

Page 1 of 10

TECHNICAL NOTE:

ORIEL COMPUTER INTERFACING
APPLICATION PROGRAMMING INTERFACE

FOR MS257, CS130, CS260, AND OPS SERIES

REV.4.01

February 2018

Newport Corporation
Oriel Instruments
1791 Deere Ave.
Irvine, CA 92606

Tel: 949-863-3144
Fac: 949-253-1680
www.newport.com

Page 2 of 10

Introduction

This technical note provides a description of

 The files to control the Oriel Devices through any available application
programming interfaces (API’s)

 Installation of instrument drivers for USB models.

Page 3 of 10

Application Programming Interface

An API is available to users who wish to write their own programs utilizing
Oriel monochromators and USB communication.
This version of the API is designed to simplify detection and communication
across different Oriel products. It can auto detect USB devices across
multiple product lines and has a consistent command set that will work for
all of them.

IMPORTANT NOTE: The USB Drivers for the instruments are assumed to
already be installed with the media provided with the instruments; this
software is designed to aid control of the instruments after USB connection
has already been established. NO USB Drivers are included in this release.

Page 4 of 10

Use Cases for Available Software Packages

USE CASE Software Notes

General Usage MonoUtility (v5.0.4) Executable

LabVIEW

development

API v4.00 LV. vi’s & DLL

Command Test MonoTerm Exe & LabVIEW

.NET API Control API v3.01 (or v4.00) Managed DLL

C++ API Control API v4.00 Unmanaged DLL

Full Application TracQ Basic Executable

Descriptions:

MonoUtility – General purpose simple control of the Monochrometer.

Programming Interface (API) version 4.00 – Full LabVIEW driver library built
using C++ DLL calls.

Programming Interface (API) version 4.00 – Non-LabVIEW programming
drivers with C++ unmanaged DLL v4.00 and a C#.NET DLL v3.01 that can
be used with all .NET interfaces/languages. While a .NET wrapper for the
v4.00 API driver has not been provided, it is recommended to be used if the
programmer knows how to call an unmanaged DLL from .NET.

MonoTerm – Simple Terminal (text only command) interface provided both
as an installation executable, and in the install folder, a zip file with the
source code used. Note that the .NET DLL that was used for the source
files may need to be updated to the latest version for optimal functionality.

TracQ Basic (v6.6) – Full scanning, graphing application control of the
Monochrometer. The application can control the monochrometer and a
filter wheel attached to it. It also can control a detector’s input to tie to the
scan data.

Page 5 of 10

LabVIEW™ Usage of ODevice API

All devices to be controlled with this API need to be using the USB port on the devices.

NOTE: Updates to software may be slightly different than the ones from these screen

images; the general flow is the same however.

1.) Plug the Oriel Monochromator or OPS power supply into the computer USB
port.
2.) The LabVIEW™ drivers use a single vi (object) for discovery, connection
and communication with the instrument.

3.) First Initialize by using the Open Action of the ODevice.vi (Object vi) Here,
after opening the instrument, the action find devices is used to determine the type
of instrument that was found. This information can be used to determine
command strings that may differ based on the instrument connected.

Page 6 of 10

4.) Then a simple Write command is sent thru the ODevice Object. In this
sample, there is a vi before it that selects the correct command string based on the
type of instrument that was detected at open.

5.) At the end of the program or usage, you use the close Action to disconnect
from the instrument.

Page 7 of 10

6.) In this example, when the Run button is hit, the starting Wavelength is set and
the run sequence is started by determining the Step size.

7.) While the Run button is selected, this sample will add the step size
nanometers to the current wavelength until the sequence is done.

Page 8 of 10

C++ (or .NET) Usage of ODevice API

All devices to be controlled with this API need to be using the USB port on the devices.

NOTE: Updates to software may be slightly different than the ones from these screen images;

the general flow is the same however.

1) C++ ODevice API functions Defined:

Review the sample project provided, it also has a post-Build action that copies the DLL
files to the output folder that is helpful.

It is important to copy the DLLs to the output (executable) folder and to include the LIB
(*.lib) files in the project. (The lib files provide code linkages for the DLL, the header file
is also needed to define the function calls) The header file can also be used by itself,
but it is a bit easier linking to the lib files.

/// This will discover Oriel USB devices connected and return a list of them.
/// Note: It discovers at load time, so if there are new connections a restart is
needed.
INT32 ODEVICE_API odev_list_resources(char *devices, INT32 nType = 0);

/// Device Open, if no parameters are provided, it will connect to first device found,
must open before talking to devices
INT32 ODEVICE_API odev_open(INT32 nIndex = 0, INT32 nActiveDev = 0);

/// Close Device that has been openned
INT32 ODEVICE_API odev_close(INT32 nActiveDev = 0);

/// Write command to instrument (generally one that does not expect an answer)
INT32 ODEVICE_API odev_write(const char* data = "IDN?", INT32 nActiveDev = 0);

/// Read a response from the instrument, generally should not be used, use ask() instead
INT32 ODEVICE_API odev_read(char* response, INT32 nActiveDev = 0);

/// Ask a question, send a query command and wait for the answer
INT32 ODEVICE_API odev_ask(const char* data, char* response, INT32 nActiveDev = 0);

Page 9 of 10

Note: Every function returns a status code where -1 is an error.

2) Usage of API: (Command Flow - Overview)
a. Upon Loading of DLL, USB Device Auto-discovery will occur.
b. Call odev_list_resources() to retrieve a list of found devices.
c. Call odev_open() to open an instrument.
d. Call odev_ask() to query the instrument.
e. Call odev_write() to send a command with no response to instrument.
f. Call odev_close() when done with communication.

3) Usage of API: (Walk Thru with C++ code)

a. Upon Loading of DLL, USB Device Auto-discovery will occur.

Add the DLL folder provided at the root level of your project. Then the
dynamic paths provided here will be correct.

#Include API header file, and include *.lib files in the project

// #Include Header file for Oriel communication
#include "..\DLL\ODevice_API.h"

b. Call odev_list_resources() to retrieve a list of found devices.

 char strDevices[256]; // String array to be filled
 odev_list_resources(strDevices);

m_strHistory = CString("Connected\r\nDevices Found = ") + strDevices +
CString("\r\n") + m_strHistory; // Indicate found devices

c. Call odev_open() to open an instrument.

Open first device, a value of 0 or less is failure to open.

if (odev_open() <= 0) {

Page 10 of 10

 m_strHistory = CString("connect failed\r\n") + m_strHistory;
}

d. Call odev_ask() to query the instrument.

Here is a full function from pulling data from GUI to passing it with local
variables, and then pushing the response back to the GUI:

UpdateData(true); // Pull data to variables

 CString strSend = m_strCommand;

 char strPass[512];
 strcpy_s(strPass, CStringA(strSend).GetString());

 int nZeroOk = odev_ask(strPass, Response);

 for (int i = 0; i < 512; i++){
 strResponse[i] = (char)Response[i];
 }

 m_strResponse = CString(strResponse);

 m_strHistory = CString(strResponse) + "\r\n" + m_strHistory;
 UpdateData(false);

e. Call odev_write() to send a command with no response to

instrument.

Here is pulling from GUI, putting in local variables and sending command:

 UpdateData(true); // Pull data to variables
 CString strSend = m_strCommand;

 char strPass[512];
 strcpy_s(strPass, CStringA(strSend).GetString());

 odev_write(strPass);

f. Call odev_close() when done with communication.

odev_close();

