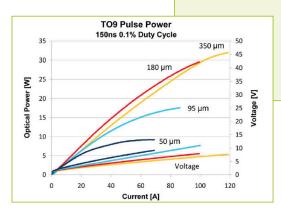
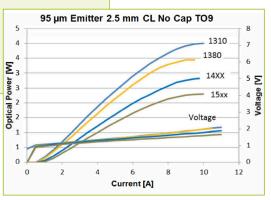
TO-9 Packaged Laser Diode

These High Power IR laser diodes use high precision indium phosphide semiductor materials to convert electrical energy directly and efficiently into coherent optical energy. A non-conventional doping profile and unique application of quantum physics provides superior performance in the areas of thermal efficiency, electrical efficiency and total optical power.


Electrical efficiency gains are achieved by ensuring less current leakage around the semiconductor quantum wells where electron energy is converted to photonic energy. Higher electrical efficiency, in turn, reduces the heat buildup caused by lost electrons. In addition, the unique design minimizes thermal resistance; thus, the heat generated from the diode is easy to dissipate. Lower heat generation significantly raises the optical power at which the laser can operatee. The combination of higher electrical and thermal efficiency achieves power levels which exceed current industry performance by 2 to 6 times.


Product Features

- Cost Effective
- High Output Power
- High Dynamic Range
- High Efficiency
- Standard Low Cost Package

Applications

- OEM Medical
- Professional Medical
- LiDAR
- Military / Aerospace
- Illumination

TO-9 Packaged Laser Diode

Specifications

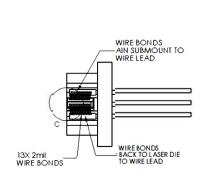
		T09-121-161		TO9-147-161		TO9-148-161		TO9-152-161		
		CW	Pulsed	CW	Pulsed	CW	Pulsed	CW	Pulsed	
Optical	Symbol									Units
Wavelength	$\lambda_{_{_{ m C}}}$	1465	1450	1595	1550	1595	1565	1330	1310	nm (±20)
Peak Output Power*	Po	1.80	17.00	1.60	14.00	1.8	24.00	2.00	20.00	watts
Average Output Power*	P_{AVG}	NA	17	NA	14	NA	24	NA	20	milliwatts
Chip Cavity Length	CL	2500		2500		2500		2500		μm
Emitter Width	W	95		95		180		95		μm
Emitter Height	Н	1		1		1		1		μm
Spectral Width	δλ	10		15		15		10		nm 3dB
Slope Efficiency	η_{\circ}	0.30		0.25		0.25		0.43	0.35	W/A
Fast Axis Div.	Θ_perp	28		28		28		28		deg FWHM
Slow Axis Div.	Θ _parellel	9	9	14	14	9	14	9	9	deg FWHM
Electrical										
Power Conversion Eff.	η	0.13	0.05	0.5	0.06	0.17	0.03	0.25	0.05	%
Operating Current	lop	6	50	7	50	8	80	8	60	Α
Threshold Current	I _{th}	0.5		1		1		0.5		
Operating Voltage	V_{op}	1.7	7	1.7	5	1.4	9.5	2	6.2	V
Series Resistance	Rs	0.08	0.1	0.1	0.1	0.04	0.14	0.05	0.08	ohm
Mechanical										
Weight		2		2		2		2		g
Operating Temp.**		-40 to 60		-40 to 60		-40 to 60		-40 to 60		°C
Storage Temp.		-40 to 80		-40 to 80		-40 to 80		-40 to 80		°C

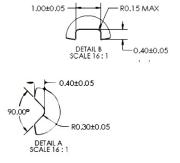
Specified values are rated at a constant heat sink temperature of 20°C.

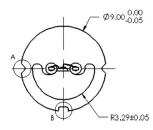
**Specified operating conditions are based on 20C heat sink temperature. High temperature operation will reduce performance and MTTF.

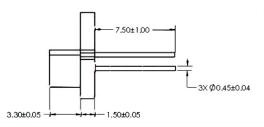
Unless otherwise indicated all values are nominal.

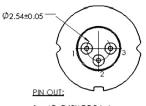
Uncapped TO9 specifications assume heatsinking underneath laser chip.


Capped TO9 specifications assume heatsinking only on flat surface where pins extend.


*Pulsed Power measured at 150ns pulse width and 0.1% duty cycle.


AIN SUBMOUNT
LASER DIE/TO-9
CENTERLINE
ALIGNMENT
O.000±0.010


LASER DIE FRONT
FACET SUBMOUNT
ALIGNMENT
O.000±0.030


SCALE 10: 1

1. LD CATHODE (-)
2. CASE
3. LD ANODE (+)

