is generally a bad idea since you don't
know what you will get. It is better to import just the specific commands you need. For
example, the command

namespace import Blt::graph Blt::table

imports only the graph and table commands into the current context.
If you try to import a command that already exists, you will get an error. This prevents
you from importing the same command from two different packages. But from time to
time (perhaps when debugging), you may want to get around this restriction. You may
want to reissue the namespace import command to pick up new commands that have
appeared in a namespace. In that case, you can use the -force option, and existing
commands will be silently overwritten:

namespace import -force Blt::graph Blt::table

If for some reason, you want to stop using the imported commands, you can remove
them with an namespace forget command, like this:

namespace forget Blt::*

This searches the current namespace for any commands imported from Blt. If it finds
any, it removes them. Otherwise, it does nothing. After this, the Blt commands must be
accessed with the Blt:: prefix.
When you delete a command from the exporting namespace like this:

EDH0336En1032 — 12/18 90

HXP Controller Tcl Manual

rename Blt::graph ""

the command is automatically removed from all namespaces that import it.

Exporting commands
You can export commands from a namespace like this:

namespace eval Counter {

 namespace export Bump Reset
 variable num 0
 variable max 100

 proc Bump {{by 1}} {
 variable num
 incr num $by
 check
 return $num
 }
 proc Reset {} {
 variable num
 set num 0
 }
 proc check {} {
 variable num
 variable max
 if {$num > $max} {
 error "too high!"
 }
 }
}

The procedures Bump and Reset are exported, so they are included when you import
from the Counter namespace, like this:

namespace import Counter::*

However, the check procedure is not exported, so it is ignored by the import operation.
The namespace import command only imports commands that were declared as
exported by their namespace. The namespace export command specifies what
commands may be imported by other namespaces. If a namespace import command
specifies a command that is not exported, the command is not imported.

See also
variable

 91 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.44 open - Open a File-Based or Command Pipeline Channel

Name
open - Open a file-based or command pipeline channel

Synopsis
open fileName
open fileName access
open fileName access permissions

Description
This command opens a file, serial port, or command pipeline and returns a channel
identifier that may be used in future invocations of commands like read, puts, and
close. If the first character of fileName is not | then the command opens a file: fileName
gives the name of the file to open.
The access argument, if present, indicates the way in which the file (or
command pipeline) is to be accessed. In the first form access may have any of
the following values:
r Open the file for reading only; the file must already exist. This is the default

value if access is not specified.

r+ Open the file for both reading and writing; the file must already exist.

w Open the file for writing only. Truncate it if it exists. If it doesn't exist, create
a new file.

w+ Open the file for reading and writing. Truncate it if it exists. If it doesn't exist,
create a new file.

a Open the file for writing only. The file must already exist, and the file is
positioned so that new data is appended to the file.

a+ Open the file for reading and writing. If the file doesn't exist, create a new
empty file. Set the initial access position to the end of the file.

In the second form, access consists of a list of any of the following flags, all of which
have the standard POSIX meanings. One of the flags must be either RDONLY,
WRONLY or RDWR.

RDONLY Open the file for reading only.

WRONLY Open the file for writing only.

RDWR Open the file for both reading and writing.

APPEND Set the file pointer to the end of the file prior to each write.

CREAT Create the file if it doesn't already exist (without this flag it is an
error for the file not to exist).

EXCL If CREAT is also specified, an error is returned if the file already
exists.

NOCTTY If the file is a terminal device, this flag prevents the file from
becoming the controlling terminal of the process.

NONBLOCK Prevents the process from blocking while opening the file, and
possibly in subsequent I/O operations. The exact behavior of this
flag is system- and device-dependent; its use is discouraged (it is
better to use the fconfigure command to put a file in nonblocking

EDH0336En1032 — 12/18 92

HXP Controller Tcl Manual

mode). For details refer to your system documentation on the open
system call's O_NONBLOCK flag.

TRUNC If the file exists it is truncated to zero length.
If a new file is created as part of opening it, permissions (an integer) is used to set the
permissions for the new file in conjunction with the process's file mode creation mask.
Permissions defaults to 0666.
Example to write in a file:

set f [open $Path "w"]
puts $f "Hello word. Welcome ! "
puts $f "456"
puts $f "Last line of file."
close $f

Command pipelines
If the first character of fileName is ``|'' then the remaining characters of fileName are
treated as a list of arguments that describe a command pipeline to invoke, in the same
style as the arguments for exec. In this case, the channel identifier returned by open
may be used to write to the command's input pipe or read from its output pipe,
depending on the value of access. If write-only access is used (e.g. access is w), then
standard output for the pipeline is directed to the current standard output unless
overridden by the command. If read-only access is used (e.g. access is r), standard input
for the pipeline is taken from the current standard input unless overridden by the
command.

Serial communications
If fileName refers to a serial port, then the specified serial port is opened and initialized
in a platform-dependent manner. Acceptable values for the fileName to use to open a
serial port are described in the PORTABILITY ISSUES section.

Configuration options
The fconfigure command can be used to query and set the following configuration
option for open serial ports:
-mode baud,parity,data,stop
This option is a set of 4 comma-separated values: the baud rate, parity, number of data
bits, and number of stop bits for this serial port. The baud rate is a simple integer that
specifies the connection speed. Parity is one of the following letters: n, o, e, m, s;
respectively signifying the parity options of ``none'', ``odd'', ``even'', ``mark'', or
``space''. Data is the number of data bits and should be an integer from 5 to 8, while stop
is the number of stop bits and should be the integer 1 or 2.

Portability issues
Unix: Valid values for fileName to open a serial port are generally of the form
/dev/ttyX, where X is a or b, but the name of any pseudo-file that maps to a serial port
may be used.
When running Tcl interactively, there may be some strange interactions
between the console, if one is present, and a command pipeline that uses
standard input. If a command pipeline is opened for reading, some of the lines
entered at the console will be sent to the command pipeline and some will be
sent to the Tcl evaluator. This problem only occurs because both Tcl and the
child application are competing for the console at the same time. If the
command pipeline is started from a script, so that Tcl is not accessing the
console, or if the command pipeline does not use standard input, but is
redirected from a file, then the above problem does not occur.

 93 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

See the PORTABILITY ISSUES section of the exec command for additional
information not specific to command pipelines about executing applications on
the various platforms

See also
close, filename, gets, read, puts, exec

EDH0336En1032 — 12/18 94

HXP Controller Tcl Manual

2.45 pid - Retrieve Process id(s)

Name
pid - Retrieve process id(s)

Synopsis
pid ?fileId?

Description
If the fileId argument is given then it should normally refer to a process pipeline created
with the open command. In this case the pid command will return a list whose elements
are the process identifiers of all the processes in the pipeline, in order. The list will be
empty if fileId refers to an open file that isn't a process pipeline. If no fileId argument is
given then pid returns the process identifier of the current process. All process
identifiers are returned as decimal strings.

 95 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.46 proc - Create a Tcl Procedure

Name
proc - Create a Tcl procedure

Synopsis
proc name args body

Description
The proc command creates a new Tcl procedure named name, replacing any existing
command or procedure there may have been by that name. Whenever the new command
is invoked, the contents of body will be executed by the Tcl interpreter. Normally, name
is unqualified (does not include the names of any containing namespaces), and the new
procedure is created in the current namespace. If name includes any namespace
qualifiers, the procedure is created in the specified namespace. Args specifies the formal
arguments to the procedure. It consists of a list, possibly empty, each of whose elements
specifies one argument. Each argument specifier is also a list with either one or two
fields. If there is only a single field in the specifier then it is the name of the argument;
if there are two fields, then the first is the argument name and the second is its default
value.
When name is invoked a local variable will be created for each of the formal
arguments to the procedure; its value will be the value of corresponding
argument in the invoking command or the argument's default value. Arguments
with default values need not be specified in a procedure invocation. However,
there must be enough actual arguments for all the formal arguments that don't
have defaults, and there must not be any extra actual arguments. There is one
special case to permit procedures with variable numbers of arguments. If the
last formal argument has the name args, then a call to the procedure may
contain more actual arguments than the procedure has formals. In this case, all
of the actual arguments starting at the one that would be assigned to args are
combined into a list (as if the list command had been used); this combined
value is assigned to the local variable args.
When body is being executed, variable names normally refer to local variables,
which are created automatically when referenced and deleted when the
procedure returns. One local variable is automatically created for each of the
procedure's arguments. Global variables can only be accessed by invoking the
global command or the upvar command. Namespace variables can only be
accessed by invoking the variable command or the upvar command.
The proc command returns an empty string. When a procedure is invoked, the
procedure's return value is the value specified in a return command. If the
procedure doesn't execute an explicit return, then its return value is the value of
the last command executed in the procedure's body. If an error occurs while
executing the procedure body, then the procedure-as-a-whole will return that
same error.

EDH0336En1032 — 12/18 96

HXP Controller Tcl Manual

2.47 puts - Write to a Channel

Name
puts - Write to a channel

Synopsis
puts ?-nonewline? ?channelId? string

Description
Writes the characters given by string to the channel given by channelId. ChannelId
must be a channel identifier such as returned from a previous invocation of open or
socket. It must have been opened for output. If no channelId is specified then it defaults
to stdout. Puts normally outputs a newline character after string, but this feature may
be suppressed by specifying the -nonewline switch.
Newline characters in the output are translated by puts to platform-specific end-
of-line sequences according to the current value of the -translation option for
the channel (for example, on PCs newlines are normally replaced with carriage-
return-linefeed sequences). See the fconfigure manual entry for a discussion of
end-of-line translations.
Tcl buffers output internally, so characters written with puts may not appear
immediately on the output file or device; Tcl will normally delay output until
the buffer is full or the channel is closed. You can force output to appear
immediately with the flush command.
When the output buffer fills up, the puts command will normally block until all
the buffered data has been accepted for output by the operating system. If
channelId is in nonblocking mode then the puts command will not block even if
the operating system cannot accept the data. Instead, Tcl continues to buffer the
data and writes it in the background as fast as the underlying file or device can
accept it. The application must use the Tcl event loop for nonblocking output to
work; otherwise Tcl never finds out that the file or device is ready for more
output data. It is possible for an arbitrarily large amount of data to be buffered
for a channel in nonblocking mode, which could consume a large amount of
memory. To avoid wasting memory, nonblocking I/O should normally be used
in an event-driven fashion with the fileevent command (don't invoke puts
unless you have recently been notified via a file event that the channel is ready
for more output data).

See also
fileevent

 97 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.48 pwd - Return the Current Working Directory

Name
pwd - Return the current working directory

Synopsis
pwd

Description
Returns the path name of the current working directory.
Example:

set currentPath [pwd]
puts "Current path is $currentPath"

EDH0336En1032 — 12/18 98

HXP Controller Tcl Manual

2.49 read - Read from a Channel

Name
read - Read from a channel

Synopsis
read ?-nonewline? channelId
read channelId numChars

Description
In the first form, the read command reads all of the data from channelId up to the end
of the file. If the -nonewline switch is specified then the last character of the file is
discarded if it is a newline. In the second form, the extra argument specifies how many
characters to read. Exactly that many characters will be read and returned, unless there
are fewer than numChars left in the file; in this case all the remaining characters are
returned. If the channel is configured to use a multi-byte encoding, then the number of
characters read may not be the same as the number of bytes read.
ChannelId must be an identifier for an open channel such as the Tcl standard
input channel (stdin), the return value from an invocation of open or socket, or
the result of a channel creation command provided by a Tcl extension. The
channel must have been opened for input.
If channelId is in nonblocking mode, the command may not read as many
characters as requested: once all available input has been read, the command
will return the data that is available rather than blocking for more input. If the
channel is configured to use a multi-byte encoding, then there may actually be
some bytes remaining in the internal buffers that do not form a complete
character. These bytes will not be returned until a complete character is
available or end-of-file is reached. The -nonewline switch is ignored if the
command returns before reaching the end of the file.
Read translates end-of-line sequences in the input into newline characters
according to the -translation option for the channel. See the fconfigure manual
entry for a discussion on ways in which fconfigure will alter input.

USE WITH SERIAL PORTS
For most applications a channel connected to a serial port should be configured to be
nonblocking: fconfigure channelId -blocking 0. Then read behaves much like
described above. Care must be taken when using read on blocking serial ports:
read channelId numChars
In this form read blocks until numChars have been received from the serial port.
read channelId
In this form read blocks until the reception of the end-of-file character, see fconfigure -
eofchar. If there no end-of-file character has been configured for the channel, then read
will block forever.

See also
file, eof, fconfigure

 99 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.50 rename - Rename or Delete a Command

Name
rename - Rename or delete a command

Synopsis
rename oldName newName

Description
Rename the command that used to be called oldName so that it is now called newName.
If newName is an empty string then oldName is deleted. oldName and newName may
include namespace qualifiers (names of containing namespaces). If a command is
renamed into a different namespace, future invocations of it will execute in the new
namespace. The rename command returns an empty string as result.

See also
namespace, proc

EDH0336En1032 — 12/18 100

HXP Controller Tcl Manual

2.51 return - Return from a Procedure

Name
return - Return from a procedure

Synopsis
return ?-code code? ?-errorinfo info? ?-errorcode code? ?string?

Description
Return immediately from the current procedure (or top-level command or source
command), with string as the return value. If string is not specified then an empty string
will be returned as result.

Exceptional returns
In the usual case where the -code option isn't specified the procedure will return
normally (its completion code will be TCL_OK). However, the -code option may be
used to generate an exceptional return from the procedure. Code may have any of the
following values:
ok
Normal return: same as if the option is omitted.
error
Error return: same as if the error command were used to terminate the procedure,
except for handling of errorInfo and errorCode variables (see below).
return
The current procedure will return with a completion code of TCL_RETURN, so that the
procedure that invoked it will return also.
break
The current procedure will return with a completion code of TCL_BREAK, which will
terminate the innermost nested loop in the code that invoked the current procedure.
continue
The current procedure will return with a completion code of TCL_CONTINUE, which
will terminate the current iteration of the innermost nested loop in the code that invoked
the current procedure.
value
Value must be an integer; it will be returned as the completion code for the current
procedure.
The -code option is rarely used. It is provided so that procedures that implement
new control structures can reflect exceptional conditions back to their callers.
Two additional options, -errorinfo and -errorcode, may be used to provide
additional information during error returns. These options are ignored unless
code is error.
The -errorinfo option specifies an initial stack trace for the errorInfo variable;
if it is not specified then the stack trace left in errorInfo will include the call to
the procedure and higher levels on the stack but it will not include any
information about the context of the error within the procedure. Typically the
info value is supplied from the value left in errorInfo after a catch command
trapped an error within the procedure.

 101 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

If the -errorcode option is specified then code provides a value for the
errorCode variable. If the option is not specified then errorCode will default
to NONE.

See also
break, continue, error, proc

EDH0336En1032 — 12/18 102

HXP Controller Tcl Manual

2.52 scan - Parse String Using Conversion Specifiers in the Style of sscanf

Name
scan - Parse string using conversion specifiers in the style of sscanf

Synopsis
scan string format ?varName varName ...?

Introduction
This command parses fields from an input string in the same fashion as the ANSI C
sscanf procedure and returns a count of the number of conversions performed, or -1 if
the end of the input string is reached before any conversions have been performed.
String gives the input to be parsed and format indicates how to parse it, using %
conversion specifiers as in sscanf. Each varName gives the name of a variable; when a
field is scanned from string the result is converted back into a string and assigned to the
corresponding variable. If no varName variables are specified, then scan works in an
inline manner, returning the data that would otherwise be stored in the variables as a
list. In the inline case, an empty string is returned when the end of the input string is
reached before any conversions have been performed.

Details on scanning
Scan operates by scanning string and format together. If the next character in format is
a blank or tab then it matches any number of white space characters in string (including
zero). Otherwise, if it isn't a % character then it must match the next character of string.
When a % is encountered in format, it indicates the start of a conversion specifier. A
conversion specifier contains up to four fields after the %: a *, which indicates that the
converted value is to be discarded instead of assigned to a variable; a XPG3 position
specifier; a number indicating a maximum field width; a field size modifier; and a
conversion character. All of these fields are optional except for the conversion
character. The fields that are present must appear in the order given above. When scan
finds a conversion specifier in format, it first skips any white-space characters in string
(unless the specifier is [or c). Then it converts the next input characters according to the
conversion specifier and stores the result in the variable given by the next argument to
scan.
If the % is followed by a decimal number and a $, as in ``%2$d'', then the
variable to use is not taken from the next sequential argument. Instead, it is
taken from the argument indicated by the number, where 1 corresponds to the
first varName. If there are any positional specifiers in format then all of the
specifiers must be positional. Every varName on the argument list must
correspond to exactly one conversion specifier or an error is generated, or in the
inline case, any position can be specified at most once and the empty positions
will be filled in with empty strings.
The following conversion characters are supported:
d
The input field must be a decimal integer. It is read in and the value is stored in the
variable as a decimal string. If the l or L field size modifier is given, the scanned value
will have an internal representation that is at least 64-bits in size.
o
The input field must be an octal integer. It is read in and the value is stored in the
variable as a decimal string. If the l or L field size modifier is given, the scanned value
will have an internal representation that is at least 64-bits in size. If the value exceeds
MAX_INT (017777777777 on platforms using 32-bit integers when the l and L

 103 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

modifiers are not given), it will be truncated to a signed integer. Hence, 037777777777
will appear as -1 on a 32-bit machine by default.
x
The input field must be a hexadecimal integer. It is read in and the value is stored in the
variable as a decimal string. If the l or L field size modifier is given, the scanned value
will have an internal representation that is at least 64-bits in size. If the value exceeds
MAX_INT (0x7FFFFFFF on platforms using 32-bit integers when the l and L modifiers
are not given), it will be truncated to a signed integer. Hence, 0xFFFFFFFF will appear
as -1 on a 32-bit machine.
u
The input field must be a decimal integer. The value is stored in the variable as an
unsigned decimal integer string. If the l or L field size modifier is given, the scanned
value will have an internal representation that is at least 64-bits in size.
i
The input field must be an integer. The base (i.e. decimal, octal, or hexadecimal) is
determined in the same fashion as described in expr. The value is stored in the variable
as a decimal string. If the l or L field size modifier is given, the scanned value will have
an internal representation that is at least 64-bits in size.
c
A single character is read in and its binary value is stored in the variable as a decimal
string. Initial white space is not skipped in this case, so the input field may be a white-
space character. This conversion is different from the ANSI standard in that the input
field always consists of a single character and no field width may be specified.
s
The input field consists of all the characters up to the next white-space character; the
characters are copied to the variable.
e or f or g
The input field must be a floating-point number consisting of an optional sign, a string
of decimal digits possibly containing a decimal point, and an optional exponent
consisting of an e or E followed by an optional sign and a string of decimal digits. It is
read in and stored in the variable as a floating-point string.
[chars]
The input field consists of any number of characters in chars. The matching string is
stored in the variable. If the first character between the brackets is a] then it is treated as
part of chars rather than the closing bracket for the set. If chars contains a sequence of
the form a-b then any character between a and b (inclusive) will match. If the first or
last character between the brackets is a -, then it is treated as part of chars rather than
indicating a range.
[^chars]
The input field consists of any number of characters not in chars. The matching string is
stored in the variable. If the character immediately following the ^ is a] then it is
treated as part of the set rather than the closing bracket for the set. If chars contains a
sequence of the form a-b then any character between a and b (inclusive) will be
excluded from the set. If the first or last character between the brackets is a -, then it is
treated as part of chars rather than indicating a range.
n
No input is consumed from the input string. Instead, the total number of characters
scanned from the input string so far is stored in the variable.

The number of characters read from the input for a conversion is the largest
number that makes sense for that particular conversion (e.g. as many decimal

EDH0336En1032 — 12/18 104

HXP Controller Tcl Manual

digits as possible for %d, as many octal digits as possible for %o, and so on).
The input field for a given conversion terminates either when a white-space
character is encountered or when the maximum field width has been reached,
whichever comes first. If a * is present in the conversion specifier then no
variable is assigned and the next scan argument is not consumed.

Differences from ansi sscanf
The behavior of the scan command is the same as the behavior of the ANSI C sscanf
procedure except for the following differences:
[1]
%p conversion specifier is not currently supported.
[2]
For %c conversions a single character value is converted to a decimal string, which is
then assigned to the corresponding varName; no field width may be specified for this
conversion.
[3]
The h modifier is always ignored and the l and L modifiers are ignored when converting
real values (i.e. type double is used for the internal representation).
 [4]
If the end of the input string is reached before any conversions have been performed and
no variables are given, an empty string is returned.

See also
format, sscanf

 105 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.53 seek - Change the Access Position for an Open Channel

Name
seek - Change the access position for an open channel

Synopsis
seek channelId offset ?origin?

Description
Changes the current access position for channelId.
ChannelId must be an identifier for an open channel such as a Tcl standard
channel (stdin, stdout, or stderr), the return value from an invocation of open
or socket, or the result of a channel creation command provided by a Tcl
extension.
The offset and origin arguments specify the position at which the next read or
write will occur for channelId. Offset must be an integer (which may be
negative) and origin must be one of the following:
start
The new access position will be offset bytes from the start of the underlying file or
device.
current
The new access position will be offset bytes from the current access position; a negative
offset moves the access position backwards in the underlying file or device.
end
The new access position will be offset bytes from the end of the file or device. A
negative offset places the access position before the end of file, and a positive offset
places the access position after the end of file.
The origin argument defaults to start.
The command flushes all buffered output for the channel before the command
returns, even if the channel is in nonblocking mode. It also discards any
buffered and unread input. This command returns an empty string. An error
occurs if this command is applied to channels whose underlying file or device
does not support seeking.
Note that offset values are byte offsets, not character offsets. Both seek and tell
operate in terms of bytes, not characters, unlike read.

See also
file, open, close, gets, tell

EDH0336En1032 — 12/18 106

HXP Controller Tcl Manual

2.54 set - Read and Write Variables

Name
set - Read and write variables

Synopsis
set varName ?value?

Description
Returns the value of variable varName. If value is specified, then set the value of
varName to value, creating a new variable if one doesn't already exist, and return its
value. If varName contains an open parenthesis and ends with a close parenthesis, then
it refers to an array element: the characters before the first open parenthesis are the
name of the array, and the characters between the parentheses are the index within the
array. Otherwise varName refers to a scalar variable. Normally, varName is unqualified
(does not include the names of any containing namespaces), and the variable of that
name in the current namespace is read or written. If varName includes namespace
qualifiers (in the array name if it refers to an array element), the variable in the specified
namespace is read or written.
If no procedure is active, then varName refers to a namespace variable (global
variable if the current namespace is the global namespace). If a procedure is
active, then varName refers to a parameter or local variable of the procedure
unless the global command was invoked to declare varName to be global, or
unless a variable command was invoked to declare varName to be a namespace
variable.

See also
expr, proc, trace, unset

 107 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.55 socket - Open a TCP Network Connection

Name
socket - Open a TCP network connection

Synopsis
socket ?options? host port
socket -server command ?options? port

Description
This command opens a network socket and returns a channel identifier that may be used
in future invocations of commands like read, puts and flush. At present only the TCP
network protocol is supported; future releases may include support for additional
protocols. The socket command may be used to open either the client or server side of a
connection, depending on whether the -server switch is specified.
Note that the default encoding for all sockets is the system encoding, as
returned by encoding system. Most of the time, you will need to use fconfigure
to alter this to something else, such as utf-8 (ideal for communicating with other
Tcl processes) or iso8859-1 (useful for many network protocols, especially the
older ones).

Client sockets
If the -server option is not specified, then the client side of a connection is opened and
the command returns a channel identifier that can be used for both reading and writing.
Port and host specify a port to connect to; there must be a server accepting connections
on this port. Port is an integer port number (or service name, where supported and
understood by the host operating system) and host is either a domain-style name such as
www.sunlabs.com or a numerical IP address such as 127.0.0.1. Use localhost to refer to
the host on which the command is invoked.
The following options may also be present before host to specify additional
information about the connection:
-myaddr addr
Addr gives the domain-style name or numerical IP address of the client-side network
interface to use for the connection. This option may be useful if the client machine has
multiple network interfaces. If the option is omitted then the client-side interface will be
chosen by the system software.
-myport port
Port specifies an integer port number (or service name, where supported and understood
by the host operating system) to use for the client's side of the connection. If this option
is omitted, the client's port number will be chosen at random by the system software.
-async
The -async option will cause the client socket to be connected asynchronously. This
means that the socket will be created immediately but may not yet be connected to the
server, when the call to socket returns. When a gets or flush is done on the socket
before the connection attempt succeeds or fails, if the socket is in blocking mode, the
operation will wait until the connection is completed or fails. If the socket is in
nonblocking mode and a gets or flush is done on the socket before the connection
attempt succeeds or fails.

EDH0336En1032 — 12/18 108

HXP Controller Tcl Manual

Server sockets
If the -server option is specified then the new socket will be a server for the port given
by port (either an integer or a service name, where supported and understood by the
host operating system). Tcl will automatically accept connections to the given port. For
each connection Tcl will create a new channel that may be used to communicate with
the client. Tcl then invokes command with three additional arguments: the name of the
new channel, the address, in network address notation, of the client's host, and the
client's port number.
The following additional option may also be specified before host:
-myaddr addr
Addr gives the domain-style name or numerical IP address of the server-side network
interface to use for the connection. This option may be useful if the server machine has
multiple network interfaces. If the option is omitted then the server socket is bound to
the special address INADDR_ANY so that it can accept connections from any interface.
Server channels cannot be used for input or output; their sole use is to accept
new client connections. The channels created for each incoming client
connection are opened for input and output. Closing the server channel shuts
down the server so that no new connections will be accepted; however, existing
connections will be unaffected.
Server sockets depend on the Tcl event mechanism to find out when new
connections are opened. If the application doesn't enter the event loop, for
example by invoking the vwait command, then no connections will be accepted.
If port is specified as zero, the operating system will allocate an unused port for
use as a server socket. The port number actually allocated my be retrieved from
the created server socket using the fconfigure command to retrieve the -
sockname option as described below.

Configuration options
The fconfigure command can be used to query several readonly configuration options
for socket channels:
-error
This option gets the current error status of the given socket. This is useful when you
need to determine if an asynchronous connect operation succeeded. If there was an
error, the error message is returned. If there was no error, an empty string is returned.
-sockname
This option returns a list of three elements, the address, the host name and the port
number for the socket. If the host name cannot be computed, the second element is
identical to the address, the first element of the list.
-peername
This option is not supported by server sockets. For client and accepted sockets, this
option returns a list of three elements; these are the address, the host name and the port
to which the peer socket is connected or bound. If the host name cannot be computed,
the second element of the list is identical to the address, its first element.

See also
fconfigure, flush, open, read

 109 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.56 source - Evaluate a File or Resource as a Tcl Script

Name
source - Evaluate a file or resource as a Tcl script

Synopsis
source fileName

Description
This command takes the contents of the specified file or resource and passes it to the
Tcl interpreter as a text script. The return value from source is the return value of the
last command executed in the script. If an error occurs in evaluating the contents of the
script then the source command will return that error. If a return command is invoked
from within the script then the remainder of the file will be skipped and the source
command will return normally with the result from the return command.
The end-of-file character for files is '\32' (^Z) for all platforms. The source
command will read files up to this character. This restriction does not exist for
the read or gets commands, allowing for files containing code and data
segments (scripted documents). If you require a ``^Z'' in code for string
comparison, you can use ``\032'' or ``\u001a'', which will be safely substituted
by the Tcl interpreter into ``^Z''.

See also
file, cd

EDH0336En1032 — 12/18 110

HXP Controller Tcl Manual

2.57 split - Split a STRING into a PROPER Tcl LIST

Name
split - Split a string into a proper Tcl list

Synopsis
split string ?splitChars?

Description
Returns a list created by splitting string at each character that is in the splitChars
argument. Each element of the result list will consist of the characters from string that
lie between instances of the characters in splitChars. Empty list elements will be
generated if string contains adjacent characters in splitChars, or if the first or last
character of string is in splitChars. If splitChars is an empty string then each character
of string becomes a separate element of the result list. SplitChars defaults to the
standard white-space characters.
For example,

split "comp.unix.misc" .

returns "comp unix misc" and
split "Hello world" {}

returns "H e l l o { } w o r l d".

See also
join, list, string

 111 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.58 string - Manipulate Strings

Name
string - Manipulate strings

Synopsis
string option arg ?arg ...?

Description
Performs one of several string operations, depending on option.
The legal options (which may be abbreviated) are:
string bytelength string
Returns a decimal string giving the number of bytes used to represent string in memory.
Because UTF-8 uses one to three bytes to represent Unicode characters, the byte length
will not be the same as the character length in general. The cases where a script cares
about the byte length are rare. In almost all cases, you should use the string length
operation (including determining the length of a Tcl ByteArray object).
string compare ?-nocase? ?-length int? string1 string2
Perform a character-by-character comparison of strings string1 and string2. Returns -1,
0, or 1, depending on whether string1 is lexicographically less than, equal to, or greater
than string2. If -length is specified, then only the first length characters are used in the
comparison. If -length is negative, it is ignored. If -nocase is specified, then the strings
are compared in a case-insensitive manner.
string equal ?-nocase? ?-length int? string1 string2
Perform a character-by-character comparison of strings string1 and string2. Returns 1 if
string1 and string2 are identical, or 0 when not. If -length is specified, then only the
first length characters are used in the comparison. If -length is negative, it is ignored. If
-nocase is specified, then the strings are compared in a case-insensitive manner.
string first string1 string2 ?startIndex?
Search string2 for a sequence of characters that exactly match the characters in string1.
If found, return the index of the first character in the first such match within string2. If
not found, return -1. If startIndex is specified (in any of the forms accepted by the index
method), then the search is constrained to start with the character in string2 specified by
the index.
For example,

string first a 0a23456789abcdef 5

will return 10, but
string first a 0123456789abcdef 11

will return -1.
string index string charIndex
Returns the charIndex'th character of the string argument.
A charIndex of 0 corresponds to the first character of the string. charIndex may be
specified as follows:
integer
The char specified at this integral index.
end
The last char of the string.

EDH0336En1032 — 12/18 112

HXP Controller Tcl Manual

end-integer
The last char of the string minus the specified integer offset (e.g. end-1 would refer to
the "c" in "abcd").
If charIndex is less than 0 or greater than or equal to the length of the string
then an empty string is returned.
string is class ?-strict? ?-failindex varname? string
Returns 1 if string is a valid member of the specified character class, otherwise returns
0.
If -strict is specified, then an empty string returns 0, otherwise and empty string will
return 1 on any class.
If -failindex is specified, then if the function returns 0, the index in the string where the
class was no longer valid will be stored in the variable named varname. The varname
will not be set if the function returns 1. The following character classes are recognized
(the class name can be abbreviated):
alnum
Any Unicode alphabet or digit character.
alpha
Any Unicode alphabet character.
ascii
Any character with a value less than \u0080 (those that are in the 7-bit ascii range).
boolean
Any of the forms allowed to Tcl_GetBoolean.
control
Any Unicode control character.
digit
Any Unicode digit character. Note that this includes characters outside of the [0-9]
range.
double
Any of the valid forms for a double in Tcl, with optional surrounding whitespace. In
case of under/overflow in the value, 0 is returned and the varname will contain -1.
false
Any of the forms allowed to Tcl_GetBoolean where the value is false.
graph
Any Unicode printing character, except space.
integer
Any of the valid forms for a 32-bit integer in Tcl, with optional surrounding whitespace.
In case of under/overflow in the value, 0 is returned and the varname will contain -1.
lower
Any Unicode lower case alphabet character.
print
Any Unicode printing character, including space.
punct
Any Unicode punctuation character.
space
Any Unicode space character.

 113 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

true
Any of the forms allowed to Tcl_GetBoolean where the value is true.
upper
Any upper case alphabet character in the Unicode character set.
wordchar
Any Unicode word character. That is any alphanumeric character, and any Unicode
connector punctuation characters (e.g. underscore).
xdigit
Any hexadecimal digit character ([0-9A-Fa-f]).
In the case of boolean, true and false, if the function will return 0, then the
varname will always be set to 0, due to the varied nature of a valid boolean
value.
string last string1 string2 ?lastIndex?
Search string2 for a sequence of characters that exactly match the characters in string1.
If found, return the index of the first character in the last such match within string2. If
there is no match, then return -1. If lastIndex is specified (in any of the forms accepted
by the index method), then only the characters in string2 at or before the specified
lastIndex will be considered by the search.
For example,

string last a 0a23456789abcdef 15

will return 10, but
string last a 0a23456789abcdef 9

will return 1.
string length string
Returns a decimal string giving the number of characters in string. Note that this is not
necessarily the same as the number of bytes used to store the string. If the object is a
ByteArray object (such as those returned from reading a binary encoded channel), then
this will return the actual byte length of the object.
string map ?-nocase? charMap string
Replaces characters in string based on the key-value pairs in charMap. charMap is a list
of key value key value ... as in the form returned by array get. Each instance of a key in
the string will be replaced with its corresponding value. If -nocase is specified, then
matching is done without regard to case differences. Both key and value may be
multiple characters. Replacement is done in an ordered manner, so the key appearing
first in the list will be checked first, and so on. string is only iterated over once, so
earlier key replacements will have no affect for later key matches.
For example,

string map {abc 1 ab 2 a 3 1 0} 1abcaababcabababc

will return the string 01321221.
string match ?-nocase? pattern string
See if pattern matches string; return 1 if it does, 0 if it doesn't.
If -nocase is specified, then the pattern attempts to match against the string in a case
insensitive manner.
For the two strings to match, their contents must be identical except that the following
special sequences may appear in pattern:
*
Matches any sequence of characters in string, including a null string.

EDH0336En1032 — 12/18 114

http://www.tcl.tk/man/tcl8.4/TclCmd/array.htm

HXP Controller Tcl Manual

?
Matches any single character in string.
 [chars]
Matches any character in the set given by chars. If a sequence of the form x-y appears in
chars, then any character between x and y, inclusive, will match. When used with -
nocase, the end points of the range are converted to lower case first. Whereas {[A-z]}
matches '_' when matching case-sensitively ('_' falls between the 'Z' and 'a'), with -
nocase this is considered like {[A-Za-z]} (and probably what was meant in the first
place).
\x
Matches the single character x. This provides a way of avoiding the special
interpretation of the characters *?[]\ in pattern.
string range string first last
Returns a range of consecutive characters from string, starting with the character whose
index is first and ending with the character whose index is last. An index of 0 refers to
the first character of the string. first and last may be specified as for the index method.
If first is less than zero then it is treated as if it were zero, and if last is greater than or
equal to the length of the string then it is treated as if it were end. If first is greater than
last then an empty string is returned.
string repeat string count
Returns string repeated count number of times.
string replace string first last ?newstring?
Removes a range of consecutive characters from string, starting with the character
whose index is first and ending with the character whose index is last. An index of 0
refers to the first character of the string. First and last may be specified as for the index
method. If newstring is specified, then it is placed in the removed character range. If
first is less than zero then it is treated as if it were zero, and if last is greater than or
equal to the length of the string then it is treated as if it were end. If first is greater than
last or the length of the initial string, or last is less than 0, then the initial string is
returned untouched.
string tolower string ?first? ?last?
Returns a value equal to string except that all upper (or title) case letters have been
converted to lower case. If first is specified, it refers to the first char index in the string
to start modifying. If last is specified, it refers to the char index in the string to stop at
(inclusive). first and last may be specified as for the index method.
string totitle string ?first? ?last?
Returns a value equal to string except that the first character in string is converted to its
Unicode title case variant (or upper case if there is no title case variant) and the rest of
the string is converted to lower case. If first is specified, it refers to the first char index
in the string to start modifying. If last is specified, it refers to the char index in the string
to stop at (inclusive). first and last may be specified as for the index method.
string toupper string ?first? ?last?
Returns a value equal to string except that all lower (or title) case letters have been
converted to upper case. If first is specified, it refers to the first char index in the string
to start modifying. If last is specified, it refers to the char index in the string to stop at
(inclusive). first and last may be specified as for the index method.
string trim string ?chars?
Returns a value equal to string except that any leading or trailing characters from the set
given by chars are removed. If chars is not specified then white space is removed
(spaces, tabs, newlines, and carriage returns).

 115 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

string trimleft string ?chars?
Returns a value equal to string except that any leading characters from the set given by
chars are removed. If chars is not specified then white space is removed (spaces, tabs,
newlines, and carriage returns).
string trimright string ?chars?
Returns a value equal to string except that any trailing characters from the set given by
chars are removed. If chars is not specified then white space is removed (spaces, tabs,
newlines, and carriage returns).
string wordend string charIndex
Returns the index of the character just after the last one in the word containing character
charIndex of string. charIndex may be specified as for the index method. A word is
considered to be any contiguous range of alphanumeric (Unicode letters or decimal
digits) or underscore (Unicode connector punctuation) characters, or any single
character other than these.
string wordstart string charIndex
Returns the index of the first character in the word containing character charIndex of
string. charIndex may be specified as for the index method. A word is considered to be
any contiguous range of alphanumeric (Unicode letters or decimal digits) or underscore
(Unicode connector punctuation) characters, or any single character other than these.
General example:

set str "It’s my string"
puts "The string is: $str"
puts "The length of string is: [string length $str]"
puts "The character 3 is: [string index $str 3]"
puts "The characters between 4 to 8 are: [string range $str 4
8]"
puts "The first occurrence of the character \"a\" is: [string
first a $str]"
puts "The result is: [split $str {}]"
set myformat [format "%d %s %f" 15 "it’s my string" 5.12]
puts $myformat

=> The string is: It’s my string
=> The length of string: 30
=> The character 3 is : s
=> The characters between 4 to 8 are : t une
=> The first occurrence of the character "a" is : 12
=> The result is: I t ' s { } a { } s t r i n g
=> 15 it’s my string 5.120000

See also
expr, list

EDH0336En1032 — 12/18 116

HXP Controller Tcl Manual

2.59 subst - Perform Backslash, Command, and Variable Substitutions

Name
subst - Perform backslash, command, and variable substitutions

Synopsis
subst ?-nobackslashes? ?-nocommands? ?-novariables? string

Description
This command performs variable substitutions, command substitutions, and backslash
substitutions on its string argument and returns the fully-substituted result. The
substitutions are performed in exactly the same way as for Tcl commands. As a result,
the string argument is actually substituted twice, once by the Tcl parser in the usual
fashion for Tcl commands, and again by the subst command.
If any of the -nobackslashes, -nocommands, or -novariables are specified,
then the corresponding substitutions are not performed. For example, if -
nocommands is specified, command substitution is not performed: open and
close brackets are treated as ordinary characters with no special interpretation.
Note that the substitution of one kind can include substitution of other kinds.
For example, even when the -novariables option is specified, command
substitution is performed without restriction. This means that any variable
substitution necessary to complete the command substitution will still take
place. Likewise, any command substitution necessary to complete a variable
substitution will take place, even when -nocommands is specified. See the
EXAMPLES below.
If an error occurs during substitution, then subst will return that error. If a break
exception occurs during command or variable substitution, the result of the
whole substitution will be the string (as substituted) up to the start of the
substitution that raised the exception. If a continue exception occurs during the
evaluation of a command or variable substitution, an empty string will be
substituted for that entire command or variable substitution (as long as it is
well-formed Tcl.) If a return exception occurs, or any other return code is
returned during command or variable substitution, then the returned value is
substituted for that substitution. See the EXAMPLES below. In this way, all
exceptional return codes are ``caught'' by subst. The subst command itself will
either return an error, or will complete successfully.

Examples
When it performs its substitutions, subst does not give any special treatment to double
quotes or curly braces (except within command substitutions) so the script

set a 44
subst {xyz {$a}}

returns ``xyz {44}'', not ``xyz {$a}''
and the script

set a "p\} q \{r"
subst {xyz {$a}}

return ``xyz {p} q {r}'', not ``xyz {p\} q \{r}''.
When command substitution is performed, it includes any variable substitution
necessary to evaluate the script.

set a 44
subst -novariables {$a [format $a]}

 117 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

returns ``$a 44'', not ``$a $a''.
Similarly, when variable substitution is performed, it includes any command
substitution necessary to retrieve the value of the variable.

proc b {} {return c}
array set a {c c [b] tricky}
subst -nocommands {[b] $a([b])}

returns ``[b] c'', not ``[b] tricky''.
The continue and break exceptions allow command substitutions to prevent substitution
of the rest of the command substitution and the rest of string respectively, giving script
authors more options when processing text using subst.
For example, the script

subst {abc,[break],def}

returns ``abc,'', not ``abc,,def''
and the script

subst {abc,[continue;expr 1+2],def}

returns ``abc,,def'', not ``abc,3,def''.
Other exceptional return codes substitute the returned value

subst {abc,[return foo;expr 1+2],def}

returns ``abc,foo,def'', not ``abc,3,def''
and

subst {abc,[return -code 10 foo;expr 1+2],def}

also returns ``abc,foo,def'', not ``abc,3,def''.

See also
Tcl, eval, break, continue

EDH0336En1032 — 12/18 118

HXP Controller Tcl Manual

2.60 switch - Evaluate One of Several Scripts, Depending on a Given
Value

Name
switch - Evaluate one of several scripts, depending on a given value

Synopsis
switch ?options? string pattern body ?pattern body ...?
switch ?options? string {pattern body ?pattern body ...?}

Description
The switch command matches its string argument against each of the pattern arguments
in order. As soon as it finds a pattern that matches string it evaluates the following body
argument by passing it recursively to the Tcl interpreter and returns the result of that
evaluation. If the last pattern argument is default then it matches anything. If no pattern
argument matches string and no default is given, then the switch command returns an
empty string.
If the initial arguments to switch start with - then they are treated as options.
The following options are currently supported:
-exact
Use exact matching when comparing string to a pattern. This is the default.
-glob
When matching string to the patterns, use glob-style matching (i.e. the same as
implemented by the string match command).
- -
Marks the end of options. The argument following this one will be treated as string even
if it starts with a -.
Two syntaxes are provided for the pattern and body arguments. The first uses a
separate argument for each of the patterns and commands; this form is
convenient if substitutions are desired on some of the patterns or commands.
The second form places all of the patterns and commands together into a single
argument; the argument must have proper list structure, with the elements of the
list being the patterns and commands. The second form makes it easy to
construct multi-line switch commands, since the braces around the whole list
make it unnecessary to include a backslash at the end of each line. Since the
pattern arguments are in braces in the second form, no command or variable
substitutions are performed on them; this makes the behavior of the second
form different than the first form in some cases.
If a body is specified as ``-'' it means that the body for the next pattern should
also be used as the body for this pattern (if the next pattern also has a body of
``-'' then the body after that is used, and so on). This feature makes it possible to
share a single body among several patterns.
Beware of how you place comments in switch commands. Comments should
only be placed inside the execution body of one of the patterns, and not
intermingled with the patterns.
Below are some examples of switch commands:

switch abc a - b {format 1} abc {format 2} default {format 3}

=> will return 2,
switch -regexp aaab {
 ^a.*b$ -

 119 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

 b {format 1}
 a* {format 2}
 default {format 3}
}

=> will return 1, and
switch xyz {
 a -
 b {format 1}
 a* {format 2}
 default {format 3}
}

=> will return 3.
set nb_jambes 4
switch $nb_jambes {
 2 {puts "Cela peut être un humain."}
 4 {puts "Cela peut être une vache."}
 6 {puts "Cela peut être une fourmis."}
 8 {puts "Cela peut être une araignée."}
 default {puts "Cela peut être n'importe quoi."}
}

=> Cela peut être une vache.

See also
for, if

EDH0336En1032 — 12/18 120

HXP Controller Tcl Manual

2.61 tell - Return Current Access Position for an Open Channel

Name
tell - Return current access position for an open channel

Synopsis
tell channelId

Description
Returns an integer string giving the current access position in channelId. This value
returned is a byte offset that can be passed to seek in order to set the channel to a
particular position. Note that this value is in terms of bytes, not characters like read.
The value returned is -1 for channels that do not support seeking.
ChannelId must be an identifier for an open channel such as a Tcl standard
channel (stdin, stdout, or stderr), the return value from an invocation of open
or socket, or the result of a channel creation command provided by a Tcl
extension.

See also
file, open, close, gets, seek

 121 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.62 time - Time the Execution of a Script

Name
time - Time the execution of a script

Synopsis
time script ?count?

Description
This command will call the Tcl interpreter count times to evaluate script (or once if
count isn't specified).
It will then return a string of the form

503 microseconds per iteration

which indicates the average amount of time required per iteration, in microseconds.
Time is measured in elapsed time, not CPU time.

See also
clock

EDH0336En1032 — 12/18 122

HXP Controller Tcl Manual

2.63 trace - Monitor Variable Accesses, Command Usages and Command
Executions

Name
trace - Monitor variable accesses, command usages and command executions

Synopsis
trace option ?arg arg ...?

Description
This command causes Tcl commands to be executed whenever certain operations are
invoked. The legal option's (which may be abbreviated) are:
trace add type name ops ?args?
Where type is command, execution, or variable.
trace add command name ops command
Arrange for command to be executed whenever command name is modified in one of
the ways given by the list ops. Name will be resolved using the usual namespace
resolution rules used by procedures. If the command does not exist, an error will be
thrown. Ops indicates which operations are of interest, and is a list of one or more of the
following items:

rename
Invoke command whenever the command is renamed. Note that renaming to the
empty string is considered deletion, and will not be traced with 'rename'.
delete
Invoke command when the command is deleted. Commands can be deleted
explicitly by using the rename command to rename the command to an empty
string. Commands are also deleted when the interpreter is deleted, but traces will not
be invoked because there is no interpreter in which to execute them.

When the trace triggers, depending on the operations being traced, a number of
arguments are appended to command so that the actual command is as follows:
command oldName newName op
OldName and newName give the traced command's current (old) name, and the name to
which it is being renamed (the empty string if this is a 'delete' operation). Op indicates
what operation is being performed on the command, and is one of rename or delete as
defined above. The trace operation cannot be used to stop a command from being
deleted. Tcl will always remove the command once the trace is complete. Recursive
renaming or deleting will not cause further traces of the same type to be evaluated, so a
delete trace which itself deletes the command, or a rename trace which itself renames
the command will not cause further trace evaluations to occur. Both oldName and
newName are fully qualified with any namespace(s) in which they appear.
trace add execution name ops command
Arrange for command to be executed whenever command name is executed, with traces
occurring at the points indicated by the list ops. Name will be resolved using the usual
namespace resolution rules used by procedures. If the command does not exist, an error
will be thrown. Ops indicates which operations are of interest, and is a list of one or
more of the following items:

enter
Invoke command whenever the command name is executed, just before the actual
execution takes place.

 123 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

leave
Invoke command whenever the command name is executed, just after the actual
execution takes place.
enterstep
Invoke command for every tcl command which is executed inside the procedure
name, just before the actual execution takes place. For example if we have 'proc foo
{} { puts "hello" }', then a enterstep trace would be invoked just before puts "hello"
is executed. Setting a enterstep trace on a command will not result in an error and is
simply ignored.
leavestep
Invoke command for every tcl command which is executed inside the procedure
name, just after the actual execution takes place. Setting a leavestep trace on a
command will not result in an error and is simply ignored.

When the trace triggers, depending on the operations being traced, a number of
arguments are appended to command so that the actual command is as follows:
For enter and enterstep operations:
command command-string op
Command-string gives the complete current command being executed (the traced
command for a enter operation, an arbitrary command for a enterstep operation),
including all arguments in their fully expanded form. Op indicates what operation is
being performed on the command execution, and is one of enter or enterstep as defined
above. The trace operation can be used to stop the command from executing, by
deleting the command in question. Of course when the command is subsequently
executed, an 'invalid command' error will occur.
For leave and leavestep operations:
command command-string code result op
Command-string gives the complete current command being executed (the traced
command for a enter operation, an arbitrary command for a enterstep operation),
including all arguments in their fully expanded form. Code gives the result code of that
execution, and result the result string. Op indicates what operation is being performed
on the command execution, and is one of leave or leavestep as defined above. Note that
the creation of many enterstep or leavestep traces can lead to unintuitive results, since
the invoked commands from one trace can themselves lead to further command
invocations for other traces. Command executes in the same context as the code that
invoked the traced operation: thus the command, if invoked from a procedure, will have
access to the same local variables as code in the procedure. This context may be
different than the context in which the trace was created. If command invokes a
procedure (which it normally does) then the procedure will have to use upvar or uplevel
commands if it wishes to access the local variables of the code which invoked the trace
operation. While command is executing during an execution trace, traces on name are
temporarily disabled. This allows the command to execute name in its body without
invoking any other traces again. If an error occurs while executing the command body,
then the command name as a whole will return that same error. When multiple traces
are set on name, then for enter and enterstep operations, the traced commands are
invoked in the reverse order of how the traces were originally created; and for leave and
leavestep operations, the traced commands are invoked in the original order of creation.
The behavior of execution traces is currently undefined for a command name imported
into another namespace.
trace add variable name ops command
Arrange for command to be executed whenever variable name is accessed in one of the
ways given by the list ops. Name may refer to a normal variable, an element of an array,
or to an array as a whole (i.e. name may be just the name of an array, with no
parenthesized index). If name refers to a whole array, then command is invoked

EDH0336En1032 — 12/18 124

HXP Controller Tcl Manual

whenever any element of the array is manipulated. If the variable does not exist, it will
be created but will not be given a value, so it will be visible to namespace which
queries, but not to info exists queries. Ops indicates which operations are of interest,
and is a list of one or more of the following items:

array
Invoke command whenever the variable is accessed or modified via the array
command, provided that name is not a scalar variable at the time that the array
command is invoked. If name is a scalar variable, the access via the array command
will not trigger the trace.
read
Invoke command whenever the variable is read.
write
Invoke command whenever the variable is written.
unset
Invoke command whenever the variable is unset. Variables can be unset explicitly
with the unset command, or implicitly when procedures return (all of their local
variables are unset). Variables are also unset when interpreters are deleted, but traces
will not be invoked because there is no interpreter in which to execute them.

When the trace triggers, three arguments are appended to command so that the
actual command is as follows:
command name1 name2 op
Name1 and name2 give the name(s) for the variable being accessed: if the variable is a
scalar then name1 gives the variable's name and name2 is an empty string; if the
variable is an array element then name1 gives the name of the array and name2 gives
the index into the array; if an entire array is being deleted and the trace was registered
on the overall array, rather than a single element, then name1 gives the array name and
name2 is an empty string. Name1 and name2 are not necessarily the same as the name
used in the trace variable command: the upvar command allows a procedure to
reference a variable under a different name. Op indicates what operation is being
performed on the variable, and is one of read, write, or unset as defined above.
Command executes in the same context as the code that invoked the traced
operation: if the variable was accessed as part of a Tcl procedure, then
command will have access to the same local variables as code in the procedure.
This context may be different than the context in which the trace was created. If
command invokes a procedure (which it normally does) then the procedure will
have to use upvar or uplevel if it wishes to access the traced variable. Note also
that name1 may not necessarily be the same as the name used to set the trace on
the variable; differences can occur if the access is made through a variable
defined with the upvar command.
For read and write traces, command can modify the variable to affect the result
of the traced operation. If command modifies the value of a variable during a
read or write trace, then the new value will be returned as the result of the traced
operation. The return value from command is ignored except that if it returns an
error of any sort then the traced operation also returns an error with the same
error message returned by the trace command (this mechanism can be used to
implement read-only variables, for example). For write traces, command is
invoked after the variable's value has been changed; it can write a new value
into the variable to override the original value specified in the write operation.
To implement read-only variables, command will have to restore the old value
of the variable.
While command is executing during a read or write trace, traces on the variable
are temporarily disabled. This means that reads and writes invoked by command

 125 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

will occur directly, without invoking command (or any other traces) again.
However, if command unsets the variable then unset traces will be invoked.
When an unset trace is invoked, the variable has already been deleted: it will
appear to be undefined with no traces. If an unset occurs because of a procedure
return, then the trace will be invoked in the variable context of the procedure
being returned to: the stack frame of the returning procedure will no longer
exist. Traces are not disabled during unset traces, so if an unset trace command
creates a new trace and accesses the variable, the trace will be invoked. Any
errors in unset traces are ignored.
If there are multiple traces on a variable they are invoked in order of creation,
most-recent first. If one trace returns an error, then no further traces are invoked
for the variable. If an array element has a trace set, and there is also a trace set
on the array as a whole, the trace on the overall array is invoked before the one
on the element.
Once created, the trace remains in effect either until the trace is removed with
the trace remove variable command described below, until the variable is
unset, or until the interpreter is deleted. Unsetting an element of array will
remove any traces on that element, but will not remove traces on the overall
array.
This command returns an empty string.
trace remove type name opList command
Where type is either command, execution or variable.
trace remove command name opList command
If there is a trace set on command name with the operations and command given by
opList and command, then the trace is removed, so that command will never again be
invoked. Returns an empty string. If name doesn't exist, the command will throw an
error.
trace remove execution name opList command
If there is a trace set on command name with the operations and command given by
opList and command, then the trace is removed, so that command will never again be
invoked. Returns an empty string. If name doesn't exist, the command will throw an
error.
trace remove variable name opList command
If there is a trace set on variable name with the operations and command given by
opList and command, then the trace is removed, so that command will never again be
invoked. Returns an empty string.
trace info type name
Where type is either command, execution or variable.
trace info command name
Returns a list containing one element for each trace currently set on command name.
Each element of the list is itself a list containing two elements, which are the opList and
command associated with the trace. If name doesn't have any traces set, then the result
of the command will be an empty string. If name doesn't exist, the command will throw
an error.
trace info execution name
Returns a list containing one element for each trace currently set on command name.
Each element of the list is itself a list containing two elements, which are the opList and
command associated with the trace. If name doesn't have any traces set, then the result
of the command will be an empty string. If name doesn't exist, the command will throw
an error.

EDH0336En1032 — 12/18 126

HXP Controller Tcl Manual

trace info variable name
Returns a list containing one element for each trace currently set on variable name. Each
element of the list is itself a list containing two elements, which are the opList and
command associated with the trace. If name doesn't exist or doesn't have any traces set,
then the result of the command will be an empty string.
For backwards compatibility, three other subcommands are available:
trace variable name ops command
This is equivalent to trace add variable name ops command.
trace vdelete name ops command
This is equivalent to trace remove variable name ops command
trace vinfo name
This is equivalent to trace info variable name
These subcommands are deprecated and will likely be removed in a future
version of Tcl. They use an older syntax in which array, read, write, unset are
replaced by a, r, w and u respectively, and the ops argument is not a list, but
simply a string concatenation of the operations, such as rwua.

See also
set, unset

 127 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.64 unset - Delete Variables

Name
unset - Delete variables

Synopsis
unset ?-nocomplain? ?--? ?name name name ...?

Description
This command removes one or more variables. Each name is a variable name, specified
in any of the ways acceptable to the set command. If a name refers to an element of an
array then that element is removed without affecting the rest of the array. If a name
consists of an array name with no parenthesized index, then the entire array is deleted.
The unset command returns an empty string as result. If -nocomplain is specified as the
first argument, any possible errors are suppressed. The option may not be abbreviated,
in order to disambiguate it from possible variable names. The option -- indicates the end
of the options, and should be used if you wish to remove a variable with the same name
as any of the options. If an error occurs, any variables after the named one causing the
error not deleted. An error can occur when the named variable doesn't exist, or the name
refers to an array element but the variable is a scalar, or the name refers to a variable in
a non-existent namespace.

See also
set, trace

EDH0336En1032 — 12/18 128

HXP Controller Tcl Manual

2.65 update - Process Pending Events and Idle Callbacks

Name
update - Process pending events and idle callbacks

Synopsis
update ?idletasks?

Description
This command is used to bring the application ``up to date'' by entering the event loop
repeatedly until all pending events (including idle callbacks) have been processed.
If the idletasks keyword is specified as an argument to the command, then no
new events or errors are processed; only idle callbacks are invoked. This causes
operations that are normally deferred, such as display updates, to be performed
immediately.
The update idletasks command is useful in scripts where changes have been
made to the application's state and you want those changes to appear on the
display immediately, rather than waiting for the script to complete. Most display
updates are performed as idle callbacks, so update idletasks will cause them to
run. However, there are some kinds of updates that only happen in response to
events; these updates will not occur in update idletasks.
The update command with no options is useful in scripts where you are
performing a long-running computation but you still want the application to
respond to events such as user interactions; if you occasionally call update then
user input will be processed during the next call to update.

See also
after

 129 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.66 uplevel - Execute a Script in a Different Stack Frame

Name
uplevel - Execute a script in a different stack frame

Synopsis
uplevel ?level? arg ?arg ...?

Description
All of the arg arguments are concatenated as if they had been passed to concat; the
result is then evaluated in the variable context indicated by level. Uplevel returns the
result of that evaluation.
If level is an integer then it gives a distance (up the procedure calling stack) to
move before executing the command. If level consists of # followed by a
number then the number gives an absolute level number. If level is omitted then
it defaults to 1. Level cannot be defaulted if the first command argument starts
with a digit or #.
For example, suppose that procedure a was invoked from top-level, and that it
called b, and that b called c. Suppose that c invokes the uplevel command. If
level is 1 or #2 or omitted, then the command will be executed in the variable
context of b. If level is 2 or #1 then the command will be executed in the
variable context of a. If level is 3 or #0 then the command will be executed at
top-level (only global variables will be visible).
The uplevel command causes the invoking procedure to disappear from the
procedure calling stack while the command is being executed. In the above
example, suppose c invokes the command

uplevel 1 {set x 43; d}

where d is another Tcl procedure. The set command will modify the variable x in b's
context, and d will execute at level 3, as if called from b.
If it in turn executes the command

uplevel {set x 42}

then the set command will modify the same variable x in b's context: the procedure c
does not appear to be on the call stack when d is executing. The command ``info level''
may be used to obtain the level of the current procedure.
Uplevel makes it possible to implement new control constructs as Tcl
procedures (for example, uplevel could be used to implement the while
construct as a Tcl procedure).
namespace eval is another way (besides procedure calls) that the Tcl naming
context can change. It adds a call frame to the stack to represent the namespace
context. This means each namespace eval command counts as another call
level for uplevel and upvar commands. For example, info level 1 will return a
list describing a command that is either the outermost procedure call or the
outermost namespace eval command. Also, uplevel #0 evaluates a script at
top-level in the outermost namespace (the global namespace).

See also
namespace, upvar

EDH0336En1032 — 12/18 130

HXP Controller Tcl Manual

2.67 upvar - Create Link to Variable in a Different Stack Frame

Name
upvar - Create link to variable in a different stack frame

Synopsis
upvar ?level? otherVar myVar ?otherVar myVar ...?

Description
This command arranges for one or more local variables in the current procedure to refer
to variables in an enclosing procedure call or to global variables. Level may have any of
the forms permitted for the uplevel command, and may be omitted if the first letter of
the first otherVar isn't # or a digit (it defaults to 1).
For each otherVar argument, upvar makes the variable by that name in the procedure
frame given by level (or at global level, if level is #0) accessible in the current procedure
by the name given in the corresponding myVar argument.
The variable named by otherVar need not exist at the time of the call; it will be created
the first time myVar is referenced, just like an ordinary variable. There must not exist a
variable by the name myVar at the time upvar is invoked. MyVar is always treated as
the name of a variable, not an array element. Even if the name looks like an array
element, such as a(b), a regular variable is created. OtherVar may refer to a scalar
variable, an array, or an array element. Upvar returns an empty string.
The upvar command simplifies the implementation of call-by-name procedure
calling and also makes it easier to build new control constructs as Tcl
procedures.
For example, consider the following procedure:

proc add2 name {
 upvar $name x
 set x [expr $x+2]
}

Add2 is invoked with an argument giving the name of a variable, and it adds two to the
value of that variable. Although add2 could have been implemented using uplevel
instead of upvar, upvar makes it simpler for add2 to access the variable in the caller's
procedure frame.
namespace eval is another way (besides procedure calls) that the Tcl naming
context can change. It adds a call frame to the stack to represent the namespace
context. This means each namespace eval command counts as another call
level for uplevel and upvar commands. For example, info level 1 will return a
list describing a command that is either the outermost procedure call or the
outermost namespace eval command. Also, uplevel #0 evaluates a script at
top-level in the outermost namespace (the global namespace).
If an upvar variable is unset (e.g. x in add2 above), the unset operation affects
the variable it is linked to, not the upvar variable. There is no way to unset an
upvar variable except by exiting the procedure in which it is defined. However,
it is possible to retarget an upvar variable by executing another upvar
command.

 131 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

Traces and upvar
Upvar interacts with traces in a straightforward but possibly unexpected manner. If a
variable trace is defined on otherVar, that trace will be triggered by actions involving
myVar. However, the trace procedure will be passed the name of myVar, rather than the
name of otherVar. Thus, the output of the following code will be localVar rather than
originalVar:

proc traceproc { name index op } {
 puts $name
}
proc setByUpvar { name value } {
 upvar $name localVar
 set localVar $value
}

set originalVar 1
trace variable originalVar w traceproc
setByUpvar originalVar 2
}

If otherVar refers to an element of an array, then variable traces set for the entire array
will not be invoked when myVar is accessed (but traces on the particular element will
still be invoked). In particular, if the array is env, then changes made to myVar will not
be passed to subprocesses correctly.

See also
global, namespace, uplevel, variable

EDH0336En1032 — 12/18 132

HXP Controller Tcl Manual

2.68 variable - Create and Initialize a Namespace Variable

Name
variable - create and initialize a namespace variable

Synopsis
variable ?name value...? name ?value?

Description
This command is normally used within a namespace eval command to create one or
more variables within a namespace. Each variable name is initialized with value. The
value for the last variable is optional.
If a variable name does not exist, it is created. In this case, if value is specified,
it is assigned to the newly created variable. If no value is specified, the new
variable is left undefined. If the variable already exists, it is set to value if value
is specified or left unchanged if no value is given. Normally, name is
unqualified (does not include the names of any containing namespaces), and the
variable is created in the current namespace. If name includes any namespace
qualifiers, the variable is created in the specified namespace. If the variable is
not defined, it will be visible to the namespace which command, but not to the
info exists command.
If the variable command is executed inside a Tcl procedure, it creates local
variables linked to the corresponding namespace variables (and therefore these
variables are listed by info locals.) In this way the variable command
resembles the global command, although the global command only links to
variables in the global namespace. If any values are given, they are used to
modify the values of the associated namespace variables. If a namespace
variable does not exist, it is created and optionally initialized.
A name argument cannot reference an element within an array. Instead, name
should reference the entire array, and the initialization value should be left off.
After the variable has been declared, elements within the array can be set using
ordinary set or array commands.

See also
global, namespace, upvar

 133 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

2.69 vwait - Process Events Until a Variable is Written

Name
vwait - Process events until a variable is written

Synopsis
vwait varName

Description
This command enters the Tcl event loop to process events, blocking the application if
no events are ready. It continues processing events until some event handler sets the
value of variable varName. Once varName has been set, the vwait command will return
as soon as the event handler that modified varName completes. varName must globally
scoped (either with a call to global for the varName, or with the full namespace path
specification).
In some cases the vwait command may not return immediately after varName is
set. This can happen if the event handler that sets varName does not complete
immediately. For example, if an event handler sets varName and then itself calls
vwait to wait for a different variable, then it may not return for a long time.
During this time the top-level vwait is blocked waiting for the event handler to
complete, so it cannot return either.

See also
global

EDH0336En1032 — 12/18 134

HXP Controller Tcl Manual

2.70 while - Execute Script Repeatedly as Long as a Condition is Met

Name
while - Execute script repeatedly as long as a condition is met

Synopsis
while test body

Description
The while command evaluates test as an expression (in the same way that expr
evaluates its argument). The value of the expression must a proper boolean value; if it is
a true value then body is executed by passing it to the Tcl interpreter. Once body has
been executed then test is evaluated again, and the process repeats until eventually test
evaluates to a false boolean value. Continue commands may be executed inside body to
terminate the current iteration of the loop, and break commands may be executed inside
body to cause immediate termination of the while command. The while command
always returns an empty string.

NOTE
test should almost always be enclosed in braces. If not, variable substitutions will
be made before the while command starts executing, which means that variable
changes made by the loop body will not be considered in the expression. This is
likely to result in an infinite loop. If test is enclosed in braces, variable substitutions
are delayed until the expression is evaluated (before each loop iteration), so
changes in the variables will be visible.

For an example, try the following script with and without the braces around $x<10:
set x 0
while {$x<10} {
 puts "x is $x"
 incr x
}

See also
break, continue, for, foreach

 135 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

3.0 TCL commands Not Supported

bgerror
dde
file (in case of: attributes, mtime, volume)
filename
history
interp
load
memory
msgcat
package
pkg::create
pkg_mkIndex
re_syntax
regexp
registry
regsub
resource
tcltest
tclvars
unknown

EDH0336En1032 — 12/18 136

HXP Controller Tcl Manual

4.0 Boot Tcl Script

The boot TCL script is a program that starts automatically after the controller boot
sequence. It gets defined in the system.ini configuration file in the GENERAL section.

 [GENERAL]
BootScriptFileName = testarg.tcl
BootScriptArguments = arg1, arg2, arg3, arg4, arg5

BootScriptFileName is the file name of the TCL script. This file must be stored in the
..\Admin\Public\Scripts folder of the XPS controller.
BootScriptArguments defines the list of arguments of the TCL script. The separator
between two arguments is the comma.
Example:
A boot TCL script could for instance contain the initialization and home search of all
motion groups. Once the controller finishes booting, the motion groups will
automatically initialize and home.

 137 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

5.0 Telnet Connection

To follow the execution of a TCL script and to receive the messages and errors sent
from the XPS controller, the use of a Telnet connection can be helpful. Telnet is a
simple way to view the messages sent from the XPS to the stdout, but also to send data
to the XPS.
In TCL, the function gets stdin allows transmitting data from a Telnet window to a TCL
script. However, there is no echo to the typed text, which means that users don’t see the
text that they enter.
A Telnet connection can be opened with any valid login, which can be administrator,
anonymous, or whatever other logins are configured.
• For windows users, click Start -> Run -> then type telnet + IP address as below:

• The Telnet window is opened, type login (here login and password equal to

“Administrator”):

• An arrow appears which indicates that the Telnet connection is ready to receive

messages.
During the execution of TCL scripts, this window is the interface to the stdout and stdin.
In the following example, the Telnet window displays the results of the TCL execution
(it displays “Hello, World”, gets the library and the firmware version).

Display on console screen
puts stdout {Hello, World!}

Get library version
set code [catch "GetLibraryVersion strVersion"]
if {$code != 0} {
 ErrorStringGet $socketID $code strError
 puts "GetLibraryVersion Not OK => error = $code: $strError"
} else {
 puts stdout "Library Version = $strVersion"
}

Open socket
set TimeOut 60
set code [catch "OpenConnection $TimeOut socketID"]
if {$code != 0} {

EDH0336En1032 — 12/18 138

HXP Controller Tcl Manual

 puts stdout "OpenConnection failed => $code"
} else {

 # Get firmware version
 set code [catch "FirmwareVersionGet $socketID strVersion"]
 if {$code != 0} {
 ErrorStringGet $socketID $code strError
 puts "FirmwareVersionGet Not OK => error = $code:
$strError"

 } else {
 puts stdout "Firmware Version = $strVersion"
 }

 # Close TCP socket
 set code [catch "TCP_CloseSocket $socketID"]
}

 139 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

6.0 Error Handling

For convenient error debugging and a safe program execution, the acknowledgements
(errors) of each XPS command should be read and tested. The following script opens a
TCP socket, and reads and displays the firmware version. If any error occurs, it gets and
displays the description of the error before closing the TCP socket. The TCP socket
opening and closing are tested as well.

Initialization
set TimeOut 60
set ErrorCode 0

Open TCP socket
set ErrorCode [catch "OpenConnection $TimeOut socketID"]
if {$ErrorCode != 0} {
 # Error => TCP socket not opened
 puts stdout "OpenConnection failed => $ErrorCode"
} else {

 # Success => Read firmware version
 set ErrorCode [catch "FirmwareVersionGet $socketID
FirmwareVersion"]

 if {$ErrorCode != 0} {
 # Error => Get error description
 set ErrorCode [catch "ErrorStringGet $socketID
$ErrorCode ErrorString"]

 if {$ErrorCode == 0} {
 # Display error description
 puts stdout "$ErrorCode: $ErrorString"
 }

 }

 # Success => Display firmware version
 puts stdout "Controller version is $FirmwareVersion"

 # Close TCP socket
 set ErrorCode [catch "TCP_CloseSocket $socketID"]
 if {$ErrorCode != 0} {
 # Error
 puts stdout "TCP_CloseSocket failed => $ErrorCode"
 } else {
 # Success
 puts stdout "The socket $socketID is closed "
 }

}

A telnet connection (see chapter 5 Telnet connection for how to open a Telnet
connection), allows to follow the execution of a TCL script. In this example there is no
error, the socket 0 is opened, the installed firmware version is 1.4.0 and the socket 0
gets closed.

EDH0336En1032 — 12/18 140

HXP Controller Tcl Manual

In the example above, the checking of the acknowledgments and the code to display
errors in the telnet window is put after each API command. Alternative, a procedure
“display error and close” can be used. This procedure gets defined at the beginning of
the TCL scripts. In that case, users just have to call this procedure after each API. This
allows a significant reduction of code when lots of API’s are used.

########### Display error and close procedure ###############

proc DisplayErrorAndClose {socketID code APIName} {
Set global variable
 global tcl_argv
If error occurred other than Timeout error
 if {$code != -2} {

Error => Get error description
 set code2 [catch "ErrorStringGet $socketID $code
strError"]

 # If error occurred with the API ErrorStringGet
 if {$code2 != 0} {

 # Display API name, error code and ErrorStringGet error
code

 # in the telnet window when using APIs
TCLScriptExecute or

TCLScriptExecuteAndWait
 puts "$APIName ERROR => $code / ErrorStringGet
ERROR => $code2"

 # in the web terminal when using API
TCLScriptExecuteAndWait
 set tcl_argv(0) "$APIName ERROR => $code"
} else {
Display API name, number and description of the error

 # in the telnet window when using APIs
TCLScriptExecute or

TCLScriptExecuteAndWait
 puts stdout "$APIName ERROR => $code: $strError"

 # in the web terminal when using API
TCLScriptExecuteAndWait
 set tcl_argv(0) "$APIName ERROR => $code:
$strError"
 }
 } else {
 # Display Timeout error

 141 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

 # in the telnet window when using APIs
TCLScriptExecute or

TCLScriptExecuteAndWait
 puts stdout "$APIName ERROR => $code: TCP timeout"
in the web terminal when using API TCLScriptExecuteAndWait
 set tcl_argv(0) "$APIName ERROR => $code: TCP timeout"
 }
 # Close TCP socket
 set code2 [catch "TCP_CloseSocket $socketID"]
 return
}

######################### Process ############################

Initialization
set TimeOut 60
set ErrorCode 0
Open TCP socket
set ErrorCode [catch "OpenConnection $TimeOut socketID"]
if {$ErrorCode != 0} {
Error => TCP socket not opened
 puts stdout "TCP_ConnectToServer failed !"
} else {
Success => Read firmware version
 set ErrorCode [catch "FirmwareVersionGet $socketID
FirmwareVersion"]

 if {$ErrorCode != 0} {
 # Error => Get error description
 DisplayErrorAndClose $socketID $code
"FirmwareVersionGet"
 return
 }
 # Success => Display firmware version
 puts stdout "Controller version is $FirmwareVersion"
Close TCP socket
 set ErrorCode [catch "TCP_CloseSocket $socketID"]
 if {$ErrorCode != 0} {
 # Error
 puts stdout "TCP_CloseSocket failed => $ErrorCode"
 } else {
 # Success
 puts stdout "The socket $socketID is closed "
 }

}

This way of error management is also used with the TCL scripts that get generated by
the TCL generator, see Terminal of the XPS web interface. The procedure for
displaying the errors and closing the TCP connection is as described above. And for
each API the following code is used:

Operation
 set ErrorCode [catch "GroupInitialize $socketID S"]
Error management
 if {$ErrorCode != 0} {

EDH0336En1032 — 12/18 142

HXP Controller Tcl Manual

 DisplayErrorAndClose $socketID $code
"GroupInitialize"

 return
 }

If an error occurs, it returns the first found error, indicates the API name that caused that
error, and the number and the corresponding description of that error. The execution of
the script gets stopped.
For instance, if we ask a group to initialize twice, it returns the following error:

Open TCP socket
…

Group initialization
 set code [catch "GroupInitialize $socketID S"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupInitialize"
 return
 }

 # Group initialization
 set code [catch "GroupInitialize $socketID S"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupInitialize"
 return
 }

Close TCP socket
…

 143 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

7.0 Examples of Tcl Programs with XPS

Please refer to the XPS Programmer’s Manual for the prototypes of the XPS API’s
when used from TCL.

7.1 Using analog I/O for Motion

Configuration
Group type Number Group name Positioner name
XY 1 alignstation alignstation.middle and alignstation.base

Description
This example opens a TCP connection, kills the XY group, then initializes and homes it.
Five relative moves of 1 unit each are commanded to the group. Then, the value of the
GPIO2 input is read in a continuous loop and sent to the stdout as long as the voltage of
the analog input is above 0.2 volt. When above 0.2 volts, absolute moves are
commanded to both axes: the X positioner moves corresponding to the voltage value of
the analog input, and the Y positioner moves corresponding to the opposite of the
voltage value of the analog input. When the GPIO2 input voltage is lower or equal to
the limit of 0.2 volt, the last display and moves occurs. Finally the program ends by
closing the socket.
If the voltage is below 0.2 volt already during the first reading, it directly goes to the
end without displaying the I/O value or absolute moves of the XY group.
Please see the chapter 6 Error handling for the code of the procedure
DisplayErrorAndClose.

TCL code
Initialization
set TimeOut 10
set group "alignstation"
set axis1 "alignstation.middle"
set axis2 "alignstation.base"
set analogin "GPIO2.ADC1"

Open TCP socket
set code [catch "OpenConnection $TimeOut socketID"]
if {$code != 0} {

puts stdout "OpenConnection failed => $code"
} else {

Kill group
set code [catch "GroupKill $socketID $group"]
if {$code != 0} {

DisplayErrorAndClose $socketID $code "GroupKill"
return

}

Initialize group
set code [catch "GroupInitialize $socketID $group"]
if {$code != 0} {

DisplayErrorAndClose $socketID $code
"GroupInitialize"

return
}

EDH0336En1032 — 12/18 144

HXP Controller Tcl Manual

Home group
set code [catch "GroupHomeSearch $socketID $group"]
if {$code != 0} {

DisplayErrorAndClose $socketID $code
"GroupHomeSearch"

return
}

Move group with 5 relative units
for { set var 0 } { $var <= 5 } { incr var } {

set code [catch "GroupMoveRelative $socketID
$group 1 1"]

if {$code != 0} {

DisplayErrorAndClose $socketID $code
"GroupMoveRelative"

return
}

}

Get analog value
set code [catch "GPIOAnalogGet $socketID $analogin

voltage"]

if {$code != 0} {
DisplayErrorAndClose $socketID $code

"GPIOAnalogGet"
return

}

Test if voltage is greater than 0.2 volt
while { $voltage >= 0.2 } {

Get analog value
set code [catch "GPIOAnalogGet $socketID

$analogin voltage"]

if {$code != 0} {
DisplayErrorAndClose $socketID $code

"GPIOAnalogGet"
return

}

set move1 $voltage
set move2 [expr { $voltage * -1 }]
puts stdout "$analogin: $voltage volt(s)"
puts stdout " move axis1: $move1"
puts stdout " move axis2: $move2"
Move axis 1
set code [catch "GroupMoveAbsolute $socketID

$axis1 $move1"]

if {$code != 0} {
DisplayErrorAndClose $socketID $code

"GroupMoveAbsolute"
return

}

Move axis 2
set code [catch "GroupMoveAbsolute $socketID

$axis2 $move2"]

if {$code != 0} {
DisplayErrorAndClose $socketID $code

"GroupMoveAbsolute"

 145 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

return
}

}

Wait 1 second and close socket
after 1000

puts "End of program"
TCP_CloseSocket $socketID

}

This is what gets displayed on a Telnet window. In this example the input voltage of
GPIO2 decreases from 2.2V to 0V. See section 5 Telnet connection for details about
Telnet connections:

EDH0336En1032 — 12/18 146

HXP Controller Tcl Manual

7.2 Using Digital I/O for Motion

Configuration
Group type Number Group name Positioner name
XY 1 alignstation alignstation.middle and alignstation.base

Description
This example opens a TCP connection, kills the XY group, then initializes and homes it.
Five relative moves of 1 unit each are commanded to the group. Then, the value of the
GPIO1 digital input is read in a continuous loop and sent to the stdout as long as the
value of the input is different from 255. When the value of the digital GPIO1 input is
equal to 1, absolute moves are commanded to both axes: the X positioner moves to the
absolute position 1 and the Y positioner moves to the absolute position -1. When the
value of 255 is obtained, the last display occurs. Finally, the program ends by closing
the socket. If the GPIO1 input value is 255 already during the first reading, it directly
goes to the end without displaying the digital input value.
Please see the chapter 6 Error handling for the code of the procedure
DisplayErrorAndClose.

TCL Code
Initialization
set TimeOut 10
set group "alignstation"
set axis1 "alignstation.middle"
set axis2 "alignstation.base"
set digitalin "GPIO1.DI"
Open TCP socket
set code [catch "OpenConnection $TimeOut socketID"]
if {$code != 0} {

puts stdout "OpenConnection failed => $code"
} else {

Kill group
set code [catch "GroupKill $socketID $group"]
if {$code != 0} {

DisplayErrorAndClose $socketID $code "GroupKill"
return

}

Initialize group
set code [catch "GroupInitialize $socketID $group"]
if {$code != 0} {

DisplayErrorAndClose $socketID $code "GroupInitialize"
return

}

Home group
set code [catch "GroupHomeSearch $socketID $group"]
if {$code != 0} {

DisplayErrorAndClose $socketID $code "GroupHomeSearch"
return

}

Move group with 5 relative units
for { set var 0 } { $var <= 5 } { incr var } {

set code [catch "GroupMoveRelative $socketID $group 1 1"]
if {$code != 0} {

 147 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

DisplayErrorAndClose $socketID $code
"GroupMoveRelative"

return
}

}

Get digital value
set code [catch "GPIODigitalGet $socketID $digitalin value"]
if {$code != 0} {

DisplayErrorAndClose $socketID $code "GPIODigitalGet"
return

}

Test if value of GPIO1.DI is different from 255
while { $value != 255 } {

Get digital value
set code [catch "GPIODigitalGet $socketID $digitalin

value"]

if {$code != 0} {
DisplayErrorAndClose $socketID $code "GPIODigitalGet"
return

}

puts stdout "$digitalin: $value"
if { $value == 1 } {

puts " move axis1: 1"
puts " move axis2: -1"

Move axis 1
set code [catch "GroupMoveAbsolute $socketID $axis1 1"]
if {$code != 0} {

DisplayErrorAndClose $socketID $code
"GroupMoveAbsolute"

return
}

Move axis 2
set code [catch "GroupMoveAbsolute $socketID $axis2 -

1"]
if {$code != 0} {

DisplayErrorAndClose $socketID $code
"GroupMoveAbsolute"

return
}

} else {
after 100

}

after 1000
}

Wait 1 second and close socket
after 1000
puts "End of program"
TCP_CloseSocket $socketID

}

EDH0336En1032 — 12/18 148

HXP Controller Tcl Manual

This is what gets displayed on a Telnet window. See section 5 Telnet connection for
details about Telnet connections:

 149 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

7.3 Test GPIO1

Description
This example opens a TCP connection. It sets the value of 255 to the mask and the
output GPIO1.DO, then gets this output value and puts it in the variable OA. It sets the
value of 255 to the mask and the value of 0 to the output GPIO1.DO, then gets this
output value and puts it in the variables OB. It sets the value of 63 to the mask and the
value of 255 to the output GPIO1.DO, then gets this output value and puts it in the
variable OC. After the settings, it tests the contents of the variables OA, OB and OC.
Finally, the program ends by closing the socket.
Please see the chapter 6 Error handling for the code of the procedure
DisplayErrorAndClose.

Code
Initialization
set TimeOut 120
set output "GPIO1.DO"
set input "GPIO1.DI"
Open TCP socket
set code [catch "OpenConnection $TimeOut socketID"]
if {$code != 0} {
 puts stdout "OpenConnection failed => $code"
} else {
Set output of GPIO1 to 255
 set code [catch "GPIODigitalSet $socketID $output 255 255"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GPIODigitalSet"
 return
 }

Get value of output of GPIO1 and store it in OA
 set code [catch "GPIODigitalGet $socketID $output OA"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GPIODigitalGet"
 return
 } else {
 puts "OA = $OA"
 }

Set output of GPIO1 to 0
 set code [catch "GPIODigitalSet $socketID $output 255 0"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GPIODigitalSet"
 return
 }

Get value of output of GPIO1 and store it in OB
 set code [catch "GPIODigitalGet $socketID $output OB"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GPIODigitalGet"
 return
 } else {
 puts "OB = $OB"
 }

Set output of GPIO1 to 63 (mask value)

EDH0336En1032 — 12/18 150

HXP Controller Tcl Manual

 set code [catch "GPIODigitalSet $socketID $output 63 255"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GPIODigitalSet"
 return
 }

Get value of output of GPIO1 and store it in OC
 set code [catch "GPIODigitalGet $socketID $output OC"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GPIODigitalGet"
 return
 } else {
 puts "OC = $OC"
 }

Test if OA = 255 and OB = 0
 if {$OA == 255 & $OB == 0} {
 puts "Digital outputs OK"
Test if OC = 63
 if {$OC == 63} {
 puts "Mask OK"
 } else {
 puts "Pb Mask"
 }

 } else {
 puts "Pb digital outputs"
 }

Close socket
 TCP_CloseSocket $socketID
}

This is what gets displayed on a Telnet window for the above example. For details
about Telnet connections, see section 5 Telnet connection:

 151 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

7.4 Gathering with Motion

Configuration
Group type Number Group name Positioner name
Single axis 1 SINGLE_AXIS SINGLE_AXIS.MY_STAGE

Description
This example opens a TCP connection, kills the single axis group, then initializes and
homes it. Then, it configures the parameters for the gathering (data to be collected:
setpoint and current positions). It defines an action (GatheringRun) to an event
(SGamma.MotionStart). When the positioner moves from 0 to 50, the data are gathered
(with a divisor equal to 100, data are collected every 100th sevo cycle, or every 10 ms).
At the end, the gathering is stopped and saved in a text file (Gathering.dat in
Admin/Public directory of the controller). Finally, the program ends by closing the
socket.
Please see the chapter 6 Error handling for the code of the procedure
DisplayErrorAndClose.

Code
Initialization
set TimeOut 60
set Group "SINGLE_AXIS"
set Positioner "SINGLE_AXIS.MY_STAGE"
set Type1 "SINGLE_AXIS.MY_STAGE.SetpointPosition"
set Type2 "SINGLE_AXIS.MY_STAGE.CurrentPosition"
set Event "SGamma.MotionStart"
set Action "GatheringRun"
set Displacement 50
set NbPoints 1000
set Div 100

set code 0
Open TCP socket
set code [catch "OpenConnection $TimeOut socketID"]
if {$code != 0} {
 puts stdout "OpenConnection failed => $code"
} else {
Kill group
 set code [catch "GroupKill $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupKill"
 return
 }

Initialize group
 set code [catch "GroupInitialize $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupInitialize"
 return
 }

Home group
 set code [catch "GroupHomeSearch $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupHomeSearch"

EDH0336En1032 — 12/18 152

HXP Controller Tcl Manual

 return
 }

Configure gathering parameters
 set code [catch "GatheringConfigurationSet $socketID $Type1
$Type2"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GatheringConfigurationSet"
 return
 }

Add an event
 set code [catch "EventAdd $socketID $Positioner $Event 0
$Action $NbPoints $Div 0"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "EventAdd"
 return
 }

 # Move positioner
 set code [catch "GroupMoveRelative $socketID $Group
$Displacement"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupMoveRelative"
 return
 }

Stop gathering and save data
 set code [catch "GatheringStopAndSave $socketID"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GatheringStopAndSave"
 return
 }

Close TCP socket
 set code [catch "TCP_CloseSocket $socketID"]
}

 153 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

When pressing the Gathering display button of Terminal window of the XPS web site
interface, the following data gets displayed:

EDH0336En1032 — 12/18 154

HXP Controller Tcl Manual

7.5 External Gathering

Configuration
Group type Number Group name Positioner name
Single axis 1 SINGLE_AXIS SINGLE_AXIS.MY_STAGE

Description
This example opens a TCP connection, kills the single axis group, then initializes and
homes it. Then, it configures the parameters for the external gathering (data to be
collected: ExternalLatchPosition and GPIO2.ADC1 value). It defines an action
(ExternalGatheringRun) to an event (Immediate). Each time the trigger in receives a
signal, the data is gathered (with a divisor equal to 1, gathering takes place every signal
on the trigger input). Every second, the current number of gathered data gets displayed.
At the end, the external gathering is stopped and saved in a text file
(ExternalGathering.dat in Admin/Public directory of the controller). Finally, the
program ends by closing the socket.
Please see the chapter 6 Error handling for the code of the procedure
DisplayErrorAndClose.

Code
Initialization
set TimeOut 60
set Group "SINGLE_AXIS"
set Positioner "SINGLE_AXIS.MY_STAGE"
set Type1 "SINGLE_AXIS.MY_STAGE.ExternalLatchPosition"
set Type2 "GPIO2.ADC1"
set Event "Immediate"
set Action "ExternalGatheringRun"
set NbPoints 20
set Div 1
set Current 0
set code 0
Open TCP socket
set code [catch "OpenConnection $TimeOut socketID"]
if {$code != 0} {
 puts stdout "OpenConnection failed => $code"
} else {
Kill group
 set code [catch "GroupKill $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupKill"
 return
 }

Initialize group
 set code [catch "GroupInitialize $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupInitialize"
 return
 }

Home group
 set code [catch "GroupHomeSearch $socketID $Group"]
 if {$code != 0} {

 155 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

 DisplayErrorAndClose $socketID $code "GroupHomeSearch"
 return
 }
Configure gathering parameters
 set code [catch "GatheringExternalConfigurationSet $socketID
$Type1 $Type2"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GatheringExternalConfigurationSet"
 return
 }

Add an event
 set code [catch "EventAdd $socketID $Positioner $Event 0
$Action $NbPoints $Div 0"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "EventAdd"
 return
 }

Push on TRIG IN button…
puts "External gathering"
Wait end of external gathering
 while {$Current < $NbPoints} {
Get current acquired point number
 set code [catch "GatheringExternalCurrentNumberGet
$socketID Current Max"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GatheringExternalCurrentNumberGet"
 return
 } else {
 puts stdout "current number: $Current"
 after 1000
 }

 }

Stop external gathering and save data
 set code [catch "GatheringExternalStopAndSave $socketID"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GatheringExternalStopAndSave"
 return
 }

 # Close TCP socket
 set code [catch "TCP_CloseSocket $socketID"]
}

EDH0336En1032 — 12/18 156

HXP Controller Tcl Manual

This is what gets displayed on a Telnet window for the above example and when the
trigger in receives a signal every second. For details about Telnet connections, see
section 5 Telnet connection:

 157 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

7.6 Position Compare

Configuration
Group type Number Group name Positioner name
Single axis 1 SINGLE_AXIS SINGLE_AXIS.MY_STAGE

Description
This example opens a TCP connection, kills the single axis group, then initializes and
homes it. With an absolute move, the positioner moves to the start position –15. Then, it
configures the parameters for the position compare (enabled from –10 to +10 with step
position of 1 unit). It enables the position compare functionality and executes a relative
move of 25 (positioner final position will be –15+25 = +10). During this move, between
the positions –10 and +10, pulses are sent by the trigger output when crossing each 1
unit incremental position. The position compare mode is then disabled and the program
ends by closing the socket.
Please see the chapter 6 Error handling for the code of the procedure
DisplayErrorAndClose.

Code
Initialization
set TimeOut 60
set Group "SINGLE_AXIS"
set Positioner "SINGLE_AXIS.MY_STAGE"
set StartPosition -15
set Displacement 25
set MinPos -10
set MaxPos 10
set StepPos 1
set code 0
Open TCP socket
set code [catch "OpenConnection $TimeOut socketID"]
if {$code != 0} {
 puts stdout "OpenConnection failed => $code"
} else {
Kill group
 set code [catch "GroupKill $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupKill"
 return
 }

Initialize group
 set code [catch "GroupInitialize $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupInitialize"
 return
 }

Home group
 set code [catch "GroupHomeSearch $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupHomeSearch"
 return
 }

EDH0336En1032 — 12/18 158

HXP Controller Tcl Manual

Move positioner to start position
 set code [catch "GroupMoveAbsolute $socketID $Group
$StartPosition"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupMoveAbsolute"
 return
 }

Set position compare parameters
 set code [catch "PositionerPositionCompareSet $socketID
$Positioner $MinPos $MaxPos $StepPos"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"PositionerPositionCompareSet"
 return
 }

Enable position compare mode
 set code [catch "PositionerPositionCompareEnable $socketID
$Positioner"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"PositionerPositionCompareEnable"
 return
 }

Move positioner
 set code [catch "GroupMoveRelative $socketID $Group
$Displacement"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupMoveRelative"
 return
 }

Disable position compare mode
 set code [catch "PositionerPositionCompareDisable $socketID
$Positioner"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"PositionerPositionCompareDisable"
 return
 }

Close TCP socket
 set code [catch "TCP_CloseSocket $socketID"]
}

 159 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

7.7 Master-Slave Mode

Configuration
Group type Number Group name Positioner name
Single axis 1 SINGLE_AXIS SINGLE_AXIS.MY_STAGE
XY 1 XY XY.X and XY.Y

Description:
This example opens a TCP connection, kills the singles axis and the XY group, then
initializes and homes them. It sets the parameters for the master slave mode (slave:
single axis group, master: X positioner from XY group). Then, it enables the master
slave mode and executes a relative move of 65 units with the master positioner. At the
same time, the slave positioner executes the same move as the master. The master slave
mode is then disabled and the program ends by closing the socket.
Please see the chapter 6 Error handling for the code of the procedure
DisplayErrorAndClose.

Code
Initialization
set TimeOut 60
set SlaveGroup "SINGLE_AXIS"
set XYGroup "XY"
set MasterPositioner "XY.X"
set MasterRatio 1
set code 0
set Displacement 65
Open TCP socket
set code [catch "OpenConnection $TimeOut socketID"]
if {$code != 0} {
 puts stdout "OpenConnection failed => $code"
} else {
Kill single axis group
 set code [catch "GroupKill $socketID $SlaveGroup"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "Single axis
GroupKill"
 return
 }

Initialize single axis group
 set code [catch "GroupInitialize $socketID $SlaveGroup"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "Single axis
GroupInitialize"
 return
 }

Home single axis group
 set code [catch "GroupHomeSearch $socketID $SlaveGroup"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "Single axis
GroupHomeSearch"
 return
 }

Kill XY group

EDH0336En1032 — 12/18 160

HXP Controller Tcl Manual

 set code [catch "GroupKill $socketID $XYGroup"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "XY GroupKill"
 return
 }

 # Initialize XY group
 set code [catch "GroupInitialize $socketID $XYGroup"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "XY GroupInitialize"
 return
 }

Home XY group
 set code [catch "GroupHomeSearch $socketID $XYGroup"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "XY GroupHomeSearch"
 return
 }

Set slave (single axis group) with its master
 # (positioner from any group: XY here)
 set code [catch "SingleAxisSlaveParametersSet $socketID
$SlaveGroup $MasterPositioner $MasterRatio"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"SingleAxisSlaveParametersSet"
 return
 }
Enable master-slave mode (group must be ready)
 set code [catch "SingleAxisSlaveModeEnable $socketID
$SlaveGroup"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"SingleAxisSlaveModeEnable"
 return
 }
Move master positioner
 # (the slave must follow the master in relation to a ratio)
 set code [catch "GroupMoveRelative $socketID
$MasterPositioner $Displacement"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupMoveRelative"
 return
 }
Disable master-slave mode
 set code [catch "SingleAxisSlaveModeDisable $socketID
$SlaveGroup"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"SingleAxisSlaveModeDisable"
 return
 }

Close TCP socket
 set code [catch "TCP_CloseSocket $socketID"]
}

 161 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

7.8 Jogging

Configuration
Group type Number Group name Positioner name
XY 1 XY XY.X and XY.Y

Description
This example opens a TCP connection, kills the XY group, then initializes and homes it.
It enables the jog mode and sets the parameters to move a positioner in the positive
direction with a velocity of 20 units/s during 3 seconds. Then, during the 3 next
seconds, the positioner moves in the reverse direction with a velocity of -30 units/s, and
finally stops (velocity set to 0). The jog functionality is then disabled and the program
ends by closing the socket.
Please see the chapter 6 Error handling for the code of the procedure
DisplayErrorAndClose.

Code
Initialization
set TimeOut 60
set Group "XY"
set Positioner "XY.X"
set Velocity1 20
set Velocity2 -30
set Acceleration 80
set code 0
Open TCP socket
set code [catch "OpenConnection $TimeOut socketID"]
if {$code != 0} {
 puts stdout "OpenConnection failed => $code"
} else {
Kill group
 set code [catch "GroupKill $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupKill"
 return
 }

Initialize group
 set code [catch "GroupInitialize $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupInitialize"
 return
 }

Home group
 set code [catch "GroupHomeSearch $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupHomeSearch"
 return
 }

Enable jog mode (group must be ready)
 set code [catch "GroupJogModeEnable $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupJogModeEnable"

EDH0336En1032 — 12/18 162

HXP Controller Tcl Manual

 return
 }

Set jog parameters to move a positioner => constant velocity
is not null
 set code [catch "GroupJogParametersSet $socketID $Positioner
$Velocity1 $Acceleration"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GroupJogParametersSet"
 return
 }

 # Wait 3 seconds
 after 3000
 # Set jog parameters to move the positioner in the reverse
sense
 # => constant velocity is not null
 set code [catch "GroupJogParametersSet $socketID $Positioner
$Velocity2 $Acceleration"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GroupJogParametersSet"
 return
 }

 # Wait 3 seconds
 after 3000
 # Set jog parameters to stop a positioner => constant
velocity is null
 set code [catch "GroupJogParametersSet $socketID $Positioner
0 $Acceleration"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GroupJogParametersSet"
 return
 }

 # Disable jog mode
 # (constant velocity must be null on all positioners from
group)
 set code [catch "GroupJogModeDisable $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupJogModeDisable"
 return
 }

 # Close TCP socket
 set code [catch "TCP_CloseSocket $socketID"]
}

 163 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

7.9 Jogging and Gathering

Configuration
Group type Number Group name Positioner name
XY 1 XY XY.X_VP and XY.Y_VP

Description
This example opens a TCP connection, kills the XY group, then initializes and homes it.
Then, it configures the parameters for the gathering (data to be collected: setpoint
position, current position, setpoint velocity and setpoint acceleration). It displays the
maximum number of acquisition per type of data that can be collected (max total data
acquisition/number of data types = 1000000/4 = 250000). It defines an action
(GatheringRun) to an event (Immediate). When the jog mode is enabled, it changes the
jogging speed and acceleration. At the end, the jog mode is disabled, the gathering is
stopped and saved in a text file (Gathering.dat in Admin/Public directory of the
controller). Finally, the program ends by closing the socket.
Please see the chapter 6 Error handling for the code of the procedure
DisplayErrorAndClose.

Code
Initialization
set TimeOut 120
set Moteur "XY"
set Mot "XY.X_VP"
set A "XY.X_VP.SetpointPosition"
set B "XY.X_VP.CurrentPosition"
set C "XY.X_VP.SetpointVelocity"
set D "XY.X_VP.SetpointAcceleration"
set Event "Immediate"
set Action "GatheringRun"
set Num 0
Open TCP socket
set code [catch "OpenConnection $TimeOut socketID"]
if {$code != 0} {
 puts stdout "OpenConnection failed => $code"
} else {
Kill group
 set code [catch "GroupKill $socketID $Moteur"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupKill"
 return
 }

Initialize group
 set code [catch "GroupInitialize $socketID $Moteur"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupInitialize"
 return
 }

Home group
 set code [catch "GroupHomeSearch $socketID $Moteur"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupHomeSearch"

EDH0336En1032 — 12/18 164

HXP Controller Tcl Manual

 return
 }

Set gathering parameters

 set code [catch "GatheringConfigurationSet $socketID $A $B
$C $D"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GatheringConfigurationSet"
 return
 }

Get gathering parameters
 set code [catch "GatheringConfigurationGet $socketID J"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GatheringConfigurationGet"
 return
 } else {
 puts stdout "Data types to be gathered: $J"
 }

Get gathering current acquired point number
 set code [catch "GatheringCurrentNumberGet $socketID Num
Max"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GatheringCurrentNumberGet"
 return
 } else {
 puts stdout "Maximum possible number of acquisition per
type of data: $Max"

 }

Add an event
 set code [catch "EventAdd $socketID $Mot $Event 0 $Action
20000 10 0"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "EventAdd"
 return
 }

Enable jog mode
 set code [catch "GroupJogModeEnable $socketID $Moteur"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupJogModeEnable"
 return
 }

Wait 2 seconds
 after 2000
puts "Jog moves and data acquisition"
 # Set jog parameters to move both positioners in the
positive direction
 set code [catch "GroupJogParametersSet $socketID $Moteur 5
50 5 50"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GroupJogParametersSet"
 return

 165 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

 }

 puts " X and Y positioners going in positive direction
during 500 msec"

 puts " X and Y positioners speed = 5 / Acceleration =
50"

Wait 500 milliseconds
 after 500
 # Set jog parameters to move both positioners,
 # the first in the positive direction, the second in the
negative
 set code [catch "GroupJogParametersSet $socketID $Moteur 10
50 -10 50"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GroupJogParametersSet"
 return
 }

 puts " X positioner going in positive direction during 2
sec"

 puts " Y positioner going in negative direction during 2
sec"

 puts " X positioner speed = 10 / Acceleration = 50"
 puts " Y positioner speed = -10 / Acceleration = 50"
Wait 2 seconds
 after 2000
 # Set jog parameters to move both positioners in the reverse
sense
 set code [catch "GroupJogParametersSet $socketID $Moteur -10
50 20 50"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GroupJogParametersSet"
 return
 }

 puts " X positioner going in negative direction during 2
sec"

 puts " Y positioner going in positive direction during 2
sec"

 puts " X positioner speed = -10 / Acceleration = 50"
 puts " Y positioner speed = 20 / Acceleration = 50"
Wait 2 seconds
 after 2000
 # Set jog parameters to move both positioners in the
negative direction
 set code [catch "GroupJogParametersSet $socketID $Moteur -5
50 -5 50"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GroupJogParametersSet"
 return
 }

 puts " X and Y positioners going in negative direction
during 500 msec"

 puts " X and positioner speed = -5 / Acceleration = 50"
Wait 500 milliseconds
 after 500

EDH0336En1032 — 12/18 166

HXP Controller Tcl Manual

 # Set jog parameters to stop the positioners => constant
velocities are null
 set code [catch "GroupJogParametersSet $socketID $Moteur 0
50 0 50"]
 if {$code != 0} {

 DisplayErrorAndClose $socketID $code
"GroupJogParametersSet"
 return
 }

 puts " X and Y positioners stopped"
 puts " X and Y positioner speed = 0 / Acceleration =
50"

 # Wait 500 milliseconds
 after 500
Disable jog mode
 set code [catch "GroupJogModeDisable $socketID $Moteur"]
 if {$code != 0} {

 DisplayErrorAndClose $socketID $code "GroupJogModeDisable"
 return
 }

Stop gathering and save data
 set code [catch "GatheringStopAndSave $socketID"]
 if {$code != 0} {

 DisplayErrorAndClose $socketID $code
"GatheringStopAndSave"
 return
 }

Close socket
 puts "End of program"
 TCP_CloseSocket $socketID
}

This is what gets displayed on a Telnet window for the above example. For details
about Telnet connections, see section 5 Telnet connection:

 167 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

7.10 Analog Position Tracking

Configuration
Group type Number Group name Positioner name
XY 1 XY XY.X and XY.Y

Description
This example opens a TCP connection, kills the XY group, then initializes and homes it.
It sets the parameters for the position analog tracking functionality (positioner, analog
input, offset, scale, velocity and acceleration) and enables the analog tracking mode.
The mode gets activated during 20 seconds. During this time, the stage follows in
position the voltage of the analog input GPIO2.ADC1. Then, the analog tracking mode
gets disabled and the program ends by closing the socket.
Please see the chapter 6 Error handling for the code of the procedure
DisplayErrorAndClose.

Code
Initialization
set TimeOut 60
set Group "XY"
set Positioner "XY.X"
set AnalogInput "GPIO2.ADC1"
set Offset 0
set Scale 1
set Velocity 20
set Acceleration 80
set TrackingType "Position"
set code 0
Open TCP socket
set code [catch "OpenConnection $TimeOut socketID"]
if {$code != 0} {
 puts stdout "OpenConnection failed => $code"
} else {
Kill group
 set code [catch "GroupKill $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupKill"
 return
 }

Initialize group
 set code [catch "GroupInitialize $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupInitialize"
 return
 }

Home group
 set code [catch "GroupHomeSearch $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupHomeSearch"
 return
 }

Set analog tracking parameters

EDH0336En1032 — 12/18 168

HXP Controller Tcl Manual

 set code [catch
"PositionerAnalogTrackingPositionParametersSet $socketID
$Positioner $AnalogInput $Offset $Scale $Velocity
$Acceleration"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code

 "PositionerAnalogTrackingPositionParametersSet"
 return
 }

Enable analog position tracking mode (group must be ready)
 set code [catch "GroupAnalogTrackingModeEnable $socketID
$Group $TrackingType"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GroupAnalogTrackingModeEnable"
 return
 }

Change the amplitude of GPIO2.ADC1 analog input during 20
seconds
 after 20000
Disable analog position tracking mode
 set code [catch "GroupAnalogTrackingModeDisable $socketID
$Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"GroupAnalogTrackingModeDisable"
 return
 }

 # Close TCP socket
 set code [catch "TCP_CloseSocket $socketID"]
}

 169 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

7.11 Backlash Compensation

Configuration
Group type Number Group name Positioner name
Single axis 1 SINGLE_AXIS SINGLE_AXIS.MY_STAGE

Description
This example opens a TCP connection and kills the single axis group. It enables the
backlash compensation capability (for this the controller must be in the not initialized
state). The group gets then initialized and homed. The value of the backlash
compensation is set to 0.1. The positioner executes relative moves with the backlash
compensation. Finally, the backlash compensation gets disabled and the program ends
by closing the socket.

CAUTION
• The HomeSearchSequenceType in the stages.ini file must be

different from CurrentPositionAsHome.
• The Backlash parameter in the stages.ini file must be greater than

zero.
• To apply any modifications of the stages.ini, the controller must be

rebooted.

Please see the chapter 6 Error handling for the code of the procedure
DisplayErrorAndClose.

Code
Initialization
set TimeOut 60
set Group "SINGLE_AXIS"
set Positioner "SINGLE_AXIS.MY_STAGE"
set BacklashValue 0.1
set Displacement 10
set code 0
Open TCP socket
set code [catch "OpenConnection $TimeOut socketID"]
if {$code != 0} {
 puts stdout "OpenConnection failed => $code"
} else {

 # Kill group
 set code [catch "GroupKill $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupKill"
 return
 }

 # Enable backlach compensation

CAUTION: #
Group must be “not initialized” and Backlash>0 in the #

EDH0336En1032 — 12/18 170

HXP Controller Tcl Manual

“stages.ini” file #

 set code [catch "PositionerBacklashEnable $socketID
$Positioner"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"PositionerBacklashEnable"
 return
 }

Initialize group
 set code [catch "GroupInitialize $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupInitialize"
 return
 }

Home group
 set code [catch "GroupHomeSearch $socketID $Group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupHomeSearch"
 return
 }

 # Modify Backlash value
 # Caution: Backlash > 0 in the file “stages.ini”
 set code [catch "PositionerBacklashSet $socketID $Positioner
$BacklashValue"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"PositionerBacklashSet"
 return
 }

 # Move group in positive direction
 set code [catch "GroupMoveRelative $socketID $Group
$Displacement"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupMoveRelative"
 return
 }

 # Move group in negative direction
 set code [catch "GroupMoveRelative $socketID $Group -
$Displacement"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupMoveRelative"
 return
 }

 # Disable Backlash (if you want to do trajectory, jogging or
tracking)
 # CAUTION: to enable backlash, you must call “GroupKill” or
“KillAll” to
 # come back in “not initialized” status
 set code [catch "PositionerBacklashDisable $socketID
$Positioner"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code
"PositionerBacklashDisable"
 return

 171 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

 }

 # Close TCP socket
 set code [catch "TCP_CloseSocket $socketID"]
}

EDH0336En1032 — 12/18 172

HXP Controller Tcl Manual

7.12 Timer Event and Global Variables

Configuration
Group type Number Group name Positioner name
Single axis 1 SINGLE_AXIS SINGLE_AXIS.MY_STAGE

Description
The script StartScript.tcl opens a TCP connection, configures a timer and uses this timer
as an event. The action, in relation to this timer event, executes a second TCL script
named MyScript.tcl. The StartScript.tcl script sets a global variable and closes the
socket.
The timer is a permanent event. The frequency of the timer is set by the divisor, in this
example 20000, which means that the second TCL script gets executed every 20000th
servo loop or every 2 seconds (divisor/servo loop rate = 20000/10000 = 2 seconds).
The script MyScript.tcl reads the global variable, increments it as long as the variable is
below 10. When the global variable is equal to 10, the second script deletes the timer
event and finally, the program ends by closing the socket.
Please see the chapter 6 Error handling for the code of the procedure
DisplayErrorAndClose.

Code
• StartScript.tcl

Initialization
set TCPTimeOut 0.5
set code 0
set ISRPeriodSec 0.0001
set Positioner "SINGLE_AXIS.MY_STAGE"
set TimerName "Timer1"
set TimerPeriodSec 2
set EvtParam 0
set Action "ExecuteTCLScript"
set TCLFile "MyScript.tcl"
set TCLTask "MyTask"
set TCLArgs "0"
set GlobalVarNumber 1
set Value 5
Open TCP socket
set code [catch "OpenConnection $TCPTimeOut socketID"]
if {$code != 0} {
 puts stdout "OpenConnection failed => $code"
} else {
Calculate divisor (periods are in seconds)
 set Divisor [expr {$TimerPeriodSec / $ISRPeriodSec}]
 puts stdout "Divisor: $Divisor"
set Divisor [expr {int($Divisor)}]
 puts stdout "Divisor troncated in integer: $Divisor"
Configure a timer
 set code [catch "TimerSet $socketID $TimerName $Divisor"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "TimerSet"
 return

 173 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

 } else {
 puts "Timer set"
 }

Add timer event with an action that allows to execute
“MyScript.tcl”
 set code [catch "EventAdd $socketID $Positioner $TimerName
$EvtParam $Action $TCLFile $TCLTask $TCLArgs"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "EventAdd"
 return
 }

Set global variable
 set code [catch "GlobalArraySet $socketID $GlobalVarNumber
$Value"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GlobalArraySet"
 return
 }

close TCP socket
 set code [catch "TCP_CloseSocket $socketID"]
}

• MyScript.tcl
Initialization
set TCPTimeOut 0.5
set code 0
set GlobalVarNumber 1
set ReadValue 0
set NewValue 0
set END 10
set Positioner "SINGLE_AXIS.MY_STAGE"
set EventName "Timer1"
set EventPara 0
Open TCP socket
set code [catch "OpenConnection $TCPTimeOut socketID"]
if {$code != 0} {
 puts stdout "OpenConnection failed => $code"
} else {
Read global variable
 set code [catch "GlobalArrayGet $socketID $GlobalVarNumber
ReadValue"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GlobalArrayGet"
 return
 } else {
 puts stdout "Read value: $ReadValue"
 }

 if {$ReadValue < $END} {
 # Increment global variable
 set NewValue [expr {$ReadValue + 1}]
Set global variable to a new value
 set code [catch "GlobalArraySet $socketID $GlobalVarNumber
$NewValue"]

 if {$code != 0} {

EDH0336En1032 — 12/18 174

HXP Controller Tcl Manual

 DisplayErrorAndClose $socketID $code "GlobalArraySet"
 return
 } else {
 puts stdout "New value: $NewValue"
 }

} else {
 # Delete timer event
 set code [catch "EventRemove $socketID $Positioner
$EventName $EventPara"]

 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "EventRemove"
 return
 } else {
 puts "Timer event deleted"
 }

 }

close TCP socket
 set code [catch "TCP_CloseSocket $socketID"]
}

 175 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

This is what gets displayed on a Telnet window for the above example. For details
about Telnet connections, see section 5 Telnet connection:

EDH0336En1032 — 12/18 176

HXP Controller Tcl Manual

7.13 TCL script with input arguments

Configuration
Group type Number Group name Positioner name
Single axis 1 SINGLE_AXIS SINGLE_AXIS.MY_STAGE

Description
This example opens a TCP connection, kills the single axis group, then initializes and
homes it. It reads the three required input arguments: the start position, the end position,
and the number of cycles for moving from the target position to the end position. When
the user enters via the web site interface the arguments 10, -10 and 3, the positioner
moves from –10 to +10 three times. Then, the program ends by closing the socket.

Please see the chapter 6 Error handling for the code of the procedure
DisplayErrorAndClose.

Code
Initialization
set TimeOut 20
set code 0
set group "SINGLE_AXIS"
Open TCP socket
set code [catch "OpenConnection $TimeOut socketID"]
if {$code != 0} {
 puts stdout "OpenConnection failed => $code"
} else {
Recover the input arguments entered by the user
 if {$tcl_argc == 3} {
 set startpos $tcl_argv(0)
 set endpos $tcl_argv(1)
 set cycles $tcl_argv(2)
 } else {
 puts stdout "Wrong number of parameters, 3 are needed"
 set code [catch "TCP_CloseSocket $socketID"]
 return
 }

Kill group
 set code [catch "GroupKill $socketID $group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupKill"
 return
 }

Initialize group
 set code [catch "GroupInitialize $socketID $group"]
 if {$code != 0} {

 177 EDH0337En1032 — 12/18

HXP Controller Tcl Manual

 DisplayErrorAndClose $socketID $code "GroupInitialize"
 return
 }
 # Home group
 set code [catch "GroupHomeSearch $socketID $group"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupHomeSearch"
 return
 }

Loop until the number of cycles (third parameter entered by the
user) is reached
 for { set i 0} {($i < $cycles) } {incr i} {
Move group to start position
 set code [catch "GroupMoveAbsolute $socketID $group
$startpos"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupMoveAbsolute"
 return
 }

Move group to end position
 set code [catch "GroupMoveAbsolute $socketID $group $endpos"]
 if {$code != 0} {
 DisplayErrorAndClose $socketID $code "GroupMoveAbsolute"
 return
 }

 }
 # Close TCP socket
 set code [catch "TCP_CloseSocket $socketID"]

EDH0336En1032 — 12/18 178

HXP Controller Tcl Manual

Service Form
Your Local Representative

Tel.: __________________

Fax: ___________________

Name: ___ Return authorization #: ____________________________________

Company:___
(Please obtain prior to return of item)

Address: __ Date: __

Country: __ Phone Number: __

P.O. Number: __ Fax Number: __

Item(s) Being Returned: ____________________________________

Model#: __ Serial #: __

Description: __

Reasons of return of goods (please list any specific problems): __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 __

 179 EDH0337En1032 — 12/18

North America & Asia
Newport Corporation
1791 Deere Ave.
Irvine, CA 92606, USA
Sales
Tel.: (800) 222-6440
e-mail: sales@newport.com
Technical Support
Tel.: (800) 222-6440
e-mail: tech@newport.com
Service, RMAs & Returns
Tel.: (800) 222-6440
e-mail: service@newport.com

Europe
MICRO-CONTROLE Spectra-Physics S.A.S
9, rue du Bois Sauvage
91055 Évry CEDEX
France

Sales
Tel.: +33 (0)1.60.91.68.68
e-mail: france@newport.com

Technical Support
e-mail: tech_europe@newport.com

Service & Returns
Tel.: +33 (0)2.38.40.51.55

Visit Newport Online at:

www.newport.com

	Newport Website
	HXP TCL Manual
	1.0 Introduction
	1.1 Tcl is a String-Based Command Language
	1.1.1 Tcl Commands

	1.2 Tcl script examples
	1.2.1 Hello, World!
	1.2.2 Variables
	1.2.3 Command Substitution
	1.2.4 Math Expressions
	1.2.5 Backslash Substitution
	1.2.6 Grouping with Braces and Double Quotes
	1.2.6.1 Square Brackets Do Not Group
	1.2.6.2 Grouping Before Substitution
	1.2.6.3 Grouping Math Expressions with Braces
	1.2.6.4 More Substitution Examples

	1.2.7 Procedures
	1.2.8 A Factorial Example
	1.2.9 More About Variables
	1.2.9.1 Funny Variable Names
	1.2.9.2 The unset Command
	1.2.9.3 Using info to Find Out About Variables

	1.2.10 More About Math Expressions
	1.2.11 Comments
	1.2.12 Substitution and Grouping Summary
	1.2.13 Fine Points

	1.3 Reference
	1.3.1 Backslash Sequences
	1.3.2 Arithmetic Operators
	1.3.3 Built-in Math Functions

	2.0 Tcl Command Descriptions
	2.1 Tcl - Summary of Tcl Language Syntax
	2.2 after - Execute a Command After a Time Delay
	2.3 append - Append to Variable
	2.4 array - Manipulate Array Variables
	2.5 binary - Insert and Extract Fields from Binary strings
	2.6 break - Abort Looping Command
	2.7 catch - Evaluate Script and Trap Exceptional Returns
	2.8 cd - Change Working Directory
	2.9 clock - Obtain and Manipulate Time
	2.10 close - Close an Open Channel
	2.11 concat - Join Lists Together
	2.12 continue - Skip to the Next Iteration of a Loop
	2.13 eof - Check for End of File Condition on Channel
	2.14 error - Generate an Error
	2.15 eval - Evaluate a Tcl Script
	2.16 exec - Invoke Subprocess(es)
	2.17 exit - End the Application
	2.18 expr - Evaluate an Expression
	2.19 fconfigure - Set and Get Options on a Channel
	2.20 fcopy - Copy Data From One Channel to Another
	2.21 file - Manipulate File Names and Attributes
	2.22 fileevent - Execute a Script When a Channel Becomes Readable or Writable
	2.23 flush - Flush Buffered Output for a Channel
	2.24 for - ``For'' Loop
	2.25 foreach - Iterate Over All Elements in One or More Lists
	2.26 format - Format a String in the Style of sprintf
	2.27 gets - Read a Line from a Channel
	2.28 glob - Return Names of Files that Match Patterns
	2.29 global - Access Global Variables
	2.30 if - Execute Scripts Conditionally
	2.31 incr - Increment the Value of a Variable
	2.32 info - Return Information About the State of the Tcl Interpreter
	2.33 join - Create a String by Joining Together List Elements
	2.34 lappend - Append List Elements Onto a Variable
	2.35 lindex - Retrieve an Element From a List
	2.36 linsert - Insert Elements Into a List
	2.37 list - Create a List
	2.38 llength - Count the Number of Elements in a List
	2.39 lrange - Return One or More Adjacent Elements From a List
	2.40 lreplace - Replace Elements in a List With New Elements
	2.41 lsearch - See if a List Contains a Particular Element
	2.42 lsort - Sort the Elements of a List
	2.43 namespace - Create and Manipulate Contexts for Commands and Variables
	2.44 open - Open a File-Based or Command Pipeline Channel
	2.45 pid - Retrieve Process id(s)
	2.46 proc - Create a Tcl Procedure
	2.47 puts - Write to a Channel
	2.48 pwd - Return the Current Working Directory
	2.49 read - Read from a Channel
	2.50 rename - Rename or Delete a Command
	2.51 return - Return from a Procedure
	2.52 scan - Parse String Using Conversion Specifiers in the Style of sscanf
	2.53 seek - Change the Access Position for an Open Channel
	2.54 set - Read and Write Variables
	2.55 socket - Open a TCP Network Connection
	2.56 source - Evaluate a File or Resource as a Tcl Script
	2.57 split - Split a STRING into a PROPER Tcl LIST
	2.58 string - Manipulate Strings
	2.59 subst - Perform Backslash, Command, and Variable Substitutions
	2.60 switch - Evaluate One of Several Scripts, Depending on a Given Value
	2.61 tell - Return Current Access Position for an Open Channel
	2.62 time - Time the Execution of a Script
	2.63 trace - Monitor Variable Accesses, Command Usages and Command Executions
	2.64 unset - Delete Variables
	2.65 update - Process Pending Events and Idle Callbacks
	2.66 uplevel - Execute a Script in a Different Stack Frame
	2.67 upvar - Create Link to Variable in a Different Stack Frame
	2.68 variable - Create and Initialize a Namespace Variable
	2.69 vwait - Process Events Until a Variable is Written
	2.70 while - Execute Script Repeatedly as Long as a Condition is Met

	3.0 TCL commands Not Supported
	4.0 Boot Tcl Script
	5.0 Telnet Connection
	6.0 Error Handling
	7.0 Examples of Tcl Programs with XPS
	7.1 Using analog I/O for Motion
	7.2 Using Digital I/O for Motion
	7.3 Test GPIO1
	7.4 Gathering with Motion
	7.5 External Gathering
	7.6 Position Compare
	7.7 Master-Slave Mode
	7.8 Jogging
	7.9 Jogging and Gathering
	7.10 Analog Position Tracking
	7.11 Backlash Compensation
	7.12 Timer Event and Global Variables
	7.13 TCL script with input arguments

	Service Form
	Contact Us

