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DYNAMICS OF VIBRATION-ISOLATED PLATFORMS 

rigid body; unfortunately, absolutely rigid bodies do not 

exist. As an elastic plate-like structure, the platform 

can experience flexural vibrations following the shapes 

of bending, twisting, and combinations thereof. Sharp 

deviations from rigid-body behavior may happen in form 

of structural resonances at the frequencies close to the 

natural frequencies of the platform. Resonance vibrations 

of a platform carrying optomechanical equipment can 

be excited by residual impacts coming from the floor 

through isolators, by acoustical inputs, by atmospheric 

turbulence and by on-board sources. They can lead to 

relative motion and misalignment of parts of the platform, 

which may affect optical performance. 

We’ll start from the dynamic model of the contemporary 

state-of-the-art two-chamber pneumatic isolator and 

then proceed to the detailed dynamic analysis of the 

full mechanical model containing isolators supporting 

a flexible platform.  Real-life platforms such as optical 

tables are three-dimensional structures with rather 

complicated internal structure1. Dynamic modeling 

of their flexural vibration requires numerical analysis. 

Instead, in this Technical Note we use, for modeling a 

platform, a simple, familiar and most useful model of an 

elastic beam vibrating in the vertical direction (see Fig. 

1). Kinematic excitation u0 in Fig. 1(a) models vibration 

coming from the floor; force excitation F in Fig. 1(b) 

models effects of acoustical, atmospheric and on-

board sources, as well as standard dynamic compliance 

(hammer) test. 

(a) (b) (a) (b)
 

Figure 1. Model of a pneumatically isolated platform. a) kinematic excitation from the floor; (b) force excitation.

Vibration isolation systems are the most important 

part of state-of-the-art vibration control arsenal. The 

goal of this White Paper is to help users and design-

ers of vibration-isolated platforms understand basic 

dynamics of such platforms, methods of describing 

their performance, advantages and disadvantages of 

possible principal design solutions.

What makes a mechanical structure a vibration 

isolation system? What are the main components of 

a properly designed vibration isolation system? How 

do they interact? What are the general methods of 

improving the quality of a vibration isolation system? 

These are the questions we’ll address. 

Any well-designed vibration isolation system has two 

main components: soft isolators and a stiff platform. 

Isolated platforms are the mainstay of vibration control 

techniques in precision optomechanics and photonics. 

The prime examples of such platforms are state-of-

the-art optical tables with honeycomb cores; other 

examples include granite slabs, frames, solid plates, 

stiff casings, and other structures perceived as sturdy 

and stable. Pneumatic isolators are a “workhorse” 

of precision vibration control; spring-based and 

elastomer-based isolators find their applications, too. 

The platform, designed to carry vibration-sensitive 

optomechanical applications, should be as stiff as 

possible to minimize misalignment of optical paths. 

Ideally, the platform should behave as an absolutely 

  1 https://www.newport.com/n/vibration-control-systems
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The advantage of this modeling approach is that all 

calculations can be made in an explicit analytical form. 

They can be followed and verified using standard college 

math. On the other hand, the model has all the features 

of a real-life isolated platform – rigid body motion with 

linear and rocking modes, and a sequence of flexural 

vibration modes. Applying the forces and elastic 

supports at the ends of the beam greatly simplifies 

analytical development: we can resolve all cases simply 

by adding proper boundary conditions to the beam 

equation.  

We shall consider vibration of the foundation (deriving 

vibration transmissibility) and dynamic force applied at 

the end of the beam (deriving dynamic compliance), and 

describe real vs. rigid body behavior including the relative 

motion of points of the beam and misalignment of 

different areas of the beam. We’ll then study the influence 

of varying mass and bending stiffness of the platform. 

Finally, we’ll model the damping effect of tuned mass 

dampers (TMD) by attaching a spring-damper-mass 

system to each end of the beam. 

A. Mechanical Model of the Pneumatic 
Vibration Isolator  

To bring the model closer to reality, we’ll employ a 

realistic model of pneumatic vibration isolator instead 

of a spring-and-dashpot model considered in earlier 

Technical Note . 

A pneumatic chamber, also known as an acoustic cavity, 

is the “heart” of a pneumatic vibration isolator.  The 

linear stiffness of the pneumatic chamber is given by the 

following equation: 

(1)
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Here p0 is the total pressure, A is the piston area, and V 

is the internal volume; g  is an adiabatic constant, equal 

to 1.41 for air. Equation (1) illustrates one of the most 

valuable properties of a pneumatic isolator, namely, 

its ability to adjust the stiffness to the load. Since the 

pressure increases with the supported weight, the natural 

frequency stays almost constant in a range of supported 

loads. 

Another element of the pneumatic isolator is a 

diaphragm, sometimes called “rolling diaphragm,” that 

seals the air volume and allows free motion of the piston 

in process of re-leveling. Equation (1) is still applicable 

with A meaning an effective piston area that covers the 

space up to half-span of the inflated diaphragm. 

Damping is necessary in isolation systems in order to 

limit the resonance amplification. To this effect, a double 

chamber “self-damping” design is used in state-of-

the-art pneumatic vibration isolators. The air volume is 

divided into two chambers: the upper one, V1, called 

a compliance chamber, and the lower one, V2, called 

a damping chamber or a surge chamber. The two 

chambers are connected by a flow resistance orifice 

that is designed to provide a laminar viscous flow of 

gas between the two chambers. The schematics of the 

resulting device is shown in Fig. 2 (a). This is equivalent 

to the mechanical model shown in Fig. 2(b). See the 

paper2 if you are interested in the detailed derivation. 

Figure 2(b) leads to the formula for the dynamic stiffness 

of the isolator, that is, the ratio of the complex amplitude 

of harmonic force, P1, acting on the isolator, to the 

complex amplitude of displacement, u1, of the isolator, as 

function of frequency: 

    

2 This part is based on the paper: V.M. Ryaboy, Static and dynamic stability of pneumatic vibration isolators and systems of isolators, Journal of Sound and Vibration, 333 (2014) p. 31–51.
3 https://www.newport.com/n/vibration-control-fundamentals 
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Here K1 represents the stiffness of the upper chamber 

and K2 represents the stiffness of the lower chamber via 

Eq. (1); C12 represents the viscosity of the gas moving 

through the orifice.
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Figure 2. Schematic representation of a pneumatic 
vibration isolator (a) and its mechanical model (b).
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Low-frequency (static) stiffness KL defines the nominal 

natural frequency of the isolator. In our case

Static stiffness of one isolator equals

(3)

At high frequencies, the flow resistance grows, and 

K(v) approaches the highest limiting value, KH, which 

corresponds to the top chamber acting alone:

Damping can be normalized to the time constant, t, 

of the pressure equalizing between the chambers, as 

follows: t = C12/(K1+K2). Using these values, the dynamic 

stiffness can be written in the following compact form:

(4)

This is a complex stiffness that describes elastic and 

dissipative components. From Eq. (2), as well as from the 

qualitative analysis of Fig. 2(b), follows that the dynamic 

stiffness has two limiting values: at low frequencies  

(v2.  O ) the flow resistance of the orifice is low, and K(v) 

assumes the lowest value, KL, which corresponds to both 

chambers acting as one:
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where R =KH/KL. We’ll use this expression for the 

frequency-dependent stiffness in researching the 

dynamics of vibration isolation platforms in the next 

sections of this Technical Note. We’ll assume f0 = 1 Hz, 

R = 16, t = 0.02 s, which is close to the parameters of 

the MKS state-of-the-art pneumatic vibration isolator 

S2000-A.  

For detailed analysis of the performance of a standalone 

pneumatic isolator or a group of isolators supporting an 

optical table, see paper2.  

B. Isolated Platform:  Transmissibility and 
Dynamic Compliance; Rigid Body Line; 
Relative Motion and Misalignment 

To approach the problem in a systematic manner, let us 

first study the dynamics of the isolated platform as if 

it were absolutely rigid: assume the beam in Fig. 1 is a 

rigid body, and find its motion under kinematic and force 

excitations. In the first case (Fig. 1 a), we assume that the 

foundation experiences harmonic vibration u0e
ivt. Due to 

symmetry, the rigid beam responds with linear harmonic 

oscillation ueivt. The equation of motion in the frequency 

domain is 

                                                     (5)

The complex ratio of amplitudes u/u0 is called the 

vibration transmissibility. It is a function of frequency v. 

According to equations (4) and (5), 

where   The absolute value of this 

function is plotted in Fig. 3. This graph clearly shows 

the main property of the isolator: its ability to attenuate 

vibration transmitted from the floor to the platform. 

The isolation takes place at frequencies higher than, 

approximately, 1.4f0. There is no isolation below that 

frequency and even a shallow peak at  

f = f0. The frequency f0 cannot be made too low because 

that would make the system too sensitive to small 

perturbations, and potentially unstable. One Hertz is 

generally adopted as the lowest practical value for f0
4 .

Figure 3. Transmissibility of the pneumatic isolator. Thin 
lines represent asymptotic behavior at low frequencies 
when both chambers work as one, and at high 
frequencies when only the top chamber provides 

resilience.

In case of force excitation shown in Fig. 1(b) we need to 

consider both linear and angular motions. A rigid beam 

has two generalized coordinates (degrees of freedom): 

vertical displacement of its center of gravity (CG), uc, and 

rotation around the center of gravity, u, as shown in Fig. 

4, so that 

                                                       (6)    

External force F at the edge can be reduced to the force 

acting through the CG and rotational moment around 

CG. As shown in Fig. 5, the edge force of Fig. 1(b) is 

equivalent to the force F and moment −FL/2 applied at 

CG. 

 (4)  A class of more sophisticated vibration isolation systems, called active vibration control systems, such as MKS Guardian® workstation, do not exhibit this resonance and provide isolation at 

sub-Hertz frequencies, but they are beyond the scope of this Technical Note.
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Figure 4. Motion of the beam as a rigid body.

Figure 5. Off-center force on a rigid beam is reduced to 
force and rotating moment at the center of mass.

The rigid-body motion is composed of linear motion, 

governed by the equation in the frequency domain for 

uc,

                                                           (7)

and rotational motion, governed by the equation in the 

frequency domain for u, 

                                                     (8)

For thin beams, the moment of inertia J is, 

approximately, 

                                                                      (9)                                                

We’ll accept this value. To determine the motion of 

the rigid beam, resolve (7) and (8) for uc and u and 

substitute into (6). Taking into account the expressions 

for the frequency-dependent stiffness (4), static 

stiffness (3) and moment of inertia (9), one arrives at the 

following formula for the transfer function from F to the 

displacement at any point of the beam: 

                   (10)

This function is plotted in Fig. 6 for x = 0. Note 

that the rocking mode of the beam is excited in 

this case along with the linear vertical motion. 

To obtain results in non-dimensional form, it 

is referred to the local static compliance, 1/k. 

The transfer function u(0)/F is called dynamic 

compliance. It is widely used for illustration 

of dynamic properties of vibration-isolated 

platforms. The dashed line in this graph is the 

ideal rigid body line describing the reaction of 

free-floating absolutely rigid body. This line is 

defined by the mass and moment of inertia. 

Both lines coincide at frequencies sufficiently 

higher than the resonance frequencies of the 

isolation system, placed, according to (10), at, 

approximately, 1 Hz and 1.7 Hz. 

Figure 6. Dynamic compliance described by 
rigid – body lines for free and supported rigid 
beams.

Returning to the elastic beam, we must start 

from the equation of motion. The differential 

equation for dynamic bending of a beam 

is derived in many vibration textbooks and 

handbooks. We’ll not repeat the derivation 

here. For the classical (Bernoulli-Euler) 

model, based on the assumption that the 

Frequency, Hz

D
yn

am
ic

 co
m

pl
ia

nc
e,

 (u
(O

k/
F)

0.1                             1                              10                           100                        1x103

10

1

0.1

0.01

1x10-3

1x10-4

1x10-5



6

cross-sections stay flat and normal to the axis of the 

beam, the equation is  

                        

(11)

where u is the lateral (vertical) displacement, E is the 

Young’s modulus, I is the moment of inertia of the cross-

section, r is the mass density, A is the area of the cross-

section, p is the lateral force per unit length; x is the 

coordinate along the beam’s central axis. We’ll assume 

that A and EI are constant (independent of x). 

Constitutive equation for the Bernoulli-Euler beam relates 

the moment Mc acting on the beam’s cross-section to 

the curvature of the deformed axis of the beam, equal, in 

the linear approximation, to the second derivative of the 

displacement: 

                                                                

(12)

The shear force in the cross-section is 

                                                                     

(13)

The sign convention is illustrated in Fig. 7.  To study 

the vibrational properties of the beam, we introduce a 

complex amplitude u(x) and denote it by the same letter 

for sake of simplicity: 

Figure 7. Beam model. Coordinate system and sign 
convention.

For harmonic vibration of a uniform beam in absence of 

external forces p, equation (11) reduces to  

..

                                                             (14)

where 

                                                                         (15)

Taking the problem step by step, consider first the 

natural vibration of the free-free (unsupported) beam as 

if isolators and external excitation were absent. In this 

case, both shear forces and moments at both ends of the 

beam are zeroes; according to (12), (13), the boundary 

conditions for equation (14) are

                                                                    (16)

                                                                   (17)

This case is considered in many textbooks and 

handbooks on structural vibration. The following set 

of special functions, called Krylov functions, greatly 

simplifies dynamical calculations for beams: 

(18)

The general solution of the equation (14) in terms of 

Krylov functions is 

                                      (19)

A remarkable property of Krylov functions is the circular 

relationship of their derivatives: 

 

   

(20)

Note that

Using these properties, boundary conditions (16), (17) at 

x = 0 reduce (19) to

  

Boundary conditions (16), (17) at x = L give, using (20), 

the system of two linear equations for C1, C2:
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Solution exists if the determinant of this system equals 

zero, that is, the frequency satisfies the following 

characteristic equation for the non-dimensional 

frequency parameter b =kL: 

                                               

(20)

or, equivalently, 

   cosh b cos b   –1 =0

The solutions, besides the trivial solution b = 0, are: b1 ≈ 

4.730, b2 ≈ 7.853; b3 ≈ 10.996; subsequent roots closely 

follow bn = (2n+1)p/2. 

The non-dimensional parameter b defines the frequency.  

Let us assume the first natural frequency of flexural 

vibration of the platform f1 = 200 Hz, which is a typical 

value for laboratory size optical tables.  According to 

formula (15), 

where rA = m/L. Therefore, the bending stiffness of the 

beam must assume the value EI = mL3(2pf1)
2/b1

4. The 

characteristic equation is illustrated by the thin blue line 

in Fig. 8. The first three natural frequencies of flexural 

vibration are found at 200 Hz, 551 Hz and 1081 Hz. 

Now consider the full model of the elastic beam 

supported by springs. The modal shape of the beam 

satisfies equation (19) and boundary conditions (16) for 

zero moments. Pneumatic supports at both ends add 

frequency-dependent boundary conditions connecting 

transversal force with deflection. According to Eqs. 

(12), (13) and sign convention of Fig. 7, these boundary 

conditions take the following form:

                                

(21)

where EI is the bending stiffness and K(v) is the stiffness 

of the isolator (4).  Applying boundary conditions at x = 0 

to expression (19) leads to 

  

so that 

                                    

(22)

Boundary conditions at x = L lead to the system of two 

linear equations for C1, C2: 

                    

(23)

Here b = kL is assumed to be expressed as function of 

frequency v, and kr(v) is a non-dimensional parameter 

characterizing the stiffness of isolator relative to the 

stiffness of the beam: 

                                                               

(24)

In our case, kr(v)<< 1. In particular, since k = m(2pf0)
2/2, 

and EI = mL3(2pf1)
2/b1

4, we have kr(0) = (f0/f1)
2b1

4/2 = 

(1Hz/200Hz)2∙4.7304/2 ≈ 6.257∙10-3.  

The characteristic equation is 

             

(25)

Here, again, b is substituted as function of frequency 

v. The solutions are almost identical (within 0.01 Hz in 

terms of frequency) with that of (20), but two additional 

complex roots (damped frequencies) appear, practically 

coincident with the natural frequencies of the softly 

supported beam as a rigid body. The characteristic 

equation (22) is illustrated by the thick red line in Fig. 8. 

To find the corresponding vibration modes, each solution 

of the characteristic equation is substituted into the 

system (23) for C1, C2 (or, rather, for the ratio C1/C2) and 

the resulting coefficients used in the equation (22). The 
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modes are defined up to a constant multiplier. The first 

two modes are vertical and rocking “rigid body” motions; 

the rest represent the flexural modes of the beam (Fig. 9). 

Figure 8. Graphical solution of the characteristic 
equation. Thin line – free-free beam, thick line – beam 
supported by soft pneumatic isolators. For a simpler 
graph, the real part of complex stiffness (devoid of 
damping) was used in generating this plot, to avoid 
graphing over a complex plane.

An important conclusion from this analysis is that 

as long as the ratio of “flexural” natural frequency to 

isolation frequency is as high as in this example, flexural 

deformation of the platform does not affect the isolation 

“bouncing” modes, and isolation does not affect the 

flexural vibrations of the platform. This large frequency 

span between the isolation (rigid-body) modes and 

flexural modes is a telltale sign of good vibration isolation 

design. It creates a large frequency range of vibration 

isolation unaffected by structural resonances. 

For further insight into the dynamic properties of isolated 

platforms let us look at the forced vibration of our 

model under kinematic (Fig. 1(a)) and force (Fig. 1(b)) 

excitations. 

Figure 9. Rigid and flexural modes of the beam on soft 
isolators, drawn with the same amplitude.

In case of kinematic excitation of the foundation with 

the amplitude u0, the boundary conditions are given 

by (16) and the following relationships between the 

displacements and transversal forces: 

                                 

(26)                                        

The general solution is, again, given by Eq. (19); 

boundary conditions at x = 0 lead to 

so that 

                                 

(27)

Boundary conditions at x = L lead to the system of two 

non-homogeneous linear equations for C1, C2: 

 (28)

where b =kL is assumed to be expressed as function of 

frequency v.  Resolving (28) for C1, C2, and substitution 

into (27) leads to an explicit formula for vibration 

transmissibility, u(x)/u(0), at any point of the beam. To 

avoid infinite amplitudes at flexural resonances, damping 

with a loss factor h = 0.01 is introduced into the structure 

by substituting complex value EI(1+ih) in place of EI. 

The results are plotted in Fig. 10 along with the 

corresponding rigid-body solution shown by the thin 

lines. The graphs show that under the kinematic 

excitation the transmissibility, u/u0, rolls off the same 

way as for a rigid body (single degree of freedom) at 

frequencies up to the vicinity of the first resonance 

frequency of flexural vibrations. At that frequency, large 

deviations from the rigid-body behavior occur. Due to 

the symmetric nature of the excitation, only symmetric 

vibration modes (see Fig. 9) are excited. 
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The analytical solution allows for a more detailed analysis 

providing insight into practically important questions 

about the relative displacement of points of the isolated 

platform and misalignment of parts of the platform (Fig. 

11). These factors define the image movement and line-

of-sight jitter that may affect the optical performance of 

an application residing on the vibration-isolated platform.

(a)                                             (b)

Figure 10. Transmissibilities of the pneumatically isolated 
beam to the edge of the beam (a) and to the center of the 
beam (b). Thick line – full model, thin line – rigid beam. 
Only symmetric modes are excited by symmetric 
kinematic excitation, Fig. 1(a).

Figure 11. Maximum relative displacement (∆u) and 
misalignment (a) of the central axis of a beam.

Figure 12 shows the maximum relative displacement, ∆u, 

of two points of the beam, and maximum misalignment 

(the maximum difference between slopes, a = u’(x), at 

two points of the beam) in case of kinematic excitation 

from the floor with the amplitude u0 (Fig. 1(a)).  The 

results reveal that even in the rigid-body zone small 

quasi-static deformations occur that do not roll-off 

with frequency. These deformations are caused by 

inertia forces generated by slow oscillations. At the 

flexural resonance, the misalignment increases sharply; 

relative displacement reaches almost twice the absolute 

resonance response. 

In case of force excitation, Fig. 1(b), the boundary 

conditions that reflect the relationship between the 

displacements and transversal forces are  

        (29)

Further calculations of the complex amplitude u(x) are 

completely analogous to the case of kinematic excitation. 

These calculations lead to the dynamic compliance at 

the excitation point and transfer functions to other points 

of the beam plotted in Fig. 13. The “rigid body line” 

is a straight line with a slope 1/f 2 (40 dB per decade) 

corresponding to Newton’s Second Law (acceleration 

proportional to force). The graph shows large deviations 

from the rigid-body response at the first and second 

bending modes of the beam (Fig. 9). 

 (a)                                              (b)

Figure 12. (a) Maximum relative displacement between 
points of the pneumatically isolated beam, ∆u, and (b) 
maximum misalignment between areas of the beam, a, 
caused by kinematic excitation u0 from the foundation.

Calculating the relative displacement of points of 

the beam under the force excitation due to flexural 

vibrations requires subtraction of the rigid-body motion; 

misalignment can be obtained by direct differentiation 

of the deflection. The results, shown in Fig. 14, show 

that even in the rigid-body zone small quasi-static 

deformations occur that do not roll-off with frequency. 

These deformations are caused by inertia forces 

generated by slow oscillations. At the flexural resonance 

the misalignment increases; relative displacement 

reaches almost twice the absolute resonance response 

at the first bending mode (200 Hz) and about twice the 

absolute resonance response at the second bending 

mode (551 Hz). 
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(a)

 

     

(b)
                                                                      

(c)

Figure 13. Dynamic compliance at the end of the beam 

(a), transfer functions from the force at one end of the 

beam to the displacement at the middle of the beam (b) 

and to the other end of the beam (c). Thick line – beam 

supported by pneumatic isolators, thin line - rigid beam 

of equivalent mass. All functions are referred to the static 

compliance, 1/k. 

These calculations reveal that even in the “rigid body” 

range, away from flexural resonances, the isolated 

platform does not behave as absolutely rigid. Small 

quasi-static deflections are noticed in the frequency 

range of rigid-body behavior of the beam (up to about 

150 Hz). Quasi-static bending exists even in the single 

Hz and even sub-Hz frequency ranges, amplified by 

the isolator resonance. This is deformation caused 

by slowly changing inertia forces. These quasi-

static deformations are orders of magnitude smaller 

than absolute displacements away from the flexural 

resonances and generally not discernible by standard 

dynamic compliance test in the “rigid body” frequency 

range. Most applications are not sensitive to these 

small deformations. However, in some high-precision 

applications quasi-static bending of isolated platform 

or payload structures such as bridges that may be 

substantial enough to affect the optical performance. 

This phenomenon gives motivation for developing more 

advanced active vibration isolation systems.

As expected, large deviations from rigid-body behavior 

around the resonance frequencies are accompanied by 

large misalignments and relative flexural displacements 

of points of the beam. Peak relative displacement at 

the flexural resonance is about twice the absolute 

displacement. 

Note that it is common practice5 to plot the 

transmissibility in a low-frequency range encompassing 

isolation resonances and part of the rigid-body frequency 

range, and plot the dynamic compliance at higher 

frequencies, encompassing the rigid-body range and 

resonance frequencies. This is related to the limitations 

of generally adopted experimental techniques. The 

analytical model considered in this Technical Note 

is free of these limitations and allows us to review 

simultaneously all aspects of the dynamic behavior of the 

isolated platform in a wide frequency range. 

  (5) https://www.newport.com/n/compliance-and-transmissibility-curves
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(a)       

                                                                                       

 

      (b)

Figure 14. (a) Maximum relative flexural displacement 

between points of the pneumatically isolated beam, ∆u; 

(b) maximum misalignment between two areas of the 

beam, a, caused by force excitation, per unit force. All 

functions are referred to the static compliance, 1/k.

Although this model captures the main physical 

properties of isolated platforms, there are substantial 

differences from real optical tables. The most significant 

difference is that a table, being a plate-like structure able 

to deform in three dimensions, has a denser spectrum 

of resonance frequencies. Several resonances can be 

usually observed in the 100 Hz – 1000 Hz range. That 

makes the goal of expanding the “rigid-body” frequency 

range by the platform design even more important. 

C. Role of Mass and Bending Stiffness
The analytical model allows for easy investigation into the 

influence of design parameters of the platform, namely, 

structural and non-structural mass and bending stiffness, 

on the dynamic behavior. This information helps in 

choosing a proper isolated platform for sensitive optical 

applications. 

To analyze the influence of non-structural mass, 

suppose we double the mass of the beam (and, 

accordingly, the moment of inertia) without increasing 

the bending stiffness. The stiffness of the pneumatic 

isolators adjusts to keep the first isolation frequency the 

same at 1 Hz. Figure 15 shows the resulting vibration 

transmissibility, dynamic compliance, and relative 

motion for kinematic and force excitation compared 

to the base case. Misalignment generally mirrors the 

relative displacement, so misalignment graphs are not 

shown here. The comparison shows that, as a result of 

adding non-structural mass, the frequency range of the 

rigid-body behavior is reduced; the flexural resonance 

frequency becomes lower; the peak resonance response 

is increased; more resonance frequencies enter the 

depicted frequency range. Quasi-static relative motion 

increases with increased mass under floor excitation and 

stays the same under force excitation. 

The behavior of the relative motion has a simple physical 

interpretation. The maximum relative motion of points in 

a structure is roughly proportional to the motion relative 

to the center of mass (CG), usually by a factor of 2. To 

describe the motion of the structure in the coordinate 

system tied to the CG, we must apply inertia forces to 

the structure. Inertia force on any material particle equals 

its mass times acceleration of the coordinate system. 

Therefore, elastic deflections, defined by the inertia 

forces, are proportional to the mass time acceleration of 

the CG. Acceleration equals displacement times (2pf)2 
in the frequency domain. The motion of the CG is the 

same as rigid-body motion. Under the force excitation, 

rigid-body displacement rolls-off like 1/f 2, that is why 

the graphs of relative motion and misalignment look 

flat in the rigid-body frequency range. If the mass is 

doubled, but the rigid-body acceleration is reduced two 

times, the inertia force, and therefore relative motion and 

misalignment, stay the same. Under kinematic excitation 

from the foundation, the rigid-body transmissibility stays 
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the same, so doubling the mass (and therefore the inertia 

forces) leads to doubling of the relative displacement and 

misalignment. 

In the same manner, we can research the effect of 

increasing bending stiffness, as well as simultaneous 

increase of mass and stiffness (adding structural mass). 

Figures 15 – 18 illustrate the transmissibilities, dynamic 

compliances and relative displacements under kinematic 

and force excitation for different scenarios of increasing 

stiffness or simultaneous increase of mass and stiffness. 

(Misalignments behave generally the same way as 

relative displacements, so no additional graphs are given 

here). The graphs are accompanied by lists of positive 

and negative effects of the change in parameters on 

various aspects of the dynamics of the platform. Positive 

effects are shown in green, negative in red, neutral – in 

blue letters.

Figure 15. Effect of non-structural mass on (a) 

Transmissibility (b)  Maximum relative displacement 

per unit floor excitation; (c) Dynamic compliance; (d) 

Maximum relative displacement per unit force. The last 

two functions are referred to the static compliance in the 

base case, 1/k. 

Effect of increased non-structural mass:
• The frequency of rigid behavior contracts
• More resonances may appear in a given frequency 

range
• Quasi-static bending due to floor excitation 

increases
• Amplitudes of flexural resonances due to floor 

excitation increase
• “Rigid body line” of compliance shifts down
• Quasi-static bending due to force excitation stays 

the same
• Amplitudes of flexural resonances due to force 

excitation stay the same
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Figure 16 (left). Effect of increased bending stiffness on 

(a) Transmissibility (b) Maximum relative displacement 

per unit floor excitation; (c) Dynamic compliance; (d) 

Maximum relative displacement per unit force. The last 

two functions are referred to the static compliance in the 

base case, 1/k. 

Effect of increased bending stiffness:
• The frequency range of rigid behavior expands
• Quasi-static bending due to floor excitation 

decreases
• Amplitudes of flexural resonances due to floor 

excitation decrease
• “Rigid body line” of compliance stays the same
• Quasi-static bending due to force excitation 

decreases
• Amplitudes of flexural resonances due to force 

excitation decrease
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Figure 17. Effect of structural mass on (a) Transmissibility 

(b) Maximum relative displacement per unit floor 

excitation; (c) Dynamic compliance; (d) Maximum relative 

displacement per unit force. The last two functions are 

referred to the static compliance in the base case, 1/k. 

Effect of structural mass (mass and bending 
stiffness increase in the same proportion):
• The frequency range of rigid behavior stays the 

same
• Quasi-static bending due to floor excitation stays 

the same
• Amplitudes of flexural resonances due to floor 

excitation stay the same
• “Rigid body line” of compliance shifts down
• Quasi-static bending due to force excitation 

decreases
• Amplitudes of flexural resonances due to force 

excitation decrease
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Figure 18. Effect of “super-structural” mass (bending 

stiffness increases in higher proportion than mass) on 

(a) Transmissibility (b) Maximum relative displacement 

per unit floor excitation; (c) Dynamic compliance; (d) 

Maximum relative displacement per unit force. The last 

two functions are referred to the static compliance in the 

base case, 1/k. 

Effect of “super-structural” mass (bending 
stiffness increases in higher proportion than 
mass):
• The frequency range of rigid behavior expands
• Quasi-static bending due to floor excitation 

decreases
• Amplitudes of flexural resonances due to floor 

excitation decreases
• “Rigid body line” of compliance shifts down
• Quasi-static bending due to force excitation 

decreases
• Amplitudes of flexural resonances due to force 

excitation decrease
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Note that if bending stiffness and mass increase in the 

same proportion (2 times), transmissibility and relative 

motion under kinematic excitation from the floor stay 

the same (hence no new graph appears this case); 

however, the dynamic response under force excitation 

does change (see Fig. 17). Increasing bending stiffness 

invariably leads to improvement in dynamic qualities; 

the best results are obtained when stiffness increases 

simultaneously with mass but in higher proportion. Figure 

18 shows the result of increasing mass 2 times and 

bending stiffness 4 times. In application to real-life optical 

tables, the latter case describes the effect of increasing 

the thickness of the table. The effect of thickness on the 

table performance is illustrated by Fig. 19 that depicts 

experimental dynamic compliances of 305 mm thick 

table and 203 mm thick table of the same dimensions. 

Figure 19. Experimental corner dynamic compliances of 

optical tables 1.22 m x 2.44 m of different thicknesses. 

The tables did not use any additional means of damping 

except structural damping. 

An important conclusion from this model example is 

that the increase of the mass of the pneumatically 

isolated platform by itself gives no advantage, except 

in applications when the absolute motion of the 

platform is important (for example, if a laser beam must 

be referenced to a target outside of the table). Most 

high-precision applications are confined to one table. 

In this case, it is the relative motion of parts of the 

table and misalignment of portions of the surface that 

matters. Increasing mass does not change the relative 

motion and misalignment under on-board or acoustical 

impacts; moreover, the relative motion and misalignment 

under kinematic excitation from the floor will increase 

proportionally to the mass. Since pneumatic isolators 

adjust to the increased load to keep the isolation 

frequency the same, the isolation efficiency does not 

change. On the other hand, the frequency interval of 

rigid-body behavior shrinks with the increase of mass, 

and resonance amplitudes become higher.  

Increasing mass can be beneficial only if accompanied 

by at least proportional increase in the bending stiffness 

of the platform. This observation adds clarity to the 

often-discussed question concerning the design of 

honeycomb optical tables: does it pay to use denser 

honeycomb cores? Denser core increases the mass of 

the table; it also increases the shear modulus of the core. 

However, the stiffness of the table is defined mostly by 

the facesheets that work in compression – tension when 

the table bends, with a relatively small contribution of 

the shear modulus of the core. So, the increase in total 

bending stiffness by a denser core will be less than 

proportional to the increase of mass. A heavier core 

leads to net deterioration of the dynamic quality of the 

table. 

To improve the dynamic properties of the table, we need 

to increase the bending stiffness more than we increase 

the mass. As mentioned above, one way to achieve it is 

to increase the thickness of the table (see Fig. 19).

A radical way to improve the dynamic properties of 

the isolated platform is to reduce or eliminate the 

resonance peaks through damping, that is, dissipation 

of mechanical energy. Dynamic vibration absorbers, 

or tuned mechanical dampers (TMD), are known to be 

the most effective devices for this purpose. TMD is a 

damped oscillator tuned to a certain frequency close to 

the resonance frequency that we intend to suppress. 
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D. Effect of Tuned Mass Dampers 

The beam model of an isolated platform allows for 

simulation of the effect of tuned mass dampers. They can 

be modeled as damped oscillators attached to the ends 

of the beam (Fig. 20). 

                                           (a)                                                                                               

Figure 20. Model of the isolated platform with dynamic 

vibration absorbers (TMD).

To find the vibration amplitudes, we’ll need the 

expression for dynamic stiffness, that is, the ratio of 

complex amplitudes of force acting on the oscillator at 

the attachment point to the displacement at this point: 

where ma is the mass of the damper, va is the partial 

circular frequency (tuning frequency) of the damper, and 

ha is the loss factor. The frequency-dependent boundary 

conditions for the beam equation (14) are given by (16) 

and 

             

(30)

in case of kinematic excitation of the foundation with the 

amplitude u0, Fig. 20(a), or 

                  (31)

(b)

in case of force excitation at x = 0, Fig. 20(b). Further 

calculations of the complex amplitudes u(x) are 

straightforward, following the procedure outlined above. 

The theoretical basis for optimization of dynamic 

vibration absorbers is well developed. A summary with 

application to optical tables can be found in the article6. 

Parameters of the dynamic absorbers are determined 

based on their mass ratios, following the optimization 

formulas

                                                             

(32)

Here, vk = 2pfk is the targeted resonance circular 

frequency: uk = mk/m, where mk is the effective modal 

mass.  Assume the masses of each absorber ma = 

0.025m (2.5% of the mass of the platform). Direct 

calculation (omitted here) gives effective modal masses 

mk = 0.25m, so that uk = 0.1. Therefore, the damper 

tuned to the first flexural resonance at 200 Hz should 

have, according to (32), partial resonance frequency 

fa = 182 Hz; the damper tuned to the second flexural 

resonance at 551 Hz, partial resonance frequency fa = 

501 Hz. The optimal loss factor is, according to (32), na 

= 0.39.  Figures 21 and 22 illustrate transmissibilities 

and dynamic compliances for two cases: first, both 
(6) V.M. Ryaboy, Practical aspects of design, tuning and application of dynamic vibration 

absorbers, Proceedings of Meetings on Acoustics, Vol. 26, 065006 (2016); http://doi.

org/10.1121/2.0000231.
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dampers are tuned to the first resonance; second, one 

damper (at x = 0) is tuned to the first resonance and the 

second damper (at x = L) – to the second resonance. 

Again, the stiffness of pneumatic isolators adjusts to 

slightly higher load (with the added weight of dampers) 

to keep the “bouncing” frequency constant. In case 

when both dampers are tuned to the first resonance 

peak, it is reduced almost 20 times (Fig. 21), however, 

the second peak stays almost the same. When dampers 

are tuned to separate peaks (Fig. 22), both resonances 

are suppressed, but to a lesser extent. Relative motion 

and misalignment in the resonance zone are reduced 

accordingly. 

 

Figure 21. Transmissibility (a) and dynamic compliance 

(b) of the model of the isolated platform with both 

dampers tuned to suppress the first flexural resonance. 

Figure 22. Transmissibility (a) and dynamic compliance 

(b) of the model of the isolated platform with one damper 

tuned to suppress the first flexural resonance, another 

one – the second flexural resonance. 

This model example shows that dynamic vibration 

absorbers (tuned mass dampers) can greatly reduce 

deviations from rigid-body behavior. Patented designs 

of these dampers are employed in the MKS RS series 

optical tables6. 
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E. Take-home Conclusions

• Vibration isolation system consists of soft isolators 

and stiff platform 

• The vibration modes comprise “rigid body” modes 

and flexural modes 

• Isolators and overall mass and moments of inertia 

are responsible for “rigid body” (bouncing) modes 

• State-of-the-art pneumatic isolators keep the “rigid 

body” natural frequencies approximately constant in a wide 

range of loads

• Bending stiffness and mass distribution of the 

platform are responsible for flexural modes 

• Large deviations from rigid-body behavior can 

happen near flexural vibration natural frequencies

• Well-designed vibration isolation system has low 

(down to 1 Hz) “rigid body” natural frequencies and high 

flexural vibration natural frequencies 

• The frequency range of maximum isolation effect is 

the “rigid body” interval between the bouncing and flexural 

natural frequencies 

• Even in the “rigid body” zone, small quasi-static 

bending exists due to inertia forces 

• To improve the quality of vibration isolation, bending 

stiffness of the isolated platform must be increased in 

higher proportion than mass 

• Flexural resonances can be effectively suppressed 

by tuned mass dampers.   
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