CONEX-CC

Single-Axis DC Motion with Controller/Driver

Newport®
Controller Documentation
V2.0.x
Warranty

Newport Corporation warrants that this product will be free from defects in material and workmanship and will comply with Newport’s published specifications at the time of sale for a period of one year from date of shipment. If found to be defective during the warranty period, the product will either be repaired or replaced at Newport's option.

To exercise this warranty, write or call your local Newport office or representative, or contact Newport headquarters in Irvine, California. You will be given prompt assistance and return instructions. Send the product, freight prepaid, to the indicated service facility. Repairs will be made and the instrument returned freight prepaid. Repaired products are warranted for the remainder of the original warranty period or 90 days, whichever occurs last.

Limitation of Warranty

The above warranties do not apply to products which have been repaired or modified without Newport’s written approval, or products subjected to unusual physical, thermal or electrical stress, improper installation, misuse, abuse, accident or negligence in use, storage, transportation or handling.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. NEWPORT CORPORATION SHALL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM THE PURCHASE OR USE OF ITS PRODUCTS.

©2018 by Newport Corporation, Irvine, CA. All rights reserved.

No part of this document may be reproduced or copied without the prior written approval of Newport Corporation. This document is provided for information only, and product specifications are subject to change without notice. Any change will be reflected in future publishings.
Table of Contents

1.0 System Overview

1.1 General Description 1
1.2 CONEX-CC ... 1
 1.2.1 Contents of Delivery 1
 1.2.2 Specifications 2
 1.2.3 Dimensions 2
1.3 CONEX-PS ... 3
 1.3.1 Specifications 3
 1.3.2 Dimensions 3
1.4 System Environmental Specifications 3
1.5 Connector Identification 4
1.6 USB Communication Settings 4

2.0 Programming

2.1 State Diagram 5
2.2 Command Syntax 8
2.3 Command Execution Time 8
2.4 Command Set 9
 AC — Set/Get acceleration 11
 BA — Set/Get backlash compensation 12
 BH — Set/Get hysteresis compensation 13
 DV — Set/Get driver voltage 14
 FD — Set/Get low pass filter cut off frequency for Kd ... 15
 FE — Set/Get following error limit 16
 FF — Set/Get friction compensation 17
 HT — Set/Get HOME search type 18
 ID — Set/Get stage identifier 19
 JR — Set/Get jerk time 20
 KD — Set/Get derivative gain 21
 KI — Set/Get integral gain 22
 KP — Set/Get proportional gain 23
 KV — Set/Get velocity feed forward 24
 MM — Enter/Leave DISABLE state 25
 OH — Set/Get HOME search velocity 26
 OR — Execute HOME search 27
 OT — Set/Get HOME search time-out 28
 PA — Move absolute 29
 PR — Move relative 30
PT — Get motion time for a relative move .. 31
PW — Enter/Leave CONFIGURATION state.. 32
QI — Set/Get motor’s current limits .. 33
RS — Reset controller .. 34
RS## — Reset controller’s address ... 35
SA — Set/Get controller’s RS-485 address .. 36
SC — Set/Get control loop state ... 37
SE — Configure/Execute simultaneous started move 38
SL — Set/Get negative software limit ... 40
SR — Set/Get positive software limit .. 41
ST — Stop motion .. 42
SU — Set/Get encoder increment value ... 43
TB — Get command error string .. 44
TE — Get last command error .. 45
TH — Get set-point position ... 46
TK — Enter/Leave TRACKING mode .. 47
TP — Get current position ... 48
TS — Get positioner error and controller state .. 49
VA — Set/Get velocity .. 51
VE — Get controller revision information ... 52
ZT — Get all configuration parameters .. 53

3.0 Connector interfaces .. 54
3.1 24 V Connector (Female Ø 2.1 x Ø 5.5 x 11 mm) 54
3.2 Mini-USB (Male) Connector Pinout ... 54

Service Form ... 55
1.0 System Overview

1.1 General Description

The CONEX-CC is a single axis motion controller/driver for DC servo motors up to 24 VDC at 0.3 Apeak. It provides a very compact and low-cost solution for driving a variety of Newport motorized stages from a PC.

Communication with the CONEX-CC is achieved via an USB port (requires Windows™ operating system). A Windows™ based software enables basic motion. Advanced application programming is simplified by an ASCII command interface and a set of two letter mnemonic commands.

1.2 CONEX-CC

1.2.1 Contents of Delivery

- CONEX-xxx Controller box with associated stage (cable length: 1.8m length).
- CONEX-PSC0.1 Power cable, 0.1 m length.
- CONEX-USB USB cable, 1.8 m length.
- CONEX-MOTION CD-ROM.
1.2.2 Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Description</td>
<td>Single-axis motion controller/driver for DC servo motors</td>
</tr>
<tr>
<td>Control Capability</td>
<td>DC servo motors, open or closed loop</td>
</tr>
<tr>
<td>Motor Output Power</td>
<td>24 VDC at 0.15 Arms, 0.3 A peak linear amplifier</td>
</tr>
<tr>
<td>Control loop</td>
<td>- Floating point digital PID loop with velocity and friction feed forward</td>
</tr>
<tr>
<td></td>
<td>- 2 kHz servo rate</td>
</tr>
<tr>
<td></td>
<td>- Backlash compensation</td>
</tr>
<tr>
<td>Motion</td>
<td>Point-to-point motion with S-gamma profile and jerk time control, or motion with trapezoidal profile with possible on the fly modification of the target position.</td>
</tr>
<tr>
<td>Computer interface</td>
<td>USB (requires Windows™ operating system)</td>
</tr>
<tr>
<td>Programming</td>
<td>- 40+ intuitive, 2-letter ASCII commands</td>
</tr>
<tr>
<td></td>
<td>- Command set includes software limits, user units, synchronized motion start, stop all</td>
</tr>
<tr>
<td>Dedicated inputs</td>
<td>- TTL encoder inputs for A, B, and I, max. 2 MHz rate</td>
</tr>
<tr>
<td></td>
<td>- Forward and reverse limit, home switch</td>
</tr>
<tr>
<td>Status display</td>
<td>Two-color LED</td>
</tr>
<tr>
<td>Communication rate</td>
<td>50 Hz Max. (USB)</td>
</tr>
<tr>
<td>Internal safety feature</td>
<td>Watchdog timer</td>
</tr>
<tr>
<td>Consumption</td>
<td>+5 V (USB): < 0.5 A, +24 V (CONEX –PS): < 8 A</td>
</tr>
</tbody>
</table>

1.2.3 Dimensions

![CONEX-CC Single-Axis DC Motion with Controller/Driver Dimensions](image-url)
1.3 CONEX-PS

1.3.1 Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Input</td>
<td>100–240 VAC, 47–63 Hz, 1.9 A</td>
</tr>
<tr>
<td>DC Output</td>
<td>24 V, 40 W max.</td>
</tr>
<tr>
<td>Connector</td>
<td>Male: Ø 2.1 x Ø 5.5 x 11 mm</td>
</tr>
</tbody>
</table>

NOTE

CONEX-PS can power up to 5 CONEX-CC Controller/Drivers.

1.3.2 Dimensions

![Dimensions Diagram]

1.4 System Environmental Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>5 °C to 40 °C</td>
</tr>
<tr>
<td>Operating humidity</td>
<td>20% to 85% relative humidity, non-condensing</td>
</tr>
<tr>
<td>Location</td>
<td>Indoor use only</td>
</tr>
</tbody>
</table>
1.5 Connector Identification

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB</td>
<td>Mini-USB connector</td>
</tr>
<tr>
<td>LED</td>
<td>Status LED</td>
</tr>
<tr>
<td>24 V in</td>
<td>Ø 2.1 x Ø 5.5 x 11 mm: Power supply input (connect to CONEX-PS)</td>
</tr>
<tr>
<td>24 V out</td>
<td>Ø 2.1 x Ø 5.5 x 11 mm: Power supply repeater for connecting several CONEX-CC to the same power supply</td>
</tr>
<tr>
<td>STAGE</td>
<td>Stage entry cable</td>
</tr>
<tr>
<td>Cable retainer</td>
<td>2 x M3 threaded hole to attach cable retainer</td>
</tr>
</tbody>
</table>

1.6 USB Communication Settings

Communication parameters are preset in the CONEX-CC controller and do not require any configuration:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits per second</td>
<td>921,600</td>
</tr>
<tr>
<td>Data bits</td>
<td>8</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
</tr>
<tr>
<td>Stop bits</td>
<td>1</td>
</tr>
<tr>
<td>Flow control</td>
<td>Xon/Xoff</td>
</tr>
<tr>
<td>Terminator</td>
<td>CR LF</td>
</tr>
</tbody>
</table>
2.0 Programming

2.1 State Diagram

For a safe and consistent operation, the CONEX-CC uses 9 different operation states: Not referenced, Configuration, Homing, Ready, Ready T, Disable, Disable T, Moving and Tracking. In each state, only specific commands are accepted by the CONEX-CC. Therefore, it is important to understand the state diagram below and which commands and actions cause transition between the different states. Also see section 2.4 for command/state information:

End of Runs encountered in the following state
NOT REFERENCED: No action.
CONFIGURATION: No action.
HOMING: Only check at end of HOMING and then change to NOT REFERENCED state.
MOVING: Abort motion and then change to NOT REFERENCED state.
TRACKING: Abort motion and then change to NOT REFERENCED state.
READY: Change to NOT REFERENCED state.
DISABLE: Change to NOT REFERENCED state.

LED display
NOT REFERENCED: If everything is OK then SOLID ORANGE.
NOT REFERENCED: If hardware faults or wrong parameters then SOLID RED.
NOT REFERENCED: If end of runs then SLOW BLINK ORANGE.
CONFIGURATION: SLOW BLINK RED.

READY: SOLID GREEN.
READY T: SOLID GREEN.

DISABLE: SLOW BLINK GREEN.
DISABLE T: SLOW BLINK GREEN.

HOMING: FAST BLINK GREEN.
MOVING: FAST BLINK GREEN.
TRACKING: FAST BLINK GREEN.
When connecting the CONEX-CC to power, the controller must be first initialized. When the initialization is successful, the controller gets to the NOT REFERENCED state. From the NOT REFERENCED state, the controller can go to the CONFIGURATION state with the PW1 command. In CONFIGURATION stage, the CONEX-CC allows changing all stage and motor configuration parameters like maximum motor current or travel limits. The PW0 command saves all changes to the controller’s memory and returns the controller back to the NOT REFERENCED state.

In Sgamma motion mode:

To execute any move commands (PA, PR), the controller must be in READY state. To get from the NOT REFERENCED state to the READY state, the positioner must be homed first with the OR command. During homing (OR command execution), the controller is in HOMING state. When the homing is successful, the controller automatically gets to the READY state. The process for homing, and which signals are looked for during homing, can be defined with the HT command.

In READY state the motor is energized and the control loop is closed (when control loop state is closed, SC1). During a move execution (PA/PR), the controller is in MOVING state and gets automatically back to the READY state when the move is completed successfully. A following error during a move changes the controller to DISABLE state. Other errors, for instance a loss of the encoder signals, may change the controller to the NOT REFERENCED state.

In DISABLE state the motor is not energized and the control loop is open. But the encoder is still read and the current position gets updated. The DISABLE state can be used for instance for manual adjustments or to make sure that no energy goes to the motor. To go from READY state to DISABLE state and vice versa, use the MM command.

To get from READY state or DISABLE state back to the NOT REFERENCED state, for instance to make some further parameter change in CONFIGURATION state, you need to reboot the controller with the RS command.

In Position Tracking mode:

The Position Tracking mode of operation is accessed using the TK1 command. The main difference with Sgamma motion mode is that it is possible to update the target position on the fly.

In this mode, the Open/Closed loop, jerktime do not apply. The other features (backlash compensation, Disable) and error handling are the similar to that of Sgamma motion mode.
2.2 Command Syntax

The CONEX-CC is a command driven controller. The general format of a command is a two letter ASCII character preceded and followed by parameters specific to the command:

Command format

```
  nn AA xx
```

- **nn** — Optional or required controller address.
- **AA** — Command name.
- **xx** — Optional or required value or “?” to query current value.

Both, upper and lower case characters are accepted. Depending on the command, it can have an optional or required prefix (**nn**) for the controller address and/or a suffix (**xx**) value or a “?”.

Blank spaces

Blanks are allowed and ignored in any position, including inside a numerical value. The following two commands are equivalent, but the first example might be confusing and uses more memory:

```
2P A1.43 6
2PA1.436
```

Decimal separator

A dot (“.”) is used as decimal separator for all numerical values.

Command terminator

Commands are executed as the command terminator CRLF (carriage-return line-feed, ASCII 13 and ASCII 10) is received. The controller will analyze the received string. If the command is valid and its parameters are in the specified range, it will be executed. Otherwise it will memorize an error.

After the execution of the command, all remaining characters in the input string, if any, will be ignored. In particular, it is not possible to concatenate several commands on a single string from the PC to the CONEX-CC.

Each command will handle properly the memorization of related errors that can be accessed with the TE command. Please refer to the command set in section 2.4 for details.

2.3 Command Execution Time

The CONEX-CC controller interprets commands continuously as received. The typical execution time for a "tell position command" (nTP?) is about 10 ms. Here, command execution time means the time from sending the command until receive of the answer.

It is important to note that a move command, that may lasts for several seconds, will not suspend the controller from further command execution. So for an efficient process flow with many move commands it is recommended to use the PT command (get time for a relative move), and to query the controller status (TS command) or the current position (TP command) before any further motion command is sent.
2.4 Command Set

This section describes the supported two-letter ASCII commands used to configure and operate the CONEX-CC. The general command format is:

Command format

```
  nn  AA  xx
```

- **nn** — Optional or required controller address.
- **AA** — Command name.
- **xx** — Optional or required value or “?” to query current value.

Most commands can be used to set a value (in that case the command name is followed by the value “xx”) or to query the current value (in that case the command name is followed by a “?”). When querying a value, the controller responds with the command it received followed by the queried value. For example, a 1VA10 sets the velocity of the controller #1 to 10 units/second. A 1VA? sends the response 1VA10.

Not every command can be executed in all states of the CONEX-CC and some commands have different meaning in different states. It is therefore important to understand the state diagram of the controller, see section 2.1.
<table>
<thead>
<tr>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get acceleration</td>
</tr>
<tr>
<td>BA</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get backlash compensation</td>
</tr>
<tr>
<td>BH</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get hysteresis compensation</td>
</tr>
<tr>
<td>DV</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get driver voltage</td>
</tr>
<tr>
<td>FD</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get low pass filter for Kd</td>
</tr>
<tr>
<td>FE</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get following error limit</td>
</tr>
<tr>
<td>FF</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get friction compensation</td>
</tr>
<tr>
<td>HT</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get HOME search type</td>
</tr>
<tr>
<td>ID</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get stage identifier</td>
</tr>
<tr>
<td>JR</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get jerk time</td>
</tr>
<tr>
<td>KD</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get derivative gain</td>
</tr>
<tr>
<td>KI</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get integral gain</td>
</tr>
<tr>
<td>KP</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get proportional gain</td>
</tr>
<tr>
<td>KV</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get velocity feed forward</td>
</tr>
<tr>
<td>MM</td>
<td>–</td>
<td>●</td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>Enter/Leave DISABLE state</td>
</tr>
<tr>
<td>OH</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get HOME search velocity</td>
</tr>
<tr>
<td>OR</td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Execute HOME search</td>
</tr>
<tr>
<td>OT</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get HOME search time–out</td>
</tr>
<tr>
<td>PA</td>
<td>–</td>
<td>–</td>
<td>●</td>
<td>–</td>
<td>●</td>
<td>Move absolute</td>
</tr>
<tr>
<td>PR</td>
<td>–</td>
<td>–</td>
<td>●</td>
<td>–</td>
<td>●</td>
<td>Move relative</td>
</tr>
<tr>
<td>PT</td>
<td>–</td>
<td>–</td>
<td>●</td>
<td>●</td>
<td>–</td>
<td>Get motion time for a relative move</td>
</tr>
<tr>
<td>PW</td>
<td>●</td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Enter/Leave CONFIGURATION state</td>
</tr>
<tr>
<td>QI</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get motor’s current limits</td>
</tr>
<tr>
<td>RS</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Reset controller</td>
</tr>
<tr>
<td>RS##</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Reset controller’s address to 1</td>
</tr>
<tr>
<td>SA</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get controller’s RS–485 address</td>
</tr>
<tr>
<td>SC</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get control loop state</td>
</tr>
<tr>
<td>SE</td>
<td>–</td>
<td>–</td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>Configure/Execute simultaneous started move</td>
</tr>
<tr>
<td>SL</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get negative software limit</td>
</tr>
<tr>
<td>SR</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get positive software limit</td>
</tr>
<tr>
<td>ST</td>
<td>–</td>
<td>–</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Stop motion</td>
</tr>
<tr>
<td>SU</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get encoder increment value</td>
</tr>
<tr>
<td>TB</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Get command error string</td>
</tr>
<tr>
<td>TE</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Get last command error</td>
</tr>
<tr>
<td>TH</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Get set–point position</td>
</tr>
<tr>
<td>TK</td>
<td>–</td>
<td>–</td>
<td>●</td>
<td>–</td>
<td>–</td>
<td>Enter/Leave Tracking mode</td>
</tr>
<tr>
<td>TP</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Get current position</td>
</tr>
<tr>
<td>TS</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Get positioner error and controller state</td>
</tr>
<tr>
<td>VA</td>
<td>–</td>
<td>O</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>Set/Get velocity</td>
</tr>
<tr>
<td>VE</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Get controller revision information</td>
</tr>
<tr>
<td>ZT</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>Get all axis parameters</td>
</tr>
</tbody>
</table>

Motion
Corresponds to HOMING and MOVING state (for details see state diagram, section 2.1).

Ready
Corresponds to READY and READY T states.

Disable
Corresponds to DISABLE and DISABLE T states.

- **O**
Changes configuration parameters. Those changes will be stored in the controller’s memory with the PW1 command and remain available after switching off the controller.

- **□**
Changes working parameters only. Those changes will get lost when switching off the controller.

- **●**
Accepted command.

- **–**
Write command not accepted (will return an error).

Command
Command passed without preceding controller number applies to all controllers (e.g. MM0 disables all controllers).
AC — Set/Get acceleration

Usage

<table>
<thead>
<tr>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

xxACnn or xxAC?

Parameters

Description

xx [int] — Controller address.

nn [float] — Acceleration value.

Range

xx — 1 to 31

nn — > 10^-6 and < 10^12

Units

xx — None

nn — Preset units/s²

Defaults

xx Missing: Error B.

Out of range: Error B.

Floating point: Error A.

nn Missing: Error C.

Out of range: Error C.

Description

In CONFIGURATION state, this command sets the maximum acceleration value which can than be saved in the controller’s nonvolatile memory using the PW command. This is the maximum acceleration that can be applied to the mechanical system. It is also the default acceleration that will be used for all moves unless a lower value is set in DISABLE or READY state.

In DISABLE or READY state, this command sets the acceleration used for the following moves. Its value can be up to the programmed value in CONFIGURATION state. This value is not saved in the controller’s memory and will be lost after reboot.

Returns

If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

A — Unknown message code or floating point controller address.

B — Controller address not correct.

C — Parameter missing or out of range.

D — Execution not allowed.

H — Execution not allowed in NOT REFERENCED state.

L — Execution not allowed in HOMING state.

M — Execution not allowed in MOVING state.

P — Execution not allowed in TRACKING state.

Rel. Commands

VA — Set velocity.

Example

1AC500 | Set controller #1 acceleration to 500 units/s².

1AC? | Controller returns 1AC500.
BA — Set/Get backlash compensation

Syntax

`xxBA nn` or `xxBA ?`

Parameters

Description

- `xx` [int] — Controller address.
- `nn` [float] — Backlash value.

Range

- `xx` — 1 to 31
- `nn` — ≥ 0 and $< 1E^{12}$

Units

- `xx` — None
- `nn` — Preset units

Defaults

- `xx` Missing: Error B.
- Out of range: Error B.
- Floating point: Error A.
- `nn` Missing: Error C.
- Out of range: Error C.

Description

The BA command sets the backlash compensation value. This is the value that the controller moves the motor in addition to the commanded distance with any move that reverses the direction of motion without changing the current position value (TP command).

The BA command helps compensating for repeatable mechanical defects that appear when reversing the direction of motion, for instance mechanical play. The value 0 disables this function. This feature can be only used when the hysteresis compensation (BH) is disabled.

Returns

If the sign “?” takes place of `nn`, this command returns the current programmed value.

Errors

- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- J — Execution not allowed in DISABLE state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.
- P — Execution not allowed in TRACKING state.

Rel. Commands

- BH — Set hysteresis compensation.

Example

`1BA 0.005` | *Set controller #1 backlash compensation to 0.005 units.*
BH — Set/Get hysteresis compensation

Usage

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Syntax

```
xBHnn or xxBH?
```

Parameters

Description

- **xx** [int] — Controller address.
- **nn** [float] — Hysteresis value.

Range

- **xx** — 1 to 31
- **nn** — ≥ 0 and $< 10^{12}$

Units

- **xx** — None
- **nn** — Preset units

Defaults

- **xx** Missing: Error B.
- Out of range: Error B.
- Floating point: Error A.
- **nn** Missing: Error C.
- Out of range: Error C.

Description

The BH command sets the hysteresis compensation value. When set to a value different than zero, the controller will issue for each move in the positive direction a move of the commanded distance plus the hysteresis compensation value, and then a second move of the hysteresis compensation value in the negative direction. This motion ensures that a final position gets always approached from the same direction and distance and helps compensating for non-repeatable mechanical defects like hysteresis or mechanical stiffness variations.

The value 0 disables this function. The BH command can not be used when the backlash compensation is enabled (BA command).

Returns

If the sign “?” takes place of **nn**, this command returns the current programmed value.

Errors

- **A** — Unknown message code or floating point controller address.
- **B** — Controller address not correct.
- **C** — Parameter missing or out of range.
- **D** — Execution not allowed.
- **H** — Execution not allowed in NOT REFERENCED state.
- **J** — Execution not allowed in DISABLE state.
- **K** — Execution not allowed in READY state.
- **L** — Execution not allowed in HOMING state.
- **M** — Execution not allowed in MOVING state.
- **P** — Execution not allowed in TRACKING state.

Rel. Commands

- **BA** — Set backlash compensation.

Example

```
1BH0.015 | Set controller #1 backlash compensation to 0.015 units.
```
DV — Set/Get driver voltage

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

`xxDVnn` or `xxDV?`

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>xx [int] —</th>
<th>Controller address.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nn [float] —</td>
<td>Driver voltage value.</td>
</tr>
</tbody>
</table>

Range

- `xx` — 1 to 31
- `nn` — ≥ 12 and ≤ 48

Units

- `xx` — None.
- `nn` — Volts

Defaults

- `xx` Missing: Error B.
- `nn` Missing: Error C.
- Out of range: Error B.
- Out of range: Error C.

Description

This command sets the max. output voltage of the driver to the motor.

Returns

If the sign “?” takes place of `nn`, this command returns the current programmed value.

Errors

- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- J — Execution not allowed in DISABLE state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.
- P — Execution not allowed in TRACKING state.

Rel. Commands

- QI — Set current limit.

Example

1DV48 | Set controller #1 maximum output voltage to 48 V.
FD — Set/Get low pass filter cut off frequency for Kd

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>xxFDnn or xxFD?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameters

- **Description**
 - xx [int] — Controller address.
 - nn [float] — Cut off frequency value.

- **Range**
 - xx — 1 to 31
 - nn — $> 10^{-6}$ and < 2000

- **Units**
 - xx — None.
 - nn — Hertz

- **Defaults**
 - xx Missing: Error B.
 - Out of range: Error B.
 - Floating point: Error A.
 - nn Missing: Error C.
 - Out of range: Error C.

Description

In CONFIGURATION state, this command sets the value for the low pass filter cut-off frequency which can than be saved in the controller’s nonvolatile memory using the PW command. It is also the default value that will be used unless a different value is set in DISABLE state.

In DISABLE state, this command allows setting a new working parameter for the low pass filter cut-off frequency. This value is not saved in the controller’s memory and will be lost after reboot.

Returns

If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.
- P — Execution not allowed in TRACKING state.

Rel. Commands

- SC — Set closed loop state.

Example

1FD1500 | Set controller #1 Kd cut-off frequency to 1500 Hz.
FE — Set/Get following error limit

Usage

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>○</td>
<td>□</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Syntax

\texttt{xxFE}nn or \texttt{xxFE}?

Parameters

Description

\texttt{xx} [int] — Controller address.

\texttt{nn} [float] — Following error limit value.

Range

\texttt{xx} — 1 to 31

\texttt{nn} — \(> 10^4\) and \(< 10^{12}\)

Units

\texttt{xx} — None.

\texttt{nn} — Preset units.

Defaults

\texttt{xx} Missing: Error B.

Out of range: Error B.

Floating point: Error A.

\texttt{nn} Missing: Error C.

Out of range: Error C.

Description

In CONFIGURATION state, this command sets the value for the maximum allowed following error which can than be saved in the controller’s nonvolatile memory using the PW command. It is also the default value that will be used for the closed-loop control unless a different value is set in DISABLE state.

The following error is the most important parameter to control motion. It is the difference between the set point (or theoretical) position and the current (or encoder) position. When the current following error exceeds the maximum allowed value, a following error is issued and the controller is set to DISABLE state.

In DISABLE state, this command allows setting a new working parameter for the maximum allowed following error. This value is not saved in the controller’s memory and will be lost after reboot.

Returns

If the sign “?” takes place of \texttt{nn}, this command returns the current programmed value.

Errors

A — Unknown message code or floating point controller address.

B — Controller address not correct.

C — Parameter missing or out of range.

D — Execution not allowed.

H — Execution not allowed in NOT REFERENCED state.

K — Execution not allowed in READY state.

L — Execution not allowed in HOMING state.

M — Execution not allowed in MOVING state.

P — Execution not allowed in TRACKING state.

Rel. Commands

SC — Set closed loop state.

Example

1FE0.015 | Set controller #1 following error limit to 0.015 units.
FF — Set/Get friction compensation

Syntax

`xxFFnn` or `xxFF?`

Parameters

- **Description**
 - `xx` [int] — Controller address.
 - `nn` [float] — Friction compensation value.

- **Range**
 - `xx` — 1 to 31
 - `nn` — ≥ 0 and < DV

- **Units**
 - `xx` — None.
 - `nn` — Volt * second/preset units.

- **Defaults**
 - `xx` Missing: Error B.
 - Out of range: Error B.
 - Floating point: Error A.
 - `nn` Missing: Error C.
 - Out of range: Error C.

Description

In CONFIGURATION state, this command sets the value for the friction compensation which can than be saved in the controller’s nonvolatile memory using the PW command. It is also the default value that will be used for any move unless a different value is set in DISABLE state.

The FF command helps minimizing the following error with systems that have significant friction. The value for the friction compensation is the voltage that gets added to the output voltage whenever the set point (or theoretical) velocity is different from zero. The sign of this voltage is the same as the sign of the set point velocity.

In DISABLE state, this command allows setting a new working parameter for the friction compensation. This value is not saved in the controller’s memory and will be lost after reboot.

Returns

If the sign “?” takes place of `nn`, this command returns the current programmed value.

Errors

- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.
- P — Execution not allowed in TRACKING state.

Rel. Commands

- SC — Set closed loop state.

Example

1FF0.15 | Set controller #1 friction compensation to 0.15 V * s/units.
HT — Set/Get HOME search type

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

- `xxHTnn` or `xxHT?`

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>xx [int] —</th>
<th>Controller address.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nn [int] —</td>
<td>Home type value.</td>
</tr>
</tbody>
</table>

Range

<table>
<thead>
<tr>
<th>xx —</th>
<th>1 to 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn —</td>
<td>0 use MZ switch and encoder Index.</td>
</tr>
<tr>
<td></td>
<td>1 use current position as HOME.</td>
</tr>
<tr>
<td></td>
<td>2 use MZ switch only.</td>
</tr>
<tr>
<td></td>
<td>3 use EoR- switch and encoder Index.</td>
</tr>
<tr>
<td></td>
<td>4 use EoR- switch only.</td>
</tr>
</tbody>
</table>

Units

<table>
<thead>
<tr>
<th>xx —</th>
<th>None.</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn —</td>
<td>None.</td>
</tr>
</tbody>
</table>

Defaults

- xx Missing: Error B.
- Out of range: Error B.
- Floating point: Error A.
- nn Missing: Error C.
- Out of range: Error C.

Description

This command sets the type of HOME search used with the OR command.

Returns

If the sign “?” takes place of `nn`, this command returns the current programmed value.

Errors

- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- J — Execution not allowed in DISABLE state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.
- P — Execution not allowed in TRACKING state.

Rel. Commands

- OR — Execute HOME search.

Example

- `1HT0` |

 Set controller #1 HOME sequence to use MZ and encoder index.
ID — Set/Get stage identifier

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Syntax

xxIDnn or xxID?

Parameters

Description

xx [int] — Controller address.

nn [float] — Stage model number.

Range

xx — 1 to 31

nn — 1 to 31 ASCII characters.

Units

xx — None

nn — None

Defaults

xx — Missing: Error B.

Out of range: Error B.

Floating point: Error A.

nn — Missing: Error C.

Out of range: Error C.

Description

The ID? command return the stage identifier. When used with Newport ESP compatible stages (see blue label on the product), this is the identical to the Newport product name.

Returns

If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

A — Unknown message code or floating point controller address.

B — Controller address not correct.

C — Parameter missing or out of range.

D — Execution not allowed.

H — Execution not allowed in NOT REFERENCED state.

J — Execution not allowed in DISABLE state.

K — Execution not allowed in READY state.

L — Execution not allowed in HOMING state.

M — Execution not allowed in MOVING state.

P — Execution not allowed in TRACKING state.

Example

1ID? | Get stage identifier for controller #1.

1ID URS100CC | Controller returns stage identifier: URS100CC.
CONEX-CC Single-Axis DC Motion with Controller/Driver

JR — Set/Get jerk time

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td></td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
</tbody>
</table>

Syntax

`xxJRnn` or `xxJR?`

Parameters

Description
`xx` [int] — Controller address.
`nn` [float] — Jerk time value.

Range
`xx` — 1 to 31
`nn` — > 0.001 and < 10¹²

Units
`xx` — None.
`nn` — Seconds.

Defaults
`xx` Missing: Error B.
Out of range: Error B.
Floating point: Error A.
`nn` Missing: Error C.
Out of range: Error C.

Description
In CONFIGURATION state, this command sets the value for the maximum jerk time which can than be saved in the controller’s nonvolatile memory using the PW command. It is also the default value that will be used unless a different value is set in DISABLE or READY state.

Jerk is the derivative of acceleration. The jerk time defines the time to reach the needed acceleration. A longer jerk time reduces stress to the mechanics and smoothes motion.

In DISABLE or READY state, this command allows setting a new working parameter for the maximum jerk time. This value is not saved in the controller’s memory and will be lost after reboot.

Returns
If the sign “?” takes place of `nn`, this command returns the current programmed value.

Errors
A — Unknown message code or floating point controller address.
B — Controller address not correct.
C — Parameter missing or out of range.
D — Execution impossible (axis in movement).
H — Execution not allowed in NOT REFERENCED state.
L — Execution not allowed in HOMING state.
M — Execution not allowed in MOVING state.
P — Execution not allowed in TRACKING state.

Rel. Commands
AC — Set positioner acceleration.

Example
`1JR0.05` | Set controller #1 jerk time to 0.05 seconds.
KD — Set/Get derivative gain

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax xxKDnn or xxKD?

Parameters

Description

| xx [int] | — Controller address. |
| nn [float] | — Derivative gain value. |

Range

| xx | 1 to 31 |
| nn | ≥ 0 and < 1012 |

Units

| xx | None. |
| nn | Volt * second/preset unit. |

Defaults

xx	Missing: Error B.
Out of range:	Error B.
Floating point:	Error A.
nn	Missing: Error C.
Out of range:	Error C.

Description

In CONFIGURATION state, this command sets the derivative gain of the PID control loop which can than be saved in the controller’s nonvolatile memory using the PW command. It is also the default value that will be used unless a different value is set in DISABLE state.

In DISABLE state, this command allows setting a new working parameter for the derivative gain. This value is not saved in the controller’s memory and will be lost after reboot.

Returns

If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

A — Unknown message code or floating point controller address.
B — Controller address not correct.
C — Parameter missing or out of range.
D — Execution not allowed.
H — Execution not allowed in NOT REFERENCED state.
K — Execution not allowed in READY state.
L — Execution not allowed in HOMING state.
M — Execution not allowed in MOVING state.
P — Execution not allowed in TRACKING state.

Rel. Commands

SC — Set closed loop state.
KI — Set integral gain.
KP — Set proportional gain.
KV — Set velocity feed forward.

Example

1KD0.015 | Set controller #1 derivative gain to 0.015.
KI — Set/Get integral gain

Syntax

```
xxKI nn
```

Parameters

- **xx**: [int] — Controller address.
- **nn**: [float] — Integral gain value.

Description

- In **CONFIGURATION** state, this command sets the integral gain of the PID control loop which can than be saved in the controller’s nonvolatile memory using the PW command. It is also the default value that will be used unless a different value is set in **DISABLE** state.
- In **DISABLE** state, this command allows setting a new working parameter for the derivative gain. This value is not saved in the controller’s memory and will be lost after reboot.

Defaults

- **xx**: Missing: Error B. Out of range: Error B.
- **nn**: Missing: Error C. Out of range: Error C.

Returns

- If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.
- P — Execution not allowed in TRACKING state.

Rel. Commands

- SC — Set closed loop state.
- KD — Set derivative gain.
- KP — Set proportional gain.
- KV — Set velocity feed forward.

Example

```
1KI0.015
```

Set controller #1 integral gain to 0.015.
KP — Set/Get proportional gain

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>○</td>
<td>□</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Syntax
xxKPnn or xxKP?

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>xx [int] — Controller address.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nn [float] — Proportional gain value.</td>
</tr>
</tbody>
</table>

Range

<table>
<thead>
<tr>
<th>xx</th>
<th>1 to 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn</td>
<td>≥ 0 and < 10^{12}</td>
</tr>
</tbody>
</table>

Units

<table>
<thead>
<tr>
<th>xx</th>
<th>None.</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn</td>
<td>Volt/preset unit</td>
</tr>
</tbody>
</table>

Defaults

- xx Missing: Error B.
- Out of range: Error B.
- Floating point: Error A.
- nn Missing: Error C.
- Out of range: Error C.

Description

In CONFIGURATION state, this command sets the proportional gain of the PID control loop which can then be saved in the controller’s nonvolatile memory using the PW command. It is also the default value that will be used unless a different value is set in DISABLE state.

In DISABLE state, this command allows setting a new working parameter for the derivative gain. This value is not saved in the controller’s memory and will be lost after reboot.

Returns

If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.
- P — Execution not allowed in TRACKING state.

Rel. Commands

- SC — Set closed loop state.
- KD — Set derivative gain.
- KI — Set integral gain.
- KV — Set velocity feed forward.

Example

1KP0.015 | *Set controller #1 proportional gain to 0.015.*
KV — Set/Get velocity feed forward

Syntax

\[xxKVnn \] or \[xxKV? \]

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>xx [int]</th>
<th>— Controller address.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nn [float]</td>
<td>— Velocity feed forward value.</td>
</tr>
</tbody>
</table>

Range

<table>
<thead>
<tr>
<th>xx</th>
<th>1 to 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn</td>
<td>≥ 0 and < 10^{12}</td>
</tr>
</tbody>
</table>

Units

<table>
<thead>
<tr>
<th>xx</th>
<th>None.</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn</td>
<td>Volt * second/preset unit</td>
</tr>
</tbody>
</table>

Defaults

<table>
<thead>
<tr>
<th>xx</th>
<th>Missing: Error B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out of range: Error B.</td>
<td></td>
</tr>
<tr>
<td>Floating point: Error A.</td>
<td></td>
</tr>
<tr>
<td>nn</td>
<td>Missing: Error C.</td>
</tr>
<tr>
<td>Out of range: Error C.</td>
<td></td>
</tr>
</tbody>
</table>

Description

In CONFIGURATION state, this command sets the velocity feed forward of the PID control loop which can than be saved in the controller’s nonvolatile memory using the PW command. It is also the default value that will be used unless a different value is set in DISABLE state.

In DISABLE state, this command allows setting a new working parameter for the derivative gain. This value is not saved in the controller’s memory and will be lost after reboot.

Returns

If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

A	Unknown message code or floating point controller address.
B	Controller address not correct.
C	Parameter missing or out of range.
D	Execution not allowed.
H	Execution not allowed in NOT REFERENCED state.
K	Execution not allowed in READY state.
L	Execution not allowed in HOMING state.
M	Execution not allowed in MOVING state.
P	Execution not allowed in TRACKING state.

Rel. Commands

SC	Set closed loop state.
KD	Set derivative gain.
KI	Set integral gain.
KP	Set proportional gain.

Example

1KV0.015 | Set controller #1 velocity feed forward to 0.015.
MM — Enter/Leave DISABLE state

Syntax \(xxMMnn \) or \(xxMM? \)

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>xx [int]</th>
<th>Controller address.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nn [float]</td>
<td>Velocity feed forward value.</td>
</tr>
</tbody>
</table>

Range

<table>
<thead>
<tr>
<th>xx</th>
<th>0 to 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn</td>
<td></td>
</tr>
</tbody>
</table>

Units

<table>
<thead>
<tr>
<th>xx</th>
<th>None.</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn</td>
<td>None.</td>
</tr>
</tbody>
</table>

Defaults

<table>
<thead>
<tr>
<th>xx</th>
<th>Missing: Change to 0.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Out of range: Error B.</td>
</tr>
<tr>
<td></td>
<td>Floating point: Error A.</td>
</tr>
<tr>
<td>nn</td>
<td>Missing: Error C.</td>
</tr>
<tr>
<td></td>
<td>Out of range: Error C.</td>
</tr>
</tbody>
</table>

Description

When the MM command is sent without preceding controller number or the controller number is 0, the MM command gets executed on all controllers.

MM0 changes the controller’s state from READY to DISABLE. In DISABLE state the control loop is open and the motor is not energized. The encoder, though, is still read and the current position gets updated.

MM1 changes the controller’s state from DISABLE to READY. The controller’s set point position is set equal to its current position and the control loop gets closed (depending on the closed-loop state). The residual following error gets cleared from the buffer and the motor gets energized.

Returns

If the sign “?” takes place of \(nn \), this command returns the current state. Refer to the TS command section for the list of controller states.

Errors

A	Unknown message code or floating point controller address.
B	Controller address not correct.
C	Parameter missing or out of range.
D	Execution not allowed.
H	Execution not allowed in NOT REFERENCED state.
I	Execution not allowed in CONFIGURATION state.
L	Execution not allowed in HOMING state.
M	Execution not allowed in MOVING state.
P	Execution not allowed in TRACKING state.

Rel. Commands

| PW | Enter/leave CONFIGURATION state. |

Example

MM0 | All controllers go to DISABLE state.
OH — Set/Get HOME search velocity

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax
`xxOHnn` or `xxOH?`

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>xx</th>
<th>nn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>xx [int]</td>
<td>Controller address.</td>
</tr>
<tr>
<td>Range</td>
<td>xx</td>
<td>1 to 31</td>
</tr>
<tr>
<td>Units</td>
<td>xx</td>
<td>None.</td>
</tr>
</tbody>
</table>

Defaults

- **xx** Missing: Error B.
- Out of range: Error B.
- Floating point: Error A.
- **nn** Missing: Error C.
- Out of range: Error C.

Description
This command sets the maximum velocity used by the controller for the HOME search.

Returns
If the sign “?” takes place of **nn**, this command returns the current programmed value.

Errors

- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- J — Execution not allowed in DISABLE state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.
- P — Execution not allowed in TRACKING state.

Rel. Commands

- OR — Execute HOME search.
- OT — Set HOME search time-out.

Example
`1OH50`
Set controller #1 HOME search velocity to 50 units/s.
OR — Execute HOME search

Usage

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
</tbody>
</table>

Syntax

xxOR

Parameters

Description

xx [int] — Controller address.

Range

xx — 1 to 31

Units

xx — None.

Defaults

xx Missing: Error B.
Out of range: Error B.
Floating point: Error A.

nn Missing: Error C.
Out of range: Error C.

Description

This command starts the execution of the HOME search as defined by the HT command.

When in NOT REFERENCED state, for instance after system start, any positioner must first get homed with the OR command before further motion commands can get executed.

The OR command gets accepted only in NOT REFERENCED state and only with no present hardware errors, except for end-of-run maybe. Refer to the TS command to get more information on the possible hardware errors.

Errors

A — Unknown message code or floating point controller address.
B — Controller address not correct.
C — Parameter missing or out of range.
D — Execution not allowed.
E — home sequence already started.
I — Execution not allowed in CONFIGURATION state.
J — Execution not allowed in DISABLE state.
K — Execution not allowed in READY state.
L — Execution not allowed in HOMING state.
M — Execution not allowed in MOVING state.
P — Execution not allowed in TRACKING state.

Rel. Commands

HT — Set HOME search type.

OH — Set HOME search velocity.

OT — Set HOME search time-out.

Example

1OR | Execute HOME search with controller #1.
OT — Set/Get HOME search time-out

Syntax

```plaintext
xxOTnn or xxOT?
```

Parameters

- **Description**
 - **xx** [int] — Controller address.
 - **nn** [float] — HOME time-out.

- **Range**
 - **xx** — 1 to 31
 - **nn** — > 1 and < 10^3

- **Units**
 - **xx** — None.
 - **nn** — Seconds

- **Defaults**
 - Missing: Error B.
 - Out of range: Error B.
 - Floating point: Error A.
 - Missing: Error C.
 - Out of range: Error C.

Description

This command sets the time-out value for the HOME search. When the HOME search does not finish successfully before this time elapses, the HOME search will be aborted and an error gets recorded.

Returns

If the sign “?” takes place of **nn**, this command returns the current programmed value.

Errors

- **A** — Unknown message code or floating point controller address.
- **B** — Controller address not correct.
- **C** — Parameter missing or out of range.
- **D** — Execution not allowed.
- **H** — Execution not allowed in NOT REFERENCED state.
- **J** — Execution not allowed in DISABLE state.
- **K** — Execution not allowed in READY state.
- **L** — Execution not allowed in HOMING state.
- **M** — Execution not allowed in MOVING state.
- **P** — Execution not allowed in TRACKING state.

Rel. Commands

- **HT** — Set HOME search type.
- **OH** — Set HOME search velocity.
- **OR** — Execute HOME search.

Example

```
1OT2.2 | Set controller #1 HOME time-out to 2.2 seconds.
```
PA — Move absolute

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>xxPAnn or xxPA?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>xx [int] — Controller address.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nn [float] — New target position.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>xx — 1 to 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nn — > SL and < SR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Units</td>
<td>xx — None.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nn — Preset units.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defaults</td>
<td>xx Missing: Error B.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Out of range: Error B.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Floating point: Error A.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nn Missing: Error C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Out of range: Error C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description
The PA command initiates an absolute move. When received, the positioner will move, with the predefined acceleration and velocity, to the new target position specified by nn.

The PA command gets only accepted in READY, READY T or TRACKING states, AND when the new target position is higher or equal to the negative software limit (SL), AND lower or equal to the positive software limit (SR).

To avoid any mismatch, the controller always rounds the new target position to the closest encoder position.

Returns
If the sign “?” takes place of nn, this command returns the target position value.

Errors
A — Unknown message code or floating point controller address.
B — Controller address not correct.
C — Parameter missing or out of range.
D — Execution not allowed.
G — Target position out of limits.
H — Execution not allowed in NOT REFERENCED state.
I — Execution not allowed in CONFIGURATION state.
J — Execution not allowed in DISABLE state.
M — Execution not allowed in MOVING state.

Rel. Commands
PR — Move relative.
TH — Get set-point position.
TP — Get current position.
SU — Set encoder increment value.

Example
1PA2.2 | Move positioner on controller #1 to absolute position 2.2 units.
PR — Move relative

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

Syntax

```
xxPRnn or xxPR?
```

Parameters

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>xx — 1 to 31</td>
<td>nn — > SL and < SR</td>
</tr>
<tr>
<td>Units</td>
<td>xx — None.</td>
<td>nn — Preset units.</td>
</tr>
</tbody>
</table>

Defaults

- xx Missing: Error B.
- Out of range: Error B.
- Floating point: Error A.
- nn Missing: Error C.
- Out of range: Error C.

Description

The PR command initiates a relative move. When received, the positioner will move, with the predefined acceleration and velocity, to a new target position `nn` units away from the current target position.

The PR command gets only accepted in READY, READY T or TRACKING states, AND when the distance of the positioner to the end of runs is larger than the commanded displacement.

To avoid any mismatch, the controller always rounds the new target position to the closest encoder position.

Returns

If the sign “?” takes place of `nn`, this command returns the target position value.

Errors

- **A** — Unknown message code or floating point controller address.
- **B** — Controller address not correct.
- **C** — Parameter missing or out of range.
- **D** — Execution not allowed.
- **G** — Displacement out of limits.
- **H** — Execution not allowed in NOT REFERENCED state.
- **I** — Execution not allowed in CONFIGURATION state.
- **J** — Execution not allowed in DISABLE state.
- **M** — Execution not allowed in MOVING state.

Related Commands

- **PA** — Move absolute.
- **TH** — Get set-point position.
- **TP** — Get current position.
- **SU** — Set encoder increment value.

Example

```
1PR2.2  | Move positioner on controller #1 to a new position 2.2 units away from the current target position.
```
PT — Get motion time for a relative move

Syntax

```
xxPTnn
```

Parameters

- **Description**
 - **xx** [int] — Controller address.
 - **nn** [float] — Displacement.

- **Range**
 - **xx** — 1 to 31
 - **nn** — $> 10^{-6}$ and $< 10^{12}$

- **Units**
 - **xx** — None.
 - **nn** — Preset units.

Defaults

- **xx** Missing: Error B.
- **Out of range**: Error B.
- **Floating point**: Error A.
- **nn** Missing: Error C.
- **Out of range**: Error C.

Description

The PT commands help evaluating move times for an efficient program flow. When receiving the PT command, the controller returns the time, in seconds, necessary to execute a relative move of the displacement **nn** with the current working parameters (velocity, acceleration, etc.). The controller does not execute any motion.

Errors

- **A** — Unknown message code or floating point controller address.
- **B** — Controller address not correct.
- **C** — Parameter missing or out of range.
- **D** — Execution not allowed.
- **H** — Execution not allowed in NOT REFERENCED state.
- **I** — Execution not allowed in CONFIGURATION state.

Rel. Commands

- **PA** — Move absolute.
- **PR** — Move relative.
- **TH** — Get set-point position.
- **TP** — Get current position.
- **SU** — Set encoder increment value.

Example

```
1PT2.2 | Get time to move positioner on controller #1 by 2.2 units.
1PT0.25 | Controller returns: 0.25 seconds.
```
PW — Enter/Leave CONFIGURATION state

Usage

<table>
<thead>
<tr>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

`xxPWnn` or `xxPW?`

Parameters

- **Description**
 - `xx` [int] — Controller address.
 - `nn` [float] — Velocity feed forward value.

- **Range**
 - `xx` — 1 to 31
 - `nn` —
 - 1: Go from NOT REFERENCED state to CONFIGURATION state.
 - 0: Go from CONFIGURATION state to NOT REFERENCED state.

- **Units**
 - `xx` — None.
 - `nn` — None.

- **Defaults**
 - `xx` Missing: Error B.
 - Out of range: Error B.
 - Floating point: Error A.
 - `nn` Missing: Error C.
 - Out of range: Error C.

Description

PW1 changes the controller’s state from NOT REFERENCED to CONFIGURATION. In Configuration state all parameter settings are saved in the controller’s memory and remain available after switching off the controller. In addition, some settings are only possible in CONFIGURATION state (e.g. set drive voltage, set Backlash compensation, etc.).

PW0 checks all stage parameters, and if they are acceptable, saves them in the flash memory of the controller. After that, it changes the controller’s state from CONFIGURATION to NOT REFERENCED.

The execution of a PW0 command may take up to 10 seconds. During that time the controller will not respond to any other command.

Returns

If the sign “?” takes place of `nn`, this command returns the current state.

Errors

- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- J — Execution not allowed in DISABLE state.
- K — Execution not allowed in READY state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.
- P — Execution not allowed in TRACKING state.

Rel. Commands

- MM — Enter/Leave DISABLE state.

Example

`1PW1` | Changes controller #1 to CONFIGURATION state.

NOTE

The PW command is limited to 100 writes. Unit failure due to excessive use of the PW command is not covered by warranty.

The PW command is used to change the configuration parameters that are stored in memory, and not parameters that are needed to be changed on the fly.
CONEX-CC Single-Axis DC Motion with Controller/Driver

QI — Set/Get motor’s current limits

Syntax

`xxQILnn, xxQIRnn, xxQITnn, xxQIL?, xxQIR? or xxQIT?`

Parameters

- **Description**
 - `xx [int]` — Controller address.
 - `Lmm [float]` — Motor’s peak current limit.
 - `Tpp [float]` — Motor’s rms current averaging time.

- **Range**
 - `xx` — 1 to 31
 - `mm` — ≥ 0.05 and ≤ 3.0
 - `nn` — ≥ 0.05 and ≤ 1.5
 - `pp` — > 0.01 and ≤ 100

- **Units**
 - `xx` — None.
 - `mm` — Amperes.
 - `nn` — Amperes.
 - `pp` — Seconds.

- **Defaults**
 - `xx` Missing: Error B.
 - Out of range: Error B.
 - Floating point: Error A.
 - `mm` Missing: Error C.
 - `nn` Missing: Error C.
 - `pp` Missing: Error C.
 - Out of range: Error C.

- **Description**
 - **QIL**: Sets the controller’s maximum or peak output current limit to the motor. When the controller detects a higher current than the peak current limit, it will generate a hardware error and a fault will be recorded.
 - **QIR**: Sets the controller’s rms output current limit to the motor. The rms current limit must be lower than the peak current limit. When the controller’s output current exceeds the rms current limit, it will generate a hardware error and a fault will be recorded.
 - **QIT**: Sets the controller’s averaging period for rms current calculation. In general, the QIT command defines for how long time the actual motor current is allowed to exceed the rms output current limit.

- **Returns**
 - If the sign “?” takes place of `nn`, this command returns the current programmed value.

- **Errors**
 - `A` — Unknown message code or floating point controller address.
 - `B` — Controller address not correct.
 - `C` — Parameter missing or out of range.
 - `D` — Execution not allowed.
 - `H` — Execution not allowed in NOT REFERENCED state.
 - `J` — Execution not allowed in DISABLE state.
 - `K` — Execution not allowed in READY state.
 - `L` — Execution not allowed in HOMING state.
 - `M` — Execution not allowed in MOVING state.
 - `P` — Execution not allowed in TRACKING state.

- **Rel. Commands**
 - **DV** — Set driver input voltage.

- **Example**
 - `1QIL0.75` | Set controller #1 current limit to 0.75 A.
 - `1QIR0.25` | Set controller #1 rms current limit to 0.25 A.
 - `1QIT2.5` | Set controller #1 rms averaging period to 2.5 s.
RS — Reset controller

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>xxRS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameters

Description
- Controller address.

Range
- 1 to 31

Units
- None.

Defaults
- Missing: Error B.
- Out of range: Error B.
- Floating point: Error A.

Description
The RS command issues a hardware reset of the controller, equivalent to a power-up. To go from DISABLE or READY state to CONFIGURATION state, it is also needed to first reset the controller with the RS command, and then to change the controller’s state with the PW1 command from NOT REFERENCED to CONFIGURATION.

Errors
- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- D — Execution not allowed.

Example
1RS | Reset controller #1.
RS## — Reset controller’s address

Usage	Not Ref.	Config.	Disable	Ready	Motion	Tracking
O	O	O	O	O	O	O

Syntax
xxRS## or RS##

Parameters
Description
xx [int] — Axis number.

Range
xx — 0 to 31

Units
xx — None.

Defaults
xx Missing: Change to 0.
Out of range: Error B.
Floating point: Error A.

Description
The RS## command resets the controller’s address to 1. This address needs to be different for each CONEX-CC when connected on a RS-485 communication network.

Returns

Errors
A — Unknown message code or floating point controller address.
B — Controller address not correct.
D — Execution not allowed.

Example
RS## | Reset controller’s address to 1.
SA — Set/Get controller’s RS-485 address

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>〇</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Syntax

xxSA\(\text{nn}\) or xxSA?

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>xx [int]</th>
<th>nn [int]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axis number.</td>
<td>Controller’s axis number.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
<th>xx</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn</td>
<td>2 to 31</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
<th>xx</th>
<th>None.</th>
</tr>
</thead>
<tbody>
<tr>
<td>nn</td>
<td>None.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
<th>xx</th>
<th>Missing: Error B.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Out of range: Error B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Floating point: Error A.</td>
</tr>
<tr>
<td></td>
<td>nn</td>
<td>Missing: Error C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Out of range: Error C.</td>
</tr>
</tbody>
</table>

Description

The SA command sets the controller’s RS-485 address. This address is ONLY used when the controller is configured for RS-485 communication.

The SA command can only be sent to a controller configured for RS-232-C communication. In this configuration, the controller’s address is 1. Only one controller can be configured for RS-232-C communication.

Newport recommends using the supplied utility software for all controller configurations. The SA command is of practical use only when not using this software.

Returns

If the sign “?” takes place of \(\text{nn}\), this command returns the current programmed value.

Errors

- \(A\) — Unknown message code or floating point controller address.
- \(B\) — Controller address not correct.
- \(C\) — Parameter missing or out of range.
- \(D\) — Execution not allowed.
- \(H\) — Execution not allowed in NOT REFERENCED state.
- \(J\) — Execution not allowed in DISABLE state.
- \(K\) — Execution not allowed in READY state.
- \(L\) — Execution not allowed in HOMING state.
- \(M\) — Execution not allowed in MOVING state.

Example

1SA3 | Set controller’s RS-485 address to 3.
SC — Set/Get control loop state

Usage

<table>
<thead>
<tr>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>○</td>
<td>○</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Syntax

`xxSCnn` or `xxSC?`

Parameters

Description

- `xx` [int] — Controller address.
- `nn` [int] — Closed loop state.

Range

- `xx` — 1 to 31
- `nn` — 1: CLOSED loop control.
 - 0: OPEN loop control.

Units

- `xx` — None.
- `nn` — None.

Defaults

- `xx` — Missing: Error B.
- `nn` — Missing: Error C.
- Out of range: Error B.
- Floating point: Error A.
- Out of range: Error C.

Description

- SC1 sets the controller to CLOSED loop control. This is the default.
- SC0 sets the controller to OPEN loop control. Open loop control might be useful for defining stage parameters like friction compensation or velocity feed forward.
- SC is not applicable in Tracking mode.

Returns

If the sign “?” takes place of `nn`, this command returns the current state.

Errors

- `A` — Unknown message code or floating point controller address
- `B` — Controller address not correct.
- `C` — Parameter missing or out of range.
- `D` — Execution not allowed.
- `H` — Execution not allowed in NOT REFERENCED state.
- `J` — Execution not allowed in DISABLE state.
- `K` — Execution not allowed in READY state.
- `L` — Execution not allowed in HOMING state.
- `M` — Execution not allowed in MOVING state.

Rel. Commands

- `KD` — Set derivative gain.
- `KI` — Set integral gain.
- `KP` — Set proportional gain.
- `KV` — Set velocity feed forward.

Example

```
1SC1 | Set controller #1 to closed loop control.
```
SE — Configure/Execute simultaneous started move

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

Syntax xxSEnn, xxSE? or SE

Parameters

Description

- xx [int] — Controller address.
- nn [float] — New target position.

Range

- xx — 0 to 31
- nn — > SL and < SR

Units

- xx — None.
- nn — Preset units.

Defaults

- xx Missing: Change to 0.
- nn Missing: Error C.

Description

The SE command allows starting a move on different controllers at the same time.

The command xxSEnn sets a new target position for the controller nn. But different than the PA command, the move does not get executed immediately, but only after receipt of an SE command without preceding controller number and without following position value. When receiving the SE command, all controllers start a move to their new target position.

The xxSEnn command gets only accepted in READY state, AND when the new target position is higher or equal to the negative software limit (SL), AND lower or equal to the positive software limit (SR). To avoid any mismatch, the controller always rounds the new target position to the closest encoder position.

The SE command should not be confused with a synchronized move. With a synchronized move, all positioners start their motion simultaneously and have velocities, accelerations and jerk times which are limited to a rate which make all positioners start and complete their moves at the same time. The emphasis here is that they all start AND stop at the same time. The SE command starts a move on all controllers at the same time, but each positioner moves with its individually defined velocity and acceleration. So naturally, the different positioners don’t complete their motion at the same time.

Returns

If the sign “?” takes place of nn, this command returns the target position value set by the SE command, which is not necessarily the same as the target position set by the PA command.

Errors

- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- C — Parameter missing or out of range.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- I — Execution not allowed in CONFIGURATION state.
- J — Execution not allowed in DISABLE state.
- L — Execution not allowed in HOMING state.
- M — Execution not allowed in MOVING state.
<table>
<thead>
<tr>
<th>Rel. Commands</th>
<th>PR</th>
<th>—</th>
<th>Move relative.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TH</td>
<td>—</td>
<td>Get set-point position.</td>
</tr>
<tr>
<td></td>
<td>TP</td>
<td>—</td>
<td>Get current position.</td>
</tr>
<tr>
<td></td>
<td>SU</td>
<td>—</td>
<td>Set encoder increment value.</td>
</tr>
</tbody>
</table>

Example

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1SE2.2</td>
<td></td>
<td>Prepare controller #1 to move to absolute position 2.2 units.</td>
</tr>
<tr>
<td>2SE3.3</td>
<td></td>
<td>Prepare controller #2 to move to absolute position 3.3 units.</td>
</tr>
<tr>
<td></td>
<td>SE</td>
<td>All controllers start their programmed move, if any.</td>
</tr>
</tbody>
</table>
SL — Set/Get negative software limit

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>○</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Syntax
xxSLnn or xxSL?

Parameters

Description
Controller address.

Range
1 to 31

Units
None.

Defaults
Missing: Error B.

Description
In **CONFIGURATION** state, this command sets the negative software limit which can than be saved in the controller’s nonvolatile memory using the **PW** command. It is also the default value that will be used unless a different value is set in **DISABLE** or **READY** state.

In **DISABLE** or **READY** state, this command allows setting a new working parameter for the negative software limit. It must be lower or equal to the set-point position. This value is not saved in the controller’s memory and will be lost after reboot.

The software limits are useful to limit the travel range of a positioner. There is no possibility to disable software limits. For an almost infinite motion, for instance with a rotation stage, set the lowest possible value, which is: -2147000000 * “encoder increment value” (see **SU** command). For instance if the encoder increment value is 0.0005, this limit is -1073500.

Returns
If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

A — Unknown message code or floating point controller address.

B — Controller address not correct.

C — Parameter missing or out of range.

D — Execution not allowed.

H — Execution not allowed in **NOT REFERENCED** state.

L — Execution not allowed in **HOMING** state.

M — Execution not allowed in **MOVING** state.

Rel. Commands

SR — Set positive software limit.

Example
1SL-100 | Set controller #1 negative software limit to –100 units.
SR — Set/Get positive software limit

Syntax

xxSRnn or xxSR?

Parameters

Description
xx [int] — Controller address.

nn [float] — Positive software limit.

Range

xx — 1 to 31
nn — ≥ 0 and < 10^12

Units

xx — None.
nn — Preset units.

Defaults

xx Missing: Error B.

Out of range: Error B.

Floating point: Error A.

nn Missing: Error C.

Out of range: Error C.

Description

In CONFIGURATION state, this command sets the positive software limit which can than be saved in the controller’s nonvolatile memory using the PW command. It is also the default value that will be used unless a different value is set in DISABLE or READY state.

In DISABLE or READY state, this command allows setting a new working parameter for the positive software limit. It must be larger or equal to the set-point position. This value is not saved in the controller’s memory and will be lost after reboot.

The software limits are useful to limit the travel range of a positioner. There is no possibility to disable software limits. For an almost infinite motion, for instance with a rotation stage, set the largest possible value, which is: 2147000000 * “encoder increment value” (see SU command). For instance if the encoder increment value is 0,0005, this limit is 1073500.

Returns

If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

A — Unknown message code or floating point controller address.

B — Controller address not correct.

C — Parameter missing or out of range.

D — Execution not allowed.

H — Execution not allowed in NOT REFERENCED state.

L — Execution not allowed in HOMING state.

M — Execution not allowed in MOVING state.

Rel. Commands

SL — Set negative software limit.

Example

1SR100 | Set controller #1 positive software positive to 100 units.
ST — Stop motion

Syntax: \[\text{xx}\]ST

Parameters:

- **Description:** \(\text{xx} \ [\text{int}]\) — Controller address.
- **Range:** \(\text{xx} \rightarrow 0 \text{ to } 31\)
- **Units:** \(\text{xx} \rightarrow \text{None}\).
- **Defaults:**
 - Missing: Change to 0.
 - Out of range: Error B.
 - Floating point: Error A.

Description:
The ST command is a safety feature. It stops a move in progress by decelerating the positioner immediately with the acceleration defined by the AC command until it stops.

The \(\text{xx}\)ST command with preceding controller address stops a move in progress on controller \(\text{xx}\). The ST command without preceding controller address stops the moves on ALL controllers.

Errors:
- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- I — Execution not allowed in CONFIGURATION state.

Example: ST | Stop moves on all controllers.
SU — Set/Get encoder increment value

Syntax
xxSU\[nn\] or xxSU?

Parameters
- **xx** [int] — Controller address.
- **nn** [float] — Equivalent units to one encoder count.

Range
- **xx** — 1 to 31
- **nn** — $> 10^4$ and $< 10^{12}$

Units
- **xx** — None.
- **nn** — Units.

Defaults
- **xx** Missing: Error B.
- Out of range: Error B.
- Floating point: Error A.
- **nn** Missing: Error C.
- Out of range: Error C.

Description
The SU command sets the value for one encoder count. It defines also the system of units for all other parameters like travel limits, velocities, accelerations, etc. Therefore, it is the first parameter to be defined for any positioner.

Example: For a positioner with an encoder resolution of 1 µm, the command xxSU0.001 sets 1 encoder count = 1 µm = 0.001 unit or 1 unit = 1 mm.

Returns
If the sign “?” takes place of **nn**, this command returns the current programmed value.

Errors
- **A** — Unknown message code or floating point controller address.
- **B** — Controller address not correct.
- **C** — Parameter missing or out of range.
- **D** — Execution not allowed.
- **H** — Execution not allowed in NOT REFERENCED state.
- **J** — Execution not allowed in DISABLE state.
- **K** — Execution not allowed in READY state.
- **L** — Execution not allowed in HOMING state.
- **M** — Execution not allowed in MOVING state.

Example
1SU7.5e-6 | Set controller #1 encoder increment to 7.5×10^4 units.
TB — Get command error string

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>xxTBnn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameters

Description
xx [int] — Controller address.

Range
xx — 1 to 31

Units
nn [char] — Error code (refer to TE command).

Defaults

xx Missing: Error B.

Out of range: Error B.

Floating point: Error A.

nn Missing: Returns explanation of current error.

Out of range: Error C.

Description
The TB command returns a string that explains the meaning of the error code **nn** (see TE command for complete list).

Errors

A — Unknown message code or floating point controller address.

B — Controller address not correct.

C — Parameter missing or out of range.

D — Execution not allowed.

Rel. Commands

TE — Get error code.

Example
1TB@ | Get explanation to error code @.

1TB@ No error | Controller returns: @ = means no error.
TE — Get last command error

Syntax

`xxTE`

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>xx [int] — Controller address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>xx — 1 to 31</td>
</tr>
<tr>
<td>Units</td>
<td>xx — None.</td>
</tr>
<tr>
<td>Defaults</td>
<td>xx Missing: Error B.</td>
</tr>
<tr>
<td></td>
<td>Out of range: Error B.</td>
</tr>
<tr>
<td></td>
<td>Floating point: Error A.</td>
</tr>
</tbody>
</table>

Description

The TE command returns the currently memorized error. When a command is not executable, it memorizes an error. This error can be read with the TE command. After the execution of a TE command, the error buffer gets erased and another TE command will return `@`, means no error. When a new command error is generated before the previous command error is read, the new command error will overwrite the current memorized error.

For a safe program flow it is recommended to always query the command error after each command execution.

Errors

<table>
<thead>
<tr>
<th>Errors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Unknown message code or floating point controller address.</td>
</tr>
<tr>
<td>B</td>
<td>Controller address not correct.</td>
</tr>
<tr>
<td>D</td>
<td>Execution not allowed.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Rel. Commands</th>
<th>TB — Get error string.</th>
</tr>
</thead>
</table>

Example

```plaintext
ITE  | Get last error memorized on controller #1.                                |
    | Controller returns: ITE@, means no error.                                |
```

List of errors and corresponding strings (see TB command):

- `@` — No error.
- `A` — Unknown message code or floating point controller address.
- `B` — Controller address not correct.
- `C` — Parameter missing or out of range.
- `D` — Command not allowed.
- `E` — Home sequence already started.
- `G` — Displacement out of limits.
- `H` — Command not allowed in NOT REFERENCED state.
- `I` — Command not allowed in CONFIGURATION state.
- `J` — Command not allowed in DISABLE state.
- `K` — Command not allowed in READY state.
- `L` — Command not allowed in HOMING state.
- `M` — Command not allowed in MOVING state.
- `N` — Current position out of software limit.
- `P` — Command not allowed in TRACKING state.
- `S` — Communication Time Out.
- `U` — Error during EEPROM access.
- `V` — Error during command execution.
TH — Get set-point position

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>xxTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameters

Description

xx [int] — Controller address.

Range

xx — 1 to 31

Units

xx — None.

Defaults

xx Missing: Error B.

Out of range: Error B.

Floating point: Error A.

Description

The TH command returns the value of the set-point or theoretical position. This is the position where the positioner should be. In MOVING state, the set-point position changes according to the calculation of the motion profiler. In READY state, the set-point position is equal to the target position.

Errors

A — Unknown message code or floating point controller address.

B — Controller address not correct.

D — Execution not allowed.

H — Execution not allowed in NOT REFERENCED state.

I — Execution not allowed in CONFIGURATION state.

Rel. Commands

TP — Get current position.

Example

1TH | Get set-point position of controller #1.

1TH0 | Controller returns: set-point position = 0 units.
TK — Enter/Leave TRACKING mode

Syntax

```
xXTKnn
```

Parameters

Description
- `xx [int]` — Controller address.
- `nn [int]` — Mode

Range
- `xx` — 1 to 31
- `nn` — 0 or 1

Units
- `xx` — None.
- `nn` — None.

Defaults
- `xx` Missing: Error B.
- Out of range: Error B.
- Floating point: Error A.

Description
The TK command enables to enter or leave Tracking Mode.

Errors
- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- D — Execution not allowed.
- H — Execution not allowed in NOT REFERENCED state.
- I — Execution not allowed in CONFIGURATION state.
- J — Command not allowed in DISABLE state.
- L — Command not allowed in HOMING state.
- M — Command not allowed in MOVING state.
- P — Command not allowed in TRACKING state.

Rel. Commands
- TS — Get positioner error and controller state.

Example

```
1TK1 | Enter tracking mode on the controller #1.
```
TP — Get current position

Syntax: xxTP

Parameters:
- **Description**: xx [int] — Controller address.
- **Range**: xx — 1 to 31
- **Units**: xx — None.
- **Defaults**: xx
 - Missing: Error B.
 - Out of range: Error B.
 - Floating point: Error A.

Description
The TP command returns the value of the current position. This is the position where the positioner actually is according to his encoder value. In MOVING state, this value always changes. In READY state, this value should be equal or very close to the set-point and target position.

Together with the TS command, the TP command helps evaluating whether a motion is completed.

Errors
- A — Unknown message code or floating point controller address.
- B — Controller address not correct.
- D — Execution not allowed
- H — Execution not allowed in NOT REFERENCED state.
- I — Execution not allowed in CONFIGURATION state.

Rel. Commands
- TH — Get set-point position.

Example
- 1TP | Get current position of controller #1.
- 1TP0 | Controller returns: actual position = 0 units.
TS — Get positioner error and controller state

Syntax: xxTS

Parameters

- **Description**: xx [int] — Controller address.
- **Range**: xx — 1 to 31
- **Units**: xx — None.
- **Defaults**: xx Missing: Error B. Out of range: Error B. Floating point: Error A.

Description: The TS command returns the positioner error and the current controller state.

Returns: The TS command returns six characters (1TSabcdef). The first 4 characters (abcd) represent the positioner error in Hexadecimal. The last two characters (ef) represent the controller state.

Error code (abcd): Convert each hexadecimal to a binary:

<table>
<thead>
<tr>
<th>F</th>
<th>E</th>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>1110</td>
<td>1101</td>
<td>1100</td>
<td>1011</td>
<td>1010</td>
<td>1001</td>
<td>1000</td>
<td>0111</td>
<td>0110</td>
<td>0101</td>
<td>0100</td>
<td>0011</td>
<td>0010</td>
<td>0001</td>
<td>0000</td>
</tr>
</tbody>
</table>

Each bit represents one possible error:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Examples:
- Error map 0000 = No errors
- Error map 0013 = Short circuit detection, Positive end of run, negative end of run
- Error map 004C = Homing time out, RMS current limit, Peak current limit
Controller states (cf):
- **0A**: NOT REFERENCED from RESET.
- **0B**: NOT REFERENCED from HOMING.
- **0C**: NOT REFERENCED from CONFIGURATION.
- **0D**: NOT REFERENCED from DISABLE.
- **0E**: NOT REFERENCED from READY.
- **0F**: NOT REFERENCED from MOVING.
- **10**: NOT REFERENCED - NO PARAMETERS IN MEMORY.
- **14**: CONFIGURATION.
- **1E**: HOMING.
- **28**: MOVING.
- **32**: READY from HOMING.
- **33**: READY from MOVING.
- **34**: READY from DISABLE.
- **36**: READY T from READY.
- **37**: READY T from TRACKING.
- **38**: READY T from DISABLE T.
- **3C**: DISABLE from READY.
- **3D**: DISABLE from MOVING.
- **3E**: DISABLE from TRACKING.
- **3F**: DISABLE from READY T.
- **46**: TRACKING from READY T.
- **47**: TRACKING from TRACKING.

Notes
The error buffer gets updated periodically, approx. every 1 ms.
The TS command reads the error buffer and clears the error buffer at the same time (same as for commands TE, TB). So when launching the TS command, it is important to process the TS feedback accordingly.
The error “Wrong EPS stage” gets only detected during the booting of the controller. When read the error is cleared.
With no errors in the error buffer the color of the LED will change from red to either green or orange depending on the controller state.

Errors
- **A**: Unknown message code or floating point controller address.
- **B**: Controller address not correct.

Rel. Commands
- **TE**: Get last error.

Example
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1TS</td>
<td>Get error and state of controller #1.</td>
</tr>
<tr>
<td>1TS00000A</td>
<td>Controller returns: no errors and NOT REFERENCED from reset.</td>
</tr>
</tbody>
</table>
VA — Set/Get velocity

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>○</td>
<td>□</td>
<td>□</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Syntax
xxVAnn or xxVA?

Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>xx [int] — Controller address.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nn [float] — Velocity value.</td>
</tr>
</tbody>
</table>

Range
xx — 1 to 31

nn — 10^{-4} and 10^{12}

Units
xx — None.

nn — Preset units/s.

Defaults
xx Missing: Error B.

Out of range: Error B.

Floating point: Error A.

nn Missing: Error C.

Out of range: Error C.

Description
In CONFIGURATION state, this command sets the maximum velocity value which can than be saved in the controller’s nonvolatile memory using the PW command. This is the maximum velocity that can be applied to the mechanical system. It is also the default velocity that will be used for all moves unless a lower value is set in DISABLE or READY state.

In DISABLE or READY state, this command sets the velocity used for the following moves. Its value can be up to the programmed value in CONFIGURATION state. This value is not saved in the controller’s memory and will be lost after reboot.

Returns
If the sign “?” takes place of nn, this command returns the current programmed value.

Errors

A — Unknown message code or floating point controller address.
B — Controller address not correct.
C — Parameter missing or out of range.
D — Execution not allowed.
H — Execution not allowed in NOT REFERENCED state.
L — Execution not allowed in HOMING state.
M — Execution not allowed in MOVING state.

Rel. Commands

AC — Set positioner acceleration.

Example
1VA50 — Set controller #1 velocity to 50 units/s.
VE — Get controller revision information

Syntax: xVE

Parameters:
- **Description**: x [int] — Controller address.
- **nn** [string] — Action.
- **Range**: x — 1 to 31
- **Units**: x — None.
- **Defaults**: x Missing: Error B.
 - Out of range: Error B.
 - Floating point: Error A.

Description: This command returns the controller’s revision information.

Errors:
- A — Unknown message code or floating point controller address.
- B — Controller address not correct.

Rel. Commands: TP — Get current position.

Example: 1VE | Get controller #1 revision information.

IVE CONEX-CC V2.0.0. | Controller returns revision number
ZT — Get all configuration parameters

<table>
<thead>
<tr>
<th>Usage</th>
<th>Not Ref.</th>
<th>Config.</th>
<th>Disable</th>
<th>Ready</th>
<th>Motion</th>
<th>Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

Syntax

xxZT

Parameters

Description

xx [int] — Controller address.

Range

xx — 1 to 31

Units

xx — None.

Defaults

xx Missing: Error B.

Out of range: Error B.

Floating point: Error A.

Description

The ZT command returns the list of all current configuration parameters. The ZT command allows a quick review of all current stage parameter and simplifies the configuration of non Newport stages, for instance by using Hyper Terminal file transfer.

Errors

A — Unknown message code or floating point controller address

B — Controller address not correct

Rel. Commands

TE — Get error code.

Example

```
1ZT | Get controller #1 configuration data.
1PW1
1AC320.000000
1BA0.000000
...  
1VA80.000000
1ZX3
1PW1
```
3.0 Connector interfaces

3.1 24 V Connector (Female Ø 2.1 x Ø 5.5 x 11 mm)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>+24 VDC</td>
</tr>
<tr>
<td>Outer</td>
<td>GND</td>
</tr>
</tbody>
</table>

3.2 Mini-USB (Male) Connector Pinout

1 2 3 4 5

USB
Mating connector:
Plug Mini-USB B 5 cts

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5VdcIN</td>
</tr>
<tr>
<td></td>
<td>Do not connect if comm connector is used</td>
</tr>
<tr>
<td>2</td>
<td>DATA-</td>
</tr>
<tr>
<td>3</td>
<td>DATA+</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
</tbody>
</table>
Service Form

Name: ____________________________ Return authorization #: ____________________________
Company: ____________________________ (Please obtain prior to return of item)
Address: ____________________________ Date: ____________________________
Country: ____________________________ Phone Number: ____________________________
P.O. Number: ____________________________ Fax Number: ____________________________
Item(s) Being Returned: ____________________________
Model#: ____________________________ Serial #: ____________________________

Description: __
Reasons of return of goods (please list any specific problems): __
Visit Newport Online at:
www.newport.com

North America & Asia
Newport Corporation
1791 Deere Ave.
Irvine, CA 92606, USA

Sales
Tel.: (800) 222-6440
e-mail: sales@newport.com

Technical Support
Tel.: (800) 222-6440
e-mail: tech@newport.com

Service, RMAs & Returns
Tel.: (800) 222-6440
e-mail: service@newport.com

Europe
MICRO-CONTROLE Spectra-Physics S.A.S
9, rue du Bois Sauvage
91055 Évry CEDEX
France

Sales
Tel.: +33 (0)1.60.91.68.68
e-mail: france@newport.com

Technical Support
e-mail: tech_europe@newport.com

Service & Returns
Tel.: +33 (0)2.38.40.51.55